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Abstract

State-of-the-art entity linkers achieve high accuracy scores with probabilistic methods. However,
these scores should be considered in relation to the properties of the datasets they are evaluated
on. Until now, there has not been a systematic investigation of the properties of entity linking
datasets and their impact on system performance. In this paper we report on a series of hypotheses
regarding the long tail phenomena in entity linking datasets, their interaction, and their impact
on system performance. Our systematic study of these hypotheses shows that evaluation datasets
mainly capture head entities and only incidentally cover data from the tail, thus encouraging
systems to overfit to popular/frequent and non-ambiguous cases. We find the most difficult cases
of entity linking among the infrequent candidates of ambiguous forms. With our findings, we
hope to inspire future designs of both entity linking systems and evaluation datasets. To support
this goal, we provide a list of recommended actions for better inclusion of tail cases.

1 Introduction

The task of Entity Linking (EL) anchors recognized entity mentions in text to their semantic representa-
tion, thus establishing identity and facilitating the exploitation of background knowledge, easy integra-
tion, and comparison and reuse of systems. The past years featured a plethora of EL systems: DBpedia
Spotlight (Daiber et al., 2013), WAT (Piccinno and Ferragina, 2014), AGDISTIS MAG (Moussallem et
al., 2017), to name a few. These systems propose various probabilistic algorithms for graph optimization
or machine learning, in order to perform disambiguation, i.e., to pick the correct entity candidate for a
surface form in a given context. The reported accuracy scores are fairly high, which gives an impression
that the task of EL is both well-understood and fairly solved by existing systems.

At the same time, several papers (Ilievski et al., 2016; Van Erp et al., 2016; Esquivel et al., 2017;
Ilievski et al., 2017) have argued that state-of-the-art EL systems base their performance on frequent
‘head’ cases, while performance drops significantly when moving towards the rare ‘long tail’ entities.
This statement seems intuitively obvious, but no previous work has quantified what the ‘head’ and ‘tail’
of EL entails. In fact, the lack of definition of head and tail in this task prevents the (in)validation of the
hypothesis that interpreting some (classes of) cases is more challenging for systems than others. This, in
turn, means that we are currently unable to identify the difficult cases of EL for which current systems
need to be adapted, or new approaches need to be developed. Previous linguistic studies which analyze
words distributions can not be applied for this purpose, because they do not study reference, nor the
relation of the head-tail distribution to system performance.

Understanding the tail cases better and explicitly addressing them in systems design will be beneficial
because: 1. a lot of textual data and requirements for processing it are made up of long tail cases, 2. unlike
the head entities, the knowledge about tail entities is less accessible (in structured or unstructured form),
not redundant, and hard to obtain. 3. to perform well on the tail, systems are required to interpret entity
references without relying on statistical priors, but by focusing on high-precision reasoning.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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This paper addresses the question: which data properties capture the distinction between the head
and the tail in entity linking, and to what extent? Its main contributions are the following:

1. We define the long tail properties of entity linking (Section 3).1 This is the first work that looks
systematically into the relation of surface forms in datasets and their instances in DBpedia, and
provides predictions in the form of a series of hypotheses about long tail phenomena.

2. We analyze existing entity linking datasets with respect to these long tail properties, demonstrating
that data properties have certain inter-correlations that follow our hypotheses (Section 4).

3. We describe how the performance of systems correlates with head and long tail cases, proving that
the long tail phenomena and their interactions influence the performance of systems (Section 5).

4. We provide recommendations on how to address the tail in future EL research (Section 7).

2 Related work

Analyzing well-known datasets for semantic tasks, Ilievski et al. (2016) measured very low ambiguity
and variation, and a notable bias towards dominance. Overall, tasks and datasets show strong semantic
overfitting to the head of the distribution (the popular part) and are not representative for the diversity
of the long tail. In the related task of Word Sense Disambiguation, Postma et al. (2016) analyzed the
impact of frequency on system accuracy, showing that the accuracy on the most frequent words is close
to human performance, while the least frequent words can be disambiguated correctly in at most 20%
of cases. According to Van Erp et al. (2016), EL datasets contain very little referential ambiguity and
evaluation is focused on well-known entities (i.e., with high PageRank (Page et al., 1999) values).

NIL entities are entities without a representation in a knowledge base (Ji and Grishman, 2011). These
are typically considered to have low frequencies within a corpus and/or to be domain-specific. Esquivel
et al. (2017) report that around 50% of the people mentioned in news articles are not present in Wikipedia.
Considering that Wikipedia and its structured data derivatives are almost exclusively used as an anchor
in EL, this means that for half of all people mentions, the EL task is nonsensical. While NILs are a
challenge that concerns the long tail of EL, in this work we focus on those entities that have been linked
to Wikipedia, but are still infrequent, since this provides an entry for extensive analysis of their properties.

In this work, we distinguish dark, emerging, and domain entities. Dark entities are those for which
no relevant information is present in a given knowledge base (Van Erp et al., 2015). Dark entities thus
expand the notion of NIL entities to cases where an entity representation exists, but it is insufficient to
reason over. Emerging entities are time-bound entities, recently unknown but potentially becoming pop-
ular in news in a short time (Hoffart et al., 2014). A body of work has dealt with domain entities, whose
relevance is restricted within a topic, e.g. biomedical (Zheng et al., 2015), or historical domain (Heino et
al., 2017). Dark, emerging, and domain entities mostly make up the tail in EL. Their definition is, how-
ever, orthogonal to our work: we strive to provide an umbrella theory of the tail in EL based on linguistic
properties and avoid a discussion on defining the distinction between head or tail in a categorical way.

Finally, studying distributional properties of entity expressions and their linking, as we do in this study,
is different from the classical linguistic studies on the distribution of words (Zipf, 1935; Corral et al.,
2015; Kanwal et al., 2017). Linked entity data provides information on the surface forms, the meaning,
and the referent of the surface form, whereas distributional studies on words only provide knowledge on
the surface forms and to a limited extent on their sense, but never on their reference.

3 Approach

To address our research goal of quantifying the long tail of EL, we first explain the notions of ambiguity,
variance, frequency, and popularity. Next, we formulate a set of hypotheses regarding their interaction
and our expected influence on system performance. We also describe our choice of data collections and

1We consider the following properties: ambiguity of surface forms, variance of instances, frequency of surface forms,
frequency of instances, and popularity of instances.
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EL systems to analyze. The code of this analysis is available on Github at https://github.com/
cltl/EL-long-tail-phenomena.

3.1 The long tail phenomena of the entity linking task

Each entity exists only once in the physical world. However, this is different in our communication
where: 1. certain surface forms are very prominent and others occur only rarely; 2. certain instances are
very prominent and others are mentioned incidentally. The task of EL covers a many-to-many relation
between surface forms observed in text and their instances potentially found in a knowledge base. Surface
forms and instances both have their own frequency distribution, pointing to the same underlying Grice
(1975) mechanisms, governed by an envisioned trade-off between efficiency and effectiveness.

Surface forms have various frequency of occurrence in textual documents. Frequent surface forms
include “U.S.” and “Germany”, but also “John Smith”. The frequency of a surface form can be explained
by its relation to one (or a few) very popular instances (United States), but it can also be a result of
high ambiguity (“John Smith” is a common name, so it simply refers to many possible instances).2

Similarly, some instances are more popular and therefore more frequently mentioned than others.
Note that frequency here refers to the number of occurrences in a corpus, while popularity refers to the
frequency as a topic and can, for example, be measured by the volume of knowledge about an instance
captured with its PageRank in a knowledge base. Frequent and popular instances are intuitively quite
prominent and relevant, very often across many different circumstances, and are typically referred to
by a relatively wide set of surface forms, resulting in a high variance. In addition, frequent/popular
entities tend to participate in metonymy relations with other entities topically related to them. For in-
stance, United States as a country relates to United States Army and to United States
Government - two other entities of a different type, but possibly referenced by the same surface forms.

3.2 Hypotheses on the long tail phenomena of the entity linking task

We look systematically at the relation of surface forms in datasets and their instances in DBpedia, and
provide a series of hypotheses regarding the long tail phenomena and their relation to system performance
(Table 1). Some of these hypotheses, e.g., D1 and D2, are widely accepted as common knowledge but
have rarely been investigated in EL datasets. Others, such as S4 and S5, are entirely new.

ID Hypothesis Sec

D1 Only a few forms and a few instances are very frequent in corpora, while most appear only incidentally. 4.1
D2 A few instances in corpora are much more popular (have much higher PageRank) compared to most other. 4.2
D3 Only a small portion of all forms in corpora are ambiguous. 4.3
D4 Only a small portion of all instances in corpora are referred to with multiple forms. 4.4
D5 There is a positive correlation between ambiguity of forms and their frequency. 4.5
D6 There is a positive correlation between variance of instances and their frequency. 4.5
D7 There is a positive correlation between variance of instances and their popularity. 4.5
D8 There is a positive correlation between popularity of instances and their frequency. 4.5
D9 The frequency distribution within all forms that refer to an instance is Zipfian. 4.6
D10 The frequency and the popularity distribution within all instances that refer to a form is Zipfian. 4.6
S1 Systems perform worse on forms that are ambiguous than overall. 5.1
S2 There is a positive correlation between system performance and frequency/popularity. 5.2
S3 Systems perform best on frequent, non-ambiguous forms, and worst on infrequent, highly ambiguous forms. 5.3
S4 Systems perform better on ambiguous forms with imbalanced, compared to balanced, instance distribution. 5.4
S5 Systems perform better on frequent instances of ambiguous forms, compared to their infrequent instances. 5.4
S6 Systems perform better on popular instances of ambiguous forms, compared to their unpopular instances. 5.4

Table 1: Hypotheses on the data properties (D*) and on their relation to system performance (S*)

2The notion of ambiguity captures the amount of instances to which a surface form has been observed to refer. Non-
ambiguous forms are those that refer to a single instance, whereas ambiguous forms refer to at least two instances. Highly
ambiguous forms refer to a wide array of instances.
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3.3 Datasets and systems
We focus on well-known EL datasets with news documents, preferring larger sets with open licenses.
Many customary EL datasets are however quite small (< 1, 000 mentions). We opted to perform our
analysis on the following two data collections, with five corpora in total:

AIDA-YAGO2 (Hoffart et al., 2011) - we consider its train, test A, and test B sets, summing up to
34,929 entity forms in 1,393 news documents, published by Reuters from August 1996 to August 1997.

N3 (Röder et al., 2014) is a collection of three corpora released under a free license. We consider the
two N3 corpora in English: RSS-500 and Reuters-128. Reuters-128 contains economic news published
by Reuters, while RSS-500 contains data from RSS feeds, covering various topics such as business,
science, and world news. These two corpora consist of 628 documents with 1,880 entity forms in total.

We analyzed the EL performance of recent public and open-sourced entity linkers, as the state-of-
the-art: 1. AGDISTIS MAG (Moussallem et al., 2017)3 combines graph algorithms with context-based
retrieval over knowledge bases. 2. DBpedia Spotlight (Daiber et al., 2013)4 is based upon cosine simi-
larities and a modification of TF-IDF weights. 3. WAT (Piccinno and Ferragina, 2014)5 combines a set
of algorithms, including graph- and vote-based ones.6

3.4 Evaluation

G\S C1 ... CN NILL
C1 TP(1) FP(N), FN(1) FN(1)
...
CN FP(1), FN(N) TP(N) FN(N)
NILL FP(1) FP(N) -

Table 2: Computation of TPs, FPs, and FNs per class
C1, ..., CN . ‘G’=gold instance, ‘S’=system instance.

We apply the customary metrics of preci-
sion, recall, and F1-score to measure system
performance in Section 5. In Table 2, we
briefly describe the computation of true pos-
itives (TPs), false positives (FPs), and false
negatives (FNs) per class. For example, if the
gold instance belongs to C1, then we count a
TP when the system instance is also C1. In
case the system instance belongs to another
class Ci, i 6= 1, this leads to a FN for C1 and a FP for CN . A special class are the NILs: predicting a NIL
case incorrectly by the system results in a FN for the correct class; inversely, if the system was supposed
to predict a NIL and it did not, then we count a FP. See the details in later sections for what constitutes a
class. In our analysis we exclude the cases referring to NILs.

4 Analysis of data properties

4.1 Frequency distribution of forms and instances in datasets
We hypothesize that only a few forms and a few instances are very frequent in corpora, while most appear
only incidentally (D1). This represents a variation of Zipf’s law (Zipf, 1935) for the EL task.

The log-log frequency distributions of forms and instances (Figure 1a and 1b) show an almost ideal
Zipfian distribution in the case of AIDA (with a slope coefficient of -0.9085 for forms and -0.9657 for
instances) and to a lesser extent for N3 (a slope of -0.4291 for forms and -0.5419 for instances). The less
Zipfian curves of N3 are probably because this data collection is significantly smaller than AIDA.

The similar shape of the form and the instance distribution per dataset can be explained by the de-
pendency between the two aspects. Namely, the form ‘U.S.’ denoting the instance United States
462 times is reflected in both the form and the instance distributions. However, these two distributions
are only identical if the ambiguity and variance are both 1. In practice, the mapping between forms and
instances is M-to-N, i.e., other forms also denote United States (such as ‘America’) and there are
other instances referred to by a form ‘US’ (such as United States dollar).

3AGDISTIS API: http://akswnc9.informatik.uni-leipzig.de:8113/AGDISTIS, used on 24/05/2018.
4Spotlight API: http://spotlight.fii800.lod.labs.vu.nl/rest/disambiguate, used on 24/05/2018.
5WAT API: https://wat.d4science.org/wat/tag/json, used on 24/05/2018.
6All three APIs link to the Wikipedia dump from April 2016. Since the official DBpedia Spotlight endpoint at http:

//model.dbpedia-spotlight.org/en/disambiguate links to a newer Wikipedia version (February 2018 at the
moment of writing of this paper), we set up our own endpoint that performs linking to the model 2016-04, to enable fair
comparison with the other two systems. We reached similar conclusions with both versions of DBpedia Spotlight.
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Figure 1: Log-log distribution of:

(a) form frequency (b) instance frequency (c) PageRank

4.2 PageRank distribution of instances in datasets

Similar to the instance frequency, we expect that a few instances in the corpora have an extremely high
PageRank compared to most others (D2). Figure 1c shows the PageRank distribution of our both datasets.
We observe that most entity mentions in text refer to instances with a low PageRank value, while only a
few cases have a high PageRank value. Not surprisingly, the instance with the highest PageRank value
(United States) is at the same time the instance with the highest corpus frequency.

We inspect the effect of frequency and PageRank on system performance in Section 5.2.

4.3 Ambiguity distribution of forms

1 2 3 4 5 6 .. 12
AIDA 6,400 359 78 29 7 3 1
N3 794 18 2 1 0 0 0
BOTH 7,037 381 84 29 10 3 1

Table 3: Ambiguity distribution per dataset, after NILs
are excluded. Columns represent degrees of ambiguity.

We hypothesize that only a small portion of
all forms in a corpus are ambiguous (D3).
As shown in Table 3, when both datasets are
merged and NIL entities excluded, only 508
surface forms (6.73%) are ambiguous, as op-
posed to 7,037 monosemous forms (93.27%).
This extremely high percentage validates our
hypothesis. Moreover, in Sections 5.1, 5.3,
and 5.4, we show that it also has a strong effect on systems performance.

4.4 Variance distribution of instances

1 2 3 4 5 6 7 8 9 10 11
AIDA 4,156 1,118 230 56 19 10 6 0 1 1 1
N3 550 106 15 7 1 0 0 0 0 0 0
BOTH 4,555 1,206 247 74 22 10 6 0 0 2 1

Table 4: Variance of instances with respect to the number of surface
forms that reference them. Columns represent degrees of variance.

We expect that only a small por-
tion of all instances in a cor-
pus are referred to with multi-
ple forms (D4). The results of
our variance analysis are given
in Table 4. Over both datasets,
1,568 instances (25.61%) are
referred to by multiple forms, as
opposed to 4,555 instances (74.39%) which are always referred to by the same form. While the distribu-
tion of variance is much more even compared to that of ambiguity, we observe that most of the instances
have a variance of 1.7

4.5 Interaction between frequency, PageRank, and ambiguity/variance

In the previous four Sections we analyzed the frequency distribution of individual data properties. Here
we move forward to analyze their interaction. Figure 2 shows these results with mean as an estimator.8

Firstly, we predict a positive dependency between ambiguity of forms and their frequency (D5). We ex-
pect that frequently used forms tend to receive new meanings, often as a result of metonymy or meronymy

7We expect that this skewness will also dominate system performance. For space reasons, we have not included this analysis.
8We observed comparable results with median as an estimator.
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Figure 2: Correlations between long tail phenomena (estimator=mean):

(a) Ambiguity and frequency. (b) Variance and frequency. (c) Variance and PageRank. (d) PageRank and frequency.

of their dominant meaning. Figure 2a confirms this tendency, the Spearman correlation being 0.3772.
Secondly, we expect a positive correlation between variance of instances and their frequency (D6) or

popularity (D7). Frequently mentioned and popular instances tend to be associated with more forms.
Indeed, we observe that instances with higher frequency (Figure 2b) or PageRank (Figure 2c) typically
have higher variance. The Spearman correlations are 0.6348 and 0.2542, respectively.

Thirdly, we compare the frequency of instances to their popularity measured with PageRank, predict-
ing a positive correlation (D8). On average, this dependency holds (Figure 2d), though there are many
frequent instances with low PageRank, or vice versa, leading to a Spearman correlation of 0.3281. The
former are instances whose prominence coincides with the creation time of the corpus, but are not very
well-known (e.g., the now-retired football player Predrag Mijatovic). The latter are generally pop-
ular entities which were not captured sufficiently by the corpus, because their topical domain is marginal
to this corpus (e.g., scientists), or they became relevant after the corpus release (emerging entities).

Hence, besides the high corpora skewness in terms of frequency, popularity, ambiguity, and variance,
these factors also have positive interdependencies. Section 5 shows their effect on system performance.

4.6 Frequency distribution within a synset

We observed that the distribution of form frequency, instance frequency, and PageRank all have a Zipfian
shape. But do we also see this behavior on a single form or instance level?

Figure 3: Form frequencies for the in-
stance United States

Supposedly, the frequency distribution within all forms
that refer to an instance is Zipfian (D9). We test D9
on the instance with highest variance and frequency,
United States (Figure 3). As expected, the vast major-
ity of forms are used only seldom to refer to this instance,
while in most cases a dominant short form “U.S.” is used
to make reference to this entity.

Figure 4a presents the frequency distribution of all in-
stances that are referred to by the most ambiguous form in
our data, “World cup”. Figure 4b shows their PageRank
distribution. In both cases, we observe a long-tail distri-
bution among these instances (D10). Comparing them, we
observe a clear match between frequency and PageRank,
deviating only for instances that were prominent during the
corpus creation, like 1998 FIFA World Cup.

For analysis on the effect of frequency and popularity on system performance, please see Section 5.2.

5 Analysis of system performance and data properties

Next, we analyze systems performance in relation to the data properties: ambiguity (Section 5.1), form
frequency, instance frequency, and PageRank (Section 5.2), as well as their combinations (5.3 and 5.4).
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Figure 4: Distributions of the instances denoted by the most ambiguous form (“World Cup”)

(a) Frequency distribution. (b) PageRank distribution.

5.1 Correlating system performance with form ambiguity

Figure 5 displays the micro F1-scores of AGDISTIS MAG, Spotlight, and WAT on the two data collec-
tions jointly. For each system, we show its overall F1-score and F1-score on ambiguous forms only.

Figure 5: Micro F1-scores of systems: overall and
on ambiguous subsets

Section 4.3 showed that most of the forms in
our corpora are not ambiguous. We expect that
these forms lift the performance of systems, i.e.,
that they can resolve non-ambiguous forms easier
than ambiguous ones (S1). Figure 5 confirms this
for all systems: the F1-score on ambiguous forms
is between 6 and 14 absolute points lower than the
overall F1-score.

When computing macro- instead of micro-F1
scores, we observe similar findings for S1. In-
terestingly, the macro-F1 scores are consistently
lower than the micro-F1 scores, especially in case
of the ambiguous subsets evaluation. Namely,
the overall macro-F1 scores are between 0.44 and
0.52, and between 0.14 and 0.34 on the ambigu-
ous forms. This suggests that frequent forms boost system performance, especially on ambiguous surface
forms. We investigate this further in the next Sections.

5.2 Correlating system performance with form frequency, instance frequency, and PageRank

all forms ambiguous forms only
FF-F1 FI-F1 PR-F1 FF-F1 FI-F1 PR-F1

AGDISTIS 0.2739 0.3812 0.1465 0.3550 0.4073 0.3969
Spotlight 0.1321 0.1847 0.1357 0.3986 0.4196 0.3108
WAT 0.4663 0.5050 0.3164 0.5831 0.5319 0.4214

Table 5: Correlation between F1-score and: frequency of
forms (FF-F1), frequency of instances (FI-F1), and PageRank
(PR-F1). Left: on all forms, right: only on ambiguous forms.

Next, we consider frequency of forms
and instances, as well as PageRank
values of instances in relation to sys-
tem performance. For each of these,
we expect a positive correlation with
system performance (S2), suggesting
that systems perform better on fre-
quent and popular cases, compared to
non-popular and infrequent ones.

The Spearman correlation for each
of the systems and properties, over all
forms, are shown in Table 5 (left half). While most of the correlation for frequency and popularity
is positive, the values are in general relatively low (WAT being an exception). This shows that fre-
quency/popularity by itself contributes, but is not sufficient to explain system performance. The right
half of the Table shows the same metrics when applied to the ambiguous forms. We observe an increase
in all values, which means that frequency and popularity are most relevant when multiple instances
‘compete’ sharing a form. These findings are in line with those in Section 5.1.
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5.3 Correlating system performance with ambiguity and frequency of forms jointly

Figure 6: F1 per (ambiguity, frequency) pair. The first three heat maps show the F1-scores of systems
per ambiguity degree and frequency range. The last plot shows the amount of unique forms in each cell.

We have shown that system performance is lower on ambiguous than unambiguous forms. We also
observed a tendency of systems to perform better on frequent forms and instances as compared to infre-
quent ones. But how does performance differ across different levels of ambiguity? How do ambiguity
and form frequency interact as a joint predictor of performance? The heat maps in Figure 6 show the
interplay between ambiguity, frequency, and micro F1-score for each of the systems. Generalizing over
the discussion in Sections 5.1 and 5.2, we observe the best scores on frequent, non-ambiguous forms
(bottom-left), and worst F1-scores on non-frequent, highly ambiguous forms (top-right) (S3).

In Section 5.4, we investigate if some instances within ambiguous forms are more difficult than others.

5.4 Correlating system performance with frequency of instances for ambiguous forms

Figure 7: Micro F1-score per entropy
bucket.

To measure the instance distribution within individual
forms, we employ the notion of normalized entropy, sim-
ilarly as Ilievski et al. (2016). The entropy of a form
i with ni instances and Ni occurrences is: Hi =
(−

∑ni
j=1 pi,jlogpi,j)/log2Ni, where pi,j is the probability

that the instance j is denoted by the form i. For non-
ambiguous forms Hi = 0, while forms with uniform fre-
quency distribution of instances have a maximum Hi = 1.
We predict an inverse correlation between system perfor-
mance and entropy (S4). The results in Figure 7 show a dra-
matic drop in micro F1-score for uniformly distributed cases
(high entropy) compared to skewed ones (low entropy). We
compare these shapes to two baselines: frequency baseline,
that picks the most frequent instance for a form on the gold
data, and a random baseline, choosing one of the gold in-

stances for a form at random. All three systems have a similar curve shape to the frequency baseline,
whereas out of the three systems Spotlight’s curve comes closest to that of the random baseline.

We also compute the macro F1-score per entropy bucket to help us understand whether the drop in
performance in Figure 7 is due to: 1. a qualitative difference between low and high entropy forms, or
2. an overfitting of systems to the frequent interpretations of ambiguous forms. The macro F1-score
reduces the effect of frequency on performance, by evaluating each form-instance pair once. We observe
that the macro F1-scores are much more balanced across the entropy buckets compared to the micro
F1-scores, and especially lower on the buckets with higher skewness (low entropy). This suggests that
the high micro F1-score for low entropies is heavily based on frequent instances.

As a final analysis, we seek to understand whether frequent/popular instances of a form are indeed
resolved easier than less frequent/popular instances of the same form. For that purpose, we pick the set
of all ambiguous forms, and we rank their instances by relative frequency/PageRank value.
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Considering the most ambiguous form “World Cup” as an example and ranking by frequency,
its r1 (rank 1) instance is 1998 FIFA World Cup, r2 is FIFA World Cup, ..., and r12 is
ISU Speed Skating World Cup. We expect systems to perform much better on frequent instances
of ambiguous forms, compared to infrequent instances of ambiguous forms, i.e., we expect F1-scores to
decrease when moving from higher to lower ranks (S5). Figure 8 shows that our hypothesis holds to a
large extent for precision, recall, and F1-scores, except for the occasional peaks at r6 and r9.

Figure 8: Precision, recall, and micro F1-score per instance frequency rank, averaged over the systems.

Figure 9: Precision, recall, and micro F1-score per PageRank-based rank, averaged over the systems.

Similarly, we order the instances denoting a form based on their relative PageRank value. We hypoth-
esize that systems perform better on popular instances of ambiguous forms, compared to their unpopular
instances (S6). Although less monotonic than the frequency ones in Figure 8, the resulting shapes of this
analysis in Figure 9 suggest that popularity can also be applied to estimate system performance.

6 Summary of findings

We noted a positive correlation between ambiguity and frequency of forms, as well as between variance
and frequency of instances. We noticed that the distribution of instances overall, but also per form,
has a Zipfian shape. Similarly, the distribution of forms, both on individual and on aggregated level, is
Zipfian. While some of these distributions are well-known in the community for words, this is the first
time they have been systematically analyzed for surface forms of entities, their meaning and reference,
and empirically connected with the performance of systems.

We observed that ambiguity of forms leads to a notable decline in system performance. Coupling it
with frequency, we measured that low-frequent, highly ambiguous forms yield the lowest performance,
while very frequent, non-ambiguous forms yield the highest performance. The entropy of forms, captur-
ing the frequency distribution of their denoted instances, revealed that balanced distributions tend to be
harder for systems, with the micro F1-value dropping with 20-40 absolute points between the highest and
lowest entropy. Finally, the higher performance on skewed cases was shown to be a result of overfitting
to the most frequent/popular instances.

Based on these outcomes, we can conclude that the intersection of ambiguity and frequency/popularity
is a good estimator of the complexity of the EL task. The hard cases of EL should be sought among the
low-frequent and unpopular candidates of highly ambiguous forms.



673

7 Recommended actions

We have shown that there are systematic differences between the head and the tail of the EL task, and
that these reflect on how systems perform. Provided that systems show a weakness on tail cases, and
that this weakness is simultaneously hidden by averaged evaluation numbers, how can we overcome this
obstacle in practice? Here we list three recommendations:

1. When creating a dataset, we propose authors to include statistics on the head and the tail properties
(ambiguity, variance, frequency, and popularity) of the data, together with a most-frequent-value
baseline. By doing so, the community would be informed about the hard cases in that dataset, as
well as about the portion of the dataset that can be resolved by following simple statistical strategies.

2. When evaluating a system, we suggest splitting of all cases into head and tail ones. Afterwards,
head and tail cases can be evaluated separately, as well as together. This provides a direct insight
into the differences in scoring of the tail cases compared to the head cases, potentially signaling
aspects of the EL tail that are challenging for the given system. In addition, the frequency skewness
of head cases can be largely decreased by employing a macro instead of micro F1-score, as shown
in this paper.

3. In addition to the suggestion in 2., when developing or training a system, it should be made explicit
which heuristics target which cases, and to what extent resources and training data optimize for the
target dataset in relation to the head and tail distributions.

8 Conclusions

Although past research has argued that the performance of EL systems declines when moving from the
head to the tail of the entity distribution, the long tail has not been quantified so far, preventing one to
distinguish head and tail cases in the EL task. Previous linguistic studies on words distributions can
also not be applied for this purpose since they do not study reference. This paper is the first one that
systematically looks into the relation of surface forms in EL corpora and instances in DBpedia, and pro-
vides a series of hypotheses on what long tail phenomena are. We analyzed existing EL datasets with
respect to these long tail properties, demonstrating that data properties have certain inter-correlations
that follow our hypotheses. Next, we investigated their effect on the performance of three state-of-the-art
systems, proving that the long tail phenomena and their interaction consistently predict system perfor-
mance. Namely, we noted a positive dependency of system performance on frequency and popularity of
instances, and a negative one with ambiguity of forms. Our findings in this paper are meant to influence
future designs of both EL systems and evaluation datasets. To support this goal, we listed three recom-
mended actions to be considered when creating a dataset, evaluating a system, or developing a system in
the future.

We see two directions for future improvement of our analysis: 1. To obtain a corpus-independent
inventory of forms and their candidate instances, both with their corresponding frequencies, is a challenge
in the case of EL and no existing resource can be assumed to be satisfactory in this regard (for Word Sense
Disambiguation, this is usually WordNet). We approximated these based on the corpora we analyzed,
but considering the fairly small size of most EL datasets, this poses a limitation to our current analysis.
2. Some of our current numbers are computed only on a handful of cases. This leads to unexpected
disturbances in our results, like the occasional peaks for high ranks in Figure 8. We expect the outcome
of this analysis to gain significance when more large EL datasets become available in the future.
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