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Abstract

Identifying discourse relations that are not overtly marked with discourse connectives remains
a challenging problem. The absence of explicit clues indicates a need for the combination of
world knowledge and weak contextual clues, which can hardly be learned from a small amount
of manually annotated data. In this paper, we address this problem by augmenting the input text
with external knowledge and context and by adopting a neural network model that can effec-
tively handle the augmented text. Experiments show that external knowledge did improve the
classification accuracy. On the other hand, contextual information provided no significant gain
for implicit discourse relations while it worked for explicit ones.

1 Introduction

Discourse relation recognition has a wide variety of potential applications including summariza-
tion (Louis et al., 2010), sentiment analysis (Somasundaran et al., 2009) and machine translation (Meyer
et al., 2015). In one of the two most prevalent discourse treebanks, the Penn Discourse TreeBank
(PDTB) (Prasad et al., 2008), discourse relations are conventionally divided into two types: explicit
and implicit. Explicit relations are overtly marked with discourse connectives such as “because” and
“however.” Because of these strong cues, explicit relations are relatively easy to classify (Pitler et al.,
2008; Xue et al., 2016). By contrast, implicit relations lack discourse connectives and classifying such
relations remains a challenging problem.

Recent studies on implicit discourse relation classification have shown success in applying various
neural network models including feedforward networks (Zhang et al., 2015; Schenk et al., 2016), convo-
lutional neural networks (Mihaylov and Frank, 2016; Wang and Lan, 2016) and bidirectional LSTM (bi-
LSTM) (Chen et al., 2016; Liu and Li, 2016; Dai and Huang, 2018). Although these studies on network
engineering report performance improvement, Rutherford et al. (2017) demonstrated that a simple feed-
forward neural network was astonishingly competitive, outperforming LSTM- and Tree LSTM-based
models. He claimed that training data for implicit discourse relation classification were too small to train
powerful neural networks like LSTM. This motivates us to view this task from a different perspective.

We argue that the neural network models need to be provided with world knowledge, which can hardly
be learned from a small amount of manually annotated data. To see this, suppose that we want to classify
the discourse relation of the following pair of text spans (referred to as Arg1 (in italic) and Arg2 (in
bold) throughout this paper):� �
Arg1: Not counting the extraordinary charge it would have had a net loss of $3.1 million, or seven
cents a share
Arg2: A year earlier, it had profit of $7.5 million, or 18 cents a share
(Comparison.Contrast)� �

We can easily recognize that the discourse relation between this pair is Comparison.Contrast partly be-
cause we know that “loss” in Arg1 and “profit” in Arg2 are antonyms. However, it is difficult for a
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neural network model trained on small training data to recognize the antonymy. Although many recent
studies make use of word2vec word embeddings (Mikolov et al., 2013), which are typically trained with
a large amount of unannotated data, it is well known that synonyms and antonyms are distributionally
similar and thus are hardly distinguishable (Ono et al., 2015). For this reason, we need to look for
different knowledge sources as well as an efficient way to integrate them into neural network models.

In this paper, we use MAGE-GRU (Dhingra et al., 2017) to encode external knowledge. It is a straight-
forward extension to the Gated Recurrent Unit (GRU) (Cho et al., 2014). The input to MAGE-GRU is
no longer a sequence of words but a directed acyclic graph in which the word sequence is augmented
with edges between arbitrarily distant words for which external knowledge suggests some explicit sig-
nals such as antonymy. Thus “loss” and “profit” in the example above are directly connected, making a
downstream network layer more easily classify the discourse relation.

In the experiments, we augmented the inputs with ConceptNet (Speer and Havasi, 2012) and coref-
erence resolution. We found that MAGE-GRU significantly outperformed others when ConceptNet was
used.

While recurrent neural networks have considerable difficulty in capturing long-range dependencies,
MAGE-GRU is expected to mitigate this problem because it creates shortcuts within word sequences.
This leads us to explore another question: Do Arg1 and Arg2 provide sufficient information to deter-
mine discourse relations?

Let us consider the following example:� �
Good service programs require recruitment, screening, training and supervision – all of high quality.
They involve stipends to participants. Full-time residential programs also require housing and full-
time supervision; they are particularly expensive – more per participant than a year at Stanford or
Yale. Non-residential programs are cheaper, but good ones still come to some $10,000 a year
(Comparison.Contrast)� �

In this example, “Non-residential programs” in Arg2 is contrasted with “they” in Arg1. To recognize
the fact, we need to resolve the pronoun “they” by looking back at the text preceding Arg1 to find the
antecedent “Full-time residential programs.” Although other clues such as the pair of “expensive” and
“cheaper” are present, contextual information makes it easier to classify this argument pair as Compari-
son.Contrast. Although the current standard approach to this task is to use the pair of Arg1 and Arg2
out of context, the computer might also benefit from the wider context, given the power of MAGE-GRU.

We compared the performance of MAGE-GRU with and without the text chunk that preceded a given
argument pair in the paragraph. It turned out that contextual information provided no significant im-
provement for implicit discourse relations. However, we also found that contextual information yielded
a significant gain for explicit discourse relations. The results appear to strengthen the observation that
explicit and implicit discourse relations are dissimilar (Prasad et al., 2014).

2 Related Work

Before neural networks were introduced to the task of implicit discourse relation classification, Lin
et al. (2009) proposed a linear classifier that was based on various lexical and syntactic features and
was combined with extensive feature selection. Rutherford et al. (2017) built a simple feedforward
neural network model where only one pooling layer and one hidden layer were stacked on top of word
embeddings. They reported that the simple model outperformed LSTM- and Tree LSTM-based models
but lost to Lin et al. (2009).

LSTM has demonstrated success in a wide range of NLP tasks including implicit discourse relation
classification. Chen et al. (2016) proposed a combination of a bi-LSTM and a gated relevance network
while Liu and Li (2016) combined a bi-LSTM with multi-level attentions. Dai and Huang (2018) pro-
posed a combination of a word-level bi-LSTM and a paragraph-level neural networks. Rutherford et al.
(2017) argued that the annotated corpus was too small to train LSTM-based models, however. Note that
the present work is complementary to these studies. Since our model is a straightforward extension to
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Figure 1: System architecture.

the recurrent neural network, it can easily be combined with other neural network models that are built
on top of LSTMs.

Another popular choice of network is convolutional neural networks (CNN). Wang and Lan (2016)
proposed an end-to-end shallow discourse parser. In their pipeline system, a CNN is used for non-
explicit relation classification.1 It ranked second on the blind datasets in the CoNLL 2016 Shared Task.
Qin et al. (2016) proposed a combination of a bi-LSTM and CNNs. They constructed character-based
word representations by transforming character embeddings with CNN and bi-LSTM layers. Another
CNN layer was used to extract an argument representation from a sequence of words.

Some recent studies exploited external knowledge sources and some of them were reported to improve
the performance of implicit discourse relation classification (Rutherford and Xue, 2014). In the closed
track of the CoNLL 2016 Shared Task (Xue et al., 2016), the organizers allowed participants to use a
limited set of linguistic resources: Brown Clusters, VerbNet, a sentiment lexicon and an off-the-shelf
word2vec model. In addition to these, Inquirer Tags, Levin classes and Modality were tested by Shi and
Demberg (2017). They extracted features from these resources and added them to a neural network layer
just before the output. Dhingra et al. (2017), who proposed MAGE-GRU, tested a more direct approach
as a baseline, in which they appended to word embeddings a sequence of features which are fired by
external knowledge. They found that MAGE-GRU consistently outperformed the baseline in various
tasks when coreference resolution is used as external knowledge.

A huge performance gap between explicit and implicit relations leads some to transform explicit re-
lations in unannotated corpora to generate pseudo-training data of implicit relations. Sporleder and Las-
carides (2008) reported negative results, suggesting that explicit and implicit discourse relations were
linguistically dissimilar. Rutherford and Xue (2015) worked on selecting discourse connectives that can
be safely dropped. Qin et al. (2017) generated a different kind of pseudo-training data. They inserted to
implicit relations implicit connectives PDTB annotators assigned to them. They used domain adversar-
ial training to transfer knowledge from the recognition model supplied with implicit connectives to the
model without connectives. These methods can be combined with our approach.

3 Proposed Method

The overall system architecture is shown in Figure 1. It is based on the RNN architecture of Rutherford
et al. (2017) although we made two major modifications to it, which will be described in Sections 3.1
and 3.3. For each of Arg1 and Arg2, a sequence of words are transformed into a sequence of hidden

1Non-explicit relation classification is closely related to implicit discourse relation classification but differs in the treatment
of another type of relation, AltLex.
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Figure 3: One step of MAGE-GRU.

vectors by an RNN. It is followed by a pooling operation, the concatenation of the two arguments, a
linear transformation with non-linear activation, and a softmax classification to predict the relation. The
linear transformation is designed to capture the interaction between the arguments.

3.1 MAGE-GRU

One major difference from the architecture of Rutherford et al. (2017) is that whereas Rutherford et al.
(2017) used LSTM as the RNN component, we adopt MAGE-GRU (Dhingra et al., 2017). It extends the
Gated Recurrent Unit (GRU) (Cho et al., 2014) such that it can incorporate external linguistic knowledge
as explicit signals.

The input to MAGE-GRU is no longer a sequence of words but a directed acyclic graph as shown in
Figure 2. The graph is constructed by augmenting the word sequence with edges between arbitrarily dis-
tant words. Sequential transitions are now treated as a special type of edges. An edge is added if external
knowledge suggests an explicit signal for the given word pair. We represent a signal as a triplet (word
A, relation type, word B). For example, green edges in Figure 2 denote antonymy: (daughter, Antonym,
son) and (ill, Antonym, healthy). Edges are directed and we assume that word A always comes before
word B. If relation types in external knowledge are asymmetric (e.g., (thinking, Causes, acting)), we
create reverse relation types to keep the directionality. If external knowledge deals with a phrase, we use
the last word for the triplet. We also constrain every node to have at most one incoming edge per relation
type because this drastically simplifies computation. If word B has two or more candidates for word A,
the nearest one is chosen.

Given a directed acyclic graph, MAGE-GRU outputs a hidden vector ht at each time step t. One
step of MAGE-GRU is illustrated in Figure 3. The peculiarity of MAGE-GRU is that whereas vanilla
GRU receives word vector wt and hidden vector ht−1 as the inputs, MAGE-GRU substitutes ht−1 with
a special vector gt. gt is created by partially and selectively combining the history of hidden vectors,
h1, · · · , ht−1:

gt = [ge1t ; ge2t ; · · · ; ge|E|
t ]

geit =

{
heit′ if (xt′ , ei, xt) exists
0 otherwise

where ; denotes vector concatenation. ht′ is decomposed into [he1t′ ;h
e2
t′ ; · · · ;h

e|E|
t′ ], where ei (1 ≤ i ≤

|E|) is a relation type. Thus heit′ is a subvector of ht′ corresponding to relation type ei. In Figure 2, for
example, when wt is “healthy”, gt consists of hsequence

son due to the gray edge and h
antonym
ill due to the green

edge and zero vectors for the rest. Note that e1 is reserved for ordinary sequential transitions.



588

3.2 External Knowledge
We use ConceptNet (Speer and Havasi, 2012) and coreference resolution as external knowledge. Con-
ceptNet is an open-source project for building in a large linguistic knowledge base. It was constructed
through various means including handcrafting (Open Mind Common Sense), automatic extraction from
web pages such as Wikipedia, and gamification. ConceptNet covers not only lexical definitions but also
common sense. Some relations in ConceptNet appear to be particularly useful for implicit discourse
relation classification. For example, the relation Causes is closely related to the discourse relation
Contingency.Cause. We expect the system to classify such discourse relations more easily when the
input is augmented with ConceptNet.

We also use coreference resolution as external knowledge. As we discussed in Section 1, coreference
resolution is a straightforward approach to connecting arguments to contextual information. Coreference
resolution was also used by Dhingra et al. (2017) in their experiments.

3.3 Input Formats
Another major modification we make to the architecture of Rutherford et al. (2017) is about the formats
of input sequences. While Rutherford et al. (2017) among others treated Arg1 and Arg2 separately, we
combine them into a single sequence. Additionally, we append to the sequence a text chunk that precedes
the arguments in the paragraph.2

We insert special tags, <Arg1>, </Arg1>, <Arg2>, and </Arg2>, into a given sequence to indicate
where the arguments start and end. A similar technique is used in neural machine translation (Johnson et
al., 2016). Although the PDTB annotates implicit relations on adjacent sentences, an argument pair does
not necessarily form a complete span mainly because sub-sentential spans are sometimes selected as
arguments (The PDTB Research Group, 2007). In addition, arguments sometimes contain non-argument
text spans as in the following example (underlined):� �

At Quantum, which is based in New York, the trouble is magnified by the company’s heavy depen-
dence on plastics. Once known as National Distillers & Chemical Corp., the company exited the
wine and spirits business and plowed more of its resources into plastics after Mr. Stookey took
the chief executive’s job in 1986.
(Contingency.Cause)� �

To cope with this problem, we enclose a non-argument span with <Skip> and </Skip>.

4 Experiments

4.1 Setup
4.1.1 Penn Discourse TreeBank
We evaluated our model’s performance on the Penn Discourse TreeBank (PDTB) (Prasad et al., 2008).
It is the most popular and largest corpus of discourse relations in English. The annotation is done as
another layer on Wall Street Journal sections of the Penn Treebank. Each discourse relation consists of
two text spans (arguments) and a relation label. Arguments are annotated such that they are minimally
required to infer the discourse relation.

Relation labels are organized as a 3-level hierarchy in the PDTB. However, it is too difficult for current
systems to perform classification in its original form, and previous studies have used more coarse-grained
relation labels. Popular settings include top-level one-versus-all binary classification (Pitler et al., 2009),
top-level 4-way classification (Pitler et al., 2009; Ji and Eisenstein, 2015), second-level 11-way classifi-
cation (Lin et al., 2009; Rutherford et al., 2017), and modified second-level classification for the CoNLL
2015 Shared Task (Xue et al., 2015). We used second-level 11-way classification in the experiments.

Following Shi and Demberg (2017), we conducted 10-fold cross validation using the whole corpus of
sections 0–24 (referred to as Cross Validation). The standard approach (referred to as Most-used Split)

2Rönnqvist et al. (2017) also concatenated Arg1 and Arg2 in the task of Chinese implicit discourse relation classification.
They did not incorporate contextual information, however.
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Sense Train Dev Test
Comparison.Concession 179 19 21
Comparison.Contrast 1,672 185 206
Contingency.Cause 3,332 370 411
Contingency.Pragmatic cause 57 6 6
Expansion.Alternative 146 16 18
Expansion.Conjunction 2,787 309 344
Expansion.Instantiation 1,131 125 139
Expansion.List 314 34 38
Expansion.Restatement 2,519 279 310
Temporal.Asynchronous 527 58 65
Temporal.Synchrony 143 15 17

Total 12,807 1,416 1,575

Table 1: The distribution of relation labels in the
Cross Validation dataset.

Sense Train Dev Test
Comparison.Concession 192 5 5
Comparison.Contrast 1,612 82 127
Contingency.Cause 3,376 120 197
Contingency.Pragmatic cause 56 2 5
Expansion.Alternative 153 2 15
Expansion.Conjunction 2,890 115 116
Expansion.Instantiation 1,132 47 69
Expansion.List 337 5 25
Expansion.Restatement 2,486 101 190
Temporal.Asynchronous 543 28 12
Temporal.Synchrony 153 8 5

Total 12,930 515 766

Table 2: The distribution of relation labels in the
Most-used Split dataset.

is to use sections 2–21 for the training set, section 22 for the development set and section 23 for the test
set (Lin et al., 2009; Rutherford et al., 2017). However, Shi and Demberg (2017) argued that the standard
test set was too small for a reliable evaluation especially when second-level classification was employed.

Table 1 shows the distribution of relation labels in the Cross Validation dataset. Note that although
we tried to replicate the procedures described by Shi and Demberg (2017) as closely as possible, there
remained slight differences in the discourse relation distribution. For comparison, we also trained the
model on the Most-used Split dataset. Table 2 shows the relation label distribution in this dataset. We
can confirm that the test set distribution diverged from the development set distribution.

4.1.2 Model Configurations
As word embeddings, we used an off-the-shelf word2vec model specified by the CoNLL 2016 Shared
Task organizers. Word embeddings were fixed during training except for some words such as special
tags <Arg1> and </Skip>.

As we described in Section 3.2, we used ConceptNet and coreference resolution (Coref) as exter-
nal knowledge. Note that if none of the external knowledge is used, MAGE-GRU is reduced to vanilla
GRU. For ConceptNet, we removed some triplets that contained stop words. We selected all relation
types that appeared in the PDTB except RelatedTo. The number of relation types is 35. We added
reverse relation types for 30 asymmetric relation types (e.g. AtLocation and Causes). As a result,
the number of ConceptNet relation types used in the experiments was increased to 65.

Although ConceptNet was a relatively high-quality and high-coverage knowledge base, it nevertheless
(1) contained questionable triplets (e.g., (time, Antonym, year)) and (2) failed to cover some important
relations (stock, AtLocation, market). We mitigated the first problem by checking weights Concept-
Net assigned to triplets. We removed triplets whose weight was smaller than 1.0. The second problem
might potentially be addressed graph embedding techniques (Xie et al., 2017), but in the experiments,
we used a simpler method. For each word in the input, we prepared the top-10 nearest neighbors in terms
of cosine similarity of word2vec vectors with the threshold value of 0.6. We searched ConceptNet for all
combinations of the original words and neighbors. As a result, the average number of edges given to an
argument pair increased from 4.0 to 17.6.

As for a coreference resolution system, we used Stanford CoreNLP3 (ver.3.7.0). CoreNLP had three
different coreference systems. We chose a neural model since it performed the best among the three.

We tested two input formats: Args and Paragraph. In Args, an input sequence started with
<Arg1> and ended with </Arg2>. In the longer Paragraph format, it started at the beginning of the
paragraph that contained Arg1 and Arg2.

Table 4 summarizes the model configurations. We found that mini-batch did not work for our model.
Given that training set accuracy was as low as development set accuracy, we conjecture that training

3https://stanfordnlp.github.io/CoreNLP/
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Relation Count
Synonym 37,689
FormOf 32,547
IsA 27,251
DerivedFrom 12,668
Antonym 10,632
SimilarTo 6,560
DistinctFrom 6,484
HasContext 6,092
AtLocation 5,584
UsedFor 3,287

Table 3: Top 10 ConceptNet relation types, sorted
by the frequency counts in the Penn Discourse Tree-
bank.

Description Values
input Args or Paragraph
word embeddings 100,000 words (300 dims)
optimizer AdaGrad (Duchi et al., 2011)
pooling summation
hidden layer 1 layer (600 dims)

external knowledge
coreference and/or ConceptNet
(10 dims per relation type)

mini-batch size 1
early stopping yes

Table 4: Configuration of our model.

Dev Test
Args 0.3946 0.3820 (±0.013)
+Coref 0.3939 0.3817 (±0.009)
+ConceptNet 0.4000 0.3926 (±0.012)
+Coref+ConceptNet 0.4037 0.3926 (±0.016)

Paragraph 0.3951 0.3814 (±0.010)
+Coref 0.3919 0.3839 (±0.016)
+ConceptNet 0.4060 0.3980 (±0.009)
+Coref+ConceptNet 0.4083 0.3938 (±0.011)

feedforward (Rutherford et al., 2017)† - 0.3660 (±0.011)
LSTM (Shi and Demberg, 2017) - 0.3444 (±0.014)
+Modality - 0.3767 (±0.018)

Table 5: Accuracy in the Cross Validation dataset. Test result indicates the mean accuracy across folds
and the standard deviation. † denotes our reimplementation.

signals in a mini-batch might have canceled out each other.

4.1.3 Models for Comparison
For comparison, we collected model scores from the literature. As for the Cross Validation dataset, we
compared the proposed model with that of Shi and Demberg (2017) and a feedforward network (Ruther-
ford et al., 2017). Shi and Demberg (2017) used an LSTM-based model, optionally with surface features
derived from Brown Clusters, Modality, etc. The best score was achieved by LSTM+Modality. We reim-
plemented the feedforward model of Rutherford et al. (2017) because their evaluation was not based on
the Cross Validation dataset.

For the Most-used Split dataset, the models for comparison were a feedforward network (Rutherford
et al., 2017), a maximum entropy classifier (Lin et al., 2009) and a CNN-based model (Qin et al., 2017).

4.2 Results

Table 5 shows the results for the Cross Validation dataset. In all configurations, our model outperformed
Shi and Demberg (2017)’s models. The best score was achieved by Paragraph+ConseptNet. The
performance gain of Paragraph+ConceptNet over Paragraph was statistically significant (p =
2.63 × 10−7, p < 0.01) while Paragraph+Coref was no different from Paragraph (p = 0.463).
The Paragraphmodels consistently outperformed the corresponding Argsmodels when the input was
augmented with external knowledge. However, the impact of contextual information was not statistically
significant (p = 0.081 for +Coref+ConceptNet).

A breakdown of the performance by discourse relation is shown in Paragraph+ConceptNet are
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Sense F1

Comparison.Concession 0.0000 (±0.000)
Comparison.Contrast 0.2287 (±0.029)
Contingency.Cause 0.4813 (±0.015)
Contingency.Pragmatic cause 0.0000 (±0.000)
Expansion.Alternative 0.0087 (±0.026)
Expansion.Conjunction 0.4466 (±0.023)
Expansion.Instantiation 0.4498 (±0.037)
Expansion.List 0.2203 (±0.091)
Expansion.Restatement 0.3341 (±0.027)
Temporal.Asynchronous 0.2140 (±0.077)
Temporal.Synchrony 0.0000 (±0.000)
Total 0.3980 (±0.009)

Table 6: F1 score in Paragraph+ConceptNet.

Dev Test
Args 0.4214 0.3668
+Coref 0.4214 0.3655
+ConceptNet 0.4252 0.3799
+Coref+ConceptNet 0.4233 0.3877

Paragraph 0.4408 0.3708
+Coref 0.4330 0.3642
+ConceptNet 0.4350 0.3603
+Coref+ConceptNet 0.4350 0.3655

Rutherford et al. (2017) - 0.3956
Lin et al. (2009) - 0.4020
Qin et al. (2017) - 0.4465

Table 7: Accuracy in the Most-used Split dataset.

shown in Table 6. Comparing Table 6 with Table 1, we can see that the model ended up ignoring very-
low-frequency relations such as Comparison.Concession and Expansion.Alternative, which appeared less
than 300 times in training set. This problem could possibly be mitigated by leveraging an unlabeled
corpus to increase the size of training instances (Jiang et al., 2016).

The results for the Most-used Split dataset are shown in Table 7. In this dataset, the
proposed method was outperformed by models in the literature. Although the F-measure of
Args+Coref+ConceptNet was about 2 points higher than that Args, the performance varied too
inconsistently to draw meaningful conclusions. For this reason, we support Shi and Demberg (2017)’s
argument for the need of cross validation for implicit discourse relation classification.

4.3 Discussion

As we have seen in Table 5, ConceptNet brought performance gain. However, it appears to leave much
room for improvement. Consider the following examples:� �
Ex1:
Another, ”Jeux Sans Frontieres ,” where villagers from assorted European countries make fools of
themselves performing pointless tasks, is a hit in France. A U.S.-made imitation under the title
”Almost Anything Goes” flopped fast.
(Comparison.Contrast)

Ex2:
HOMESTEAD FINANCIAL CORP., Millbrae, financial services concern, annual revenue of $562
million, OTC, said three of its 17 Bay-area branches were closed yesterday. The company expects
all branches to reopen today.
(Comparison.Contrast)� �

In Ex1, a baseline model wrongly chose Expansion.Conjunction but our model seems to have suppressed
the discourse relation presumably because it found the antonym pair “hit” (Arg1) and “flopped” (Arg2)
in ConceptNet. However, our model misclassified Ex2 as Expansion.Conjunction even though “yester-
day” and “today” were correctly identified as antonyms. This indicates that our model might not have
given due weight to ConceptNet, possibly because of some noise in the knowledge base.

In our experiments, coreference resolution did not help implicit discourse relation classification. What
we relied on was standard pronominal and nominal coreference resolution, but the following example
suggests the need for resolving event coreference (Lu et al., 2016):
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Test
Args+Coref+ConceptNet 0.7723 (±0.008)
Paragraph+Coref+ConceptNet 0.7921 (±0.006)

Table 8: Accuracy of explicit discourse relation classification. Result indicates the mean accuracy across
folds and the standard deviation.

� �
Is an American Secretary of State seriously suggesting that the Khmer Rouge should help govern
Cambodia? Apparently so. There are no easy choices in Cambodia, but we can’t imagine that it
benefits the U.S. to become the catalyst for an all-too-familiar process that could end in another
round of horror in Cambodia.
(Comparison.Contrast)� �

In this example, Arg1 is surprisingly uninformative. In order to classify the discourse relation between
Arg1 and Arg2, the system would need to identify what “so” in Arg1 refers to.

To explore the effect of contextual information in detail, we compared the two input formats, Args
and Paragraph, in the task of explicit discourse relation classification. The experimental settings are
basically the same as in Section 4.1.2, but the Cross Validation dataset now contained explicit relations.
The result is shown in Table 8. Contextual information did help in explicit discourse relation classifica-
tion, with statistical significance at p < 0.01.

It is hard to see exactly why we obtained different results for implicit and explicit relations, but a
hint is given by the PDTB annotation itself. The PDTB limits arguments to the minimal text needed to
interpret a given relation, and provides supplementary information to each of Arg1 and Arg2 (named
Sup1 and Sup2) (The PDTB Research Group, 2007). Consider the following examples:� �

That pattern hasn’t always held, but recent strong growth in dividends makes some market watchers
anxious. Payouts on the S&P 500 stocks rose 10% in 1988, according to Standard & Poor’s Corp.,
and Wall Street estimates for 1989 growth are generally between 9% and 14%. Many people believe
the growth in dividends will slow next year, although a minority see double-digit gains continuing.
Meanwhile, many market watchers say recent dividend trends raise another warning flag:
While dividends have risen smartly, their expansion hasn’t kept pace with even stronger ad-
vances in stock prices
(Expansion.Conjunction)� �

The underlined text span is annotated with Sup1. This tag is assigned to a text span supplementary to
Arg1 if it appears relevant but not necessary for interpretation. According to Prasad et al. (2014), only
126 implicit relations were annotated with supplementary information while 1,571 explicit relations
were. They amounted to about 0.8% and 8% of the whole implicit and explicit relations, respectively.
This great gap indicates that explicit relation classification may benefit more from the text chunks outside
of the arguments than implicit relation classification. In fact, a baseline model wrongly chose Compar-
ison.Contrast in this example, but our model chose a correct discourse relation. It should be noted that
according to Prasad et al. (2014), consistency control over supplementary information annotation was
rather weak. They warned that the gap could be an accidental feature of the PDTB annotation. How-
ever, our results lend support to the hypothesis that the gap reflects an intrinsic feature of the discourse
relations, or at least that of the PDTB’s task specifications.

5 Conclusion

In this paper, we adopted MAGE-GRU to efficiently incorporate external knowledge into the task of im-
plicit discourse relation classification. The experiments show that external knowledge improved accuracy
in this task. In addition to a pair of arguments, the text chunk that preceded the pair in the paragraph was
given to the model with the hope that it could help classifying its relation. The contextual information
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yielded a significant improvement not for implicit discourse relations but for explicit discourse relations.
Additionally, we reconfirmed the need for cross validation in this task, as argued by Shi and Demberg
(2017).

In the future, we would like to work on extending the neural network architecture. The high compos-
ability of MAGE-GRU means that it can easily be combined with other neural network models that are
built on top of RNNs. A bidirectional extension to MAGE-GRU may be worth trying. Another future
direction is to look for different sources of external knowledge. The candidates include other knowl-
edge bases (e.g. Freebase (Bollacker et al., 2008)) and results of high-level NLP analyses (e.g. event
coreference).
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