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Abstract 

The task of nuclearity recognition in Chinese discourse remains challenging due to the demand 

for more deep semantic information. In this paper, we propose a novel text matching network 

(TMN) that encodes the discourse units and the paragraphs by combining Bi-LSTM and CNN 

to capture both global dependency information and local n-gram information. Moreover, it in-

troduces three components of text matching, the Cosine, Bilinear and Single Layer Network, to 

incorporate various similarities and interactions among the discourse units. Experimental results 

on the Chinese Discourse TreeBank show that our proposed TMN model significantly outper-

forms various strong baselines in both micro-F1 and macro-F1. 

1 Introduction 

During the past few years, the focus of Natural Language Understanding (NLU) has shifted from the 

word/sentence level to the discourse level. A challenging task in NLU is discourse parsing, which in-

volves analysing the relations between discourse units and building the document structure. As one of 

the most influential discourse theories, Rhetorical Structure Theory (RST) (Mann and Thompson, 1988) 

defines a document as a collection of Elementary Discourse Units (EDUs) with semantic connections 

and combines adjacent EDUs with rhetorical relations in a hierarchical way to represent an entire doc-

ument as a discourse tree. 

As a critical subtask in discourse parsing, nuclearity recognition involves identifying the nuclearity 

between the discourse units and thus being able to extract the main information in a document. Accord-

ing to RST, a discourse relation can be divided into mononuclear and multinuclear. A mononuclear re-

lation holds a nucleus and a satellite, where the nucleus expresses the main textual information and the 

satellite offers additional information about the nucleus (Stede, 2008), while a multinuclear relation 

holds two or more discourse units, which are all nuclei. Therefore, three types of nuclearity exist: Nu-

cleus-Satellite if the left subtree is the nucleus and the right subtree is the satellite, Satellite-Nucleus if 

the order of the satellite and nucleus is inverted, and Nucleus-Nucleus for multinuclear relations. 

Nuclearity recognition is helpful in detecting discourse relations (Iruskieta et al., 2014) and extracting 

the main content of a document, and it is widely used in various NLP tasks, including automatic sum-

marisation (Louis et al., 2010; Marcu, 2000), question answering (Verberne et al., 2007) and information 

extraction (Zou et al., 2014). Consider the following document as an example: 

Example 1: 中国机电产品进出口贸易继续增加 a，占总进出口的比重继续上升 b。其中，出口

五十七点九亿美元 c，占总出口的百分之三十二点五 d；进口八十五点二亿美元 e，占总进口的

百分之四十六点四 f，均比去年同期有所上升 g。The import and export trade of China’s mechanical 

and electronic products continues to increase a, and its proportion of the total imports and exports also 

continues to rise b. Among them, the exports amounted to 5.79 billion dollars c, accounting for 32.5 

percent of the total exports d; and the imports of 8.52 billion dollars e, accounting for 46.4 percent of the 

total imports f; all of them were higher than those in the same period last year g. 

Example 1 shows a paragraph that includes seven EDUs (a-g), and its corresponding nuclearity dis-

course tree is illustrated in Figure 1, where the leaf nodes (a-g) in Figure 1 are EDUs and the internal 
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nodes refer to relational nodes, which represent the combination of the relevant children. When con-

necting the parent and child nodes, the directed edge indicates that the child is a nucleus in the relation-

ship and the undirected edge indicates that the child is a satellite. 

 

a b c d e f g

a-b Joint c-d Joint e-f Joint

c-f Joint

c-g Joint

a-g Elaboration

 
 

Figure 1: Discourse tree of Example 1. 

 

Starting from the root node, i.e., a-g in Figure 1, we can continually select all of the branches labelled 

as nucleus until the leaf node, i.e., a in Figure 1 (中国机电产品进出口贸易继续增加 The import and 

export trade of China’s mechanical and electronic products continues to increase), which can be used 

to represent a summary of this paragraph. 

Although there are many studies on discourse parsing due to its vital role in NLP, only a few address 

nuclearity recognition. Among them only three studies (Li et al., 2015; Chu et al., 2015; Kong and Zhou, 

2017) explore nuclearity recognition in Chinese due to the lack of annotated corpus and the abstract 

nature of Chinese itself. In addition, those studies heavily relied on manual feature engineering (Feng 

and Hirst, 2014; Heilman and Sagae, 2015; Wang et al., 2017). Only a few studies (Li et al., 2014; Li et 

al., 2016) used deep neural networks to explore automatic representation learning. One of the disad-

vantages of previous studies is that they lack deep semantic information extracted from discourse units 

due to the ineffectiveness of classifier-based models and simple neural network models. Even worse, 

different from those hypotactic languages such as English, Chinese is a paratactic (discourse-driven and 

pro-drop) language with a wide spread of ellipsis and open flexible sentence structures. Therefore, the 

shallow semantic features (syntactic features), which are widely used in English, might not be effective 

in Chinese. This property makes discourse parsing in Chinese more challenging. 

In this paper, we propose a novel text matching network (TMN) for nuclearity recognition. The TMN 

model encodes the discourse units and paragraphs by combining Bi-LSTM and CNN to capture both the 

global dependency information and the local n-gram information. Moreover, it introduces three compo-

nents of text matching, i.e., Cosine, Bilinear and Single Layer Network, to incorporate various similar-

ities and interactions between discourse units and thus provide more useful information to recognise 

nuclearity. Experimental results on the Chinese Discourse TreeBank (CDTB) (Li et al., 2014) show that 

our proposed TMN model significantly outperforms various strong baselines in both micro-average and 

macro-average F1. We summarise the contributions of our work as follows: 

 We combine Bi-LSTM and CNN to jointly learn proper representation of the discourse units, 

which can capture both global dependency information and local n-gram information. 

 We introduce three text matching components, i.e., Cosine, Bilinear and Single Layer Network to 

capture various semantic similarities and interactions among the discourse units. 

 We consider the semantic relations between the discourse units and paragraphs. These relations 

provide an effective supplement to recognise the nuclearity types. 

The remainder of this paper is organised as follows: Section 2 introduces the related work, Section 3 

gives the details of our model TMN, Section 4 reports the experimental results and Section 5 gives the 

conclusions. 

2 Related Work 

Previous studies on nuclearity recognition mainly focused on English, with RST Discourse Treebank 

(RST-DT) (Carlson et al., 2003) being the most popular corpus. However, most of them only regard 
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nuclearity recognition as a trivial component of overall discourse parsing, and they ignore its specific 

characteristics and critical importance. 

The algorithms of nuclearity recognition published on RST-DT can mainly be categorised as shift-

reduce algorithms (Ji and Eisenstein, 2014; Heilman and Sagae, 2015; Wang et al., 2017), probabilistic 

CKY-like algorithms (Joty et al., 2013; Li et al., 2014; Li et al., 2016) and greedy bottom-up algorithms 

(Feng and Hirst, 2014). Li et al. (2016) applied different classifiers to three discourse parsing subtasks 

separately, but they share the high level representation of discourse units by the same network structures. 

Wang et al. (2017) used a transition-based system to build discourse trees with nuclearity labels and then 

used Support Vector Machines (SVMs) to determine the discourse relations at different text levels. 

Most of the previous studies used SVMs and variants of Conditional Random Fields (CRFs); only Li 

et al. (2014) and Li et al. (2016) introduced neural networks into nuclearity recognition. Li et al. (2014) 

used a two-layer feedforward neural network to determine the relation between text spans and computed 

the representation for each text span based on the representations of its subtrees by recursive neural 

models. Li et al. (2016), which is used as one of our baselines, proposed an attention-based hierarchical 

Bi-LSTM network to learn the representations of the text spans and used a tensor-based transformation 

function to capture interactions among the features of the text spans. 

For recognising nuclearity between Chinese discourse units, there are only three studies. Li et al. 

(2015), Chu et al. (2015) and Kong and Zhou (2017) have done some preliminary work on Chinese 

Discourse TreeBank (CDTB) (Li et al., 2014). Li et al. (2015) used contextual features, lexical features 

and dependency tree features to recognise nuclearity by a Maximum Entropy (ME) classifier. Chu et al. 

(2015) used similar features to recognise three types of nuclearity by three different ME classifiers and 

used sampling techniques to obtain a balanced training set and testing set. Kong and Zhou (2017) inte-

grated some previous research and proposed a CDT-styled End-to-End discourse parser, which can au-

tomatically detect discourse units and perform all three discourse parsing subtasks in sequence. They 

used the same model of nuclearity recognition as Li et al. (2015) and reported the same results. 

3 Text Matching Network on Nuclearity Recognition 

In this section, we propose a novel text matching network (TMN) for nuclearity recognition, and its 

high-level illustration is shown in Figure 2, which includes three modules: 1) Text Encoding, 2) Text 

Matching, and 3) Nuclearity Classification. 

 

𝑃𝑎𝑟𝑎 

Bi-LSTM CNN Pooling

Cosine

f( )f( )f( )

Bilinear

Single Layer Network

𝒗1 

𝒗2 

Text Encoding Text Matching Nuclearity Classification

𝐷𝑈1 

𝒗1 

𝐷𝑈2 

𝒗2 

𝒗𝑝  

 
 

Figure 2: The basic framework of our model, including 1) Text Encoding, 2) Text Matching, and 3) 

Nuclearity Classification. 
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To recognise the nuclearity of two discourse units 𝐷𝑈1 and 𝐷𝑈2, their word sequences and the para-

graph 𝑃𝑎𝑟𝑎 that contains the above two units are the inputs of our model. Taking Example 1 as an 

instance, 𝐷𝑈1/𝐷𝑈2 could be one of the EDUs a-g or their combinations, and 𝑃𝑎𝑟𝑎 is the whole para-

graph. The Text Encoding module first encodes these word sequences into the semantic vectors 𝒗1, 𝒗2 

and 𝒗𝑝 by Bi-LSTM and CNN. Then, these semantic representations are fed into the Text Matching 

module, which uses Cosine to calculate the similarity of different semantic vectors and applies Bilinear 

and Single Layer Network to incorporate the strong linear and nonlinear interactions between different 

semantic vectors. Finally, the combined feature vector, which is composed of two semantic vectors of 

two discourse units and one feature vector of all of the interactive information, is sent to the output layer, 

i.e., the Nuclearity Classification module, through a nonlinear transformation. 

Our TMN model is based on two hypotheses. The first hypothesis is that there are strong correlations 

between the nuclearity and the semantic similarity or interactions of two discourse units. Commonly, 

the discourse units with similar semantics are multinuclear, and the discourse units with semantic inter-

actions have a mononuclear relation. 

The second hypothesis is that the nuclearity of two discourse units is relevant to the topic of the 

paragraph or document. For example, in the case of a mononuclear relation, the nucleus unit is usually 

semantically closer to the topic of the paragraph. Therefore, our TMN model makes the semantic match 

between not only the different discourse units but also the discourse unit and paragraph, by three simi-

larity metrics, namely, the Cosine, Bilinear and Single Layer Network, which can capture the features 

that are related to nuclearity recognition adequately. 

3.1 Text Encoding 

Our Text Encoding module combines Bi-LSTM and CNN to encode the discourse unit 𝐷𝑈𝑖 and the 

paragraph 𝑃𝑎𝑟𝑎, which is the modification of the Convolutional-pooling LSTM (Tan et al., 2016) in 

question answering. 

Its input is a sequence of words (𝑡1, 𝑡2, … , 𝑡𝑇) in a discourse unit 𝐷𝑈𝑖 or a paragraph 𝑃𝑎𝑟𝑎 where 𝑇 

is the number of words in the discourse unit or paragraph. Each word 𝑡𝑖 in the sequence is represented 

as the combination of its word embedding 𝒆𝑖 and POS (Part-Of-Speech) tag embedding 𝒑𝑖 as follows: 

 𝒘𝑖 = [𝒆𝑖 , 𝒑𝑖]. (1) 

LSTM models successfully keep the useful information from long-range dependency, but they focus 

more on the words that are behind. Due to the need for our model to treat each word equally, Bi-LSTM 

is introduced to the Text Encoding module. At each position 𝑡, we concatenate the output 𝒉𝑡
⃗⃗⃗⃗ , 𝒉𝑡

⃖⃗ ⃗⃗⃗ ∈ ℝ𝑙 

of the two inverted LSTMs as the output of the current word as follows: 

 𝒉𝑡 = [𝒉𝑡
⃗⃗⃗⃗ , 𝒉𝑡

⃖⃗ ⃗⃗⃗]. (2) 

Therefore, each output contains not only the current word information but also the contextual infor-

mation. Consequently, we choose it as the input of a 1D CNN to capture richer local n-gram information. 

The 1D CNN is similar to the traditional n-gram model. It can effectively capture the local interaction 

information between the words in the word window, and thus, it can make up for the lack of LSTM. 

Finally, all of the features captured by the convolution kernels are collected by the global max pooling 

operation to obtain the textual representation 𝒗𝑖 ∈ ℝ𝑐. In addition, the number 𝑙 of LSTM neurons, the 

size 𝑘 and the number 𝑐 of the CNN convolution kernels are all hyperparameters of our model. 

3.2 Text Matching 

After obtaining the representations 𝒗1, 𝒗2, 𝒗𝑃 of the discourse units 𝐷𝑈1, 𝐷𝑈2 and the paragraph 𝑃𝑎𝑟𝑎 

by Bi-LSTM and CNN in the Text Encoding module, we apply the Cosine, Bilinear (Sutskever et al., 

2009; Jenatton et al., 2012) and Single Layer Network (Collobert and Weston, 2008) to capture the 

interactions between different discourse units and between the discourse unit and the paragraph. 

The cosine distance calculates the angle between two vectors, which is usually used to measure the 

degree of similarity. Cosine is defined as follows: 

 𝑐𝑜𝑠(𝒗1, 𝒗2) =
𝒗1
⊤𝒗2

‖𝒗𝟏‖⋅‖𝒗2‖
. (3) 
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Because the discourse units with multinuclear relations are usually similar in content, the cosine sim-

ilarity 𝑐𝑜𝑠(𝒗1, 𝒗2) between the semantic representations of two discourse units can be used as an effec-

tive feature to determine their nuclearity. We also calculated the cosine similarities 𝑐𝑜𝑠(𝒗1, 𝒗𝑃)  and 

𝑐𝑜𝑠(𝒗2, 𝒗𝑃) between the discourse unit and the paragraph to measure the similarity between the dis-

course unit and the topic of the paragraph. These two similarities are helpful for identifying the mono-

nuclear relations. 

Bilinear is a simple way to incorporate the linear interactions between two vectors and is defined as 

follows: 

 𝑠(𝒗1, 𝒗2) = 𝒗1
⊤𝑾𝒗2, (4) 

where 𝑾 ∈ ℝ𝑐×𝑐 is the parameter matrix. Usually, when using the Bilinear model (Chen et al., 2016; 

Wan et al., 2016; Wu et al., 2017), the Bilinear value 𝑠(𝒉𝑥𝑖
, 𝒉𝑦𝑗

) = 𝒉𝑥𝑖
𝑇 𝑾𝒉𝑦𝑗

 is calculated for any two 

words in the two word sequences {𝑥1, 𝑥2, … , 𝑥𝑚} and {𝑦1, 𝑦2, … , 𝑦𝑛} to obtain a matching matrix, where 

𝒉𝑥𝑖
, 𝒉𝑦𝑖

 are semantic vectors that correspond to word 𝑥𝑖 and 𝑦𝑗. 

A discourse unit or a paragraph could contain a larger number of words, and it will lead to generating 

an enormous matching matrix. However, the number of training samples that can be used in our model 

is relatively small, which results in great difficulty with training the parameter 𝑾. Therefore, we sim-

plified this process to calculate the Bilinear values 𝒗1
⊤𝑾𝒗2, 𝒗1

⊤𝑾𝒗𝑃 and 𝒗2
⊤𝑾𝒗𝑃 directly on the en-

coded discourse units and encoded paragraphs. Since 𝒗1, 𝒗2 and 𝒗𝑃 contain the semantic information of 

the discourse units and the paragraph, Bilinear is equivalent to capturing the linear interaction between 

𝐷𝑈1, 𝐷𝑈2 and 𝑃𝑎𝑟𝑎 at the textual level. 

Single Layer Network is defined as follows: 

 
𝑠(𝒗1, 𝒗2) = 𝑓(𝑽1[𝒗1, 𝒗2] + 𝒃1)

𝑠(𝒗1, 𝒗𝑃) = 𝑓(𝑽2[𝒗1, 𝒗𝑃] + 𝒃2),
 (5) 

where 𝑽1 ∈ ℝ𝑤×2𝑐 , 𝒃1 ∈ ℝ𝑤 and 𝑽2 ∈ ℝ𝑤×2𝑐 , 𝒃2 ∈ ℝ𝑤 are parameters to incorporate nonlinear inter-

actions between the discourse units and between the unit and the paragraph, and we choose 𝑡𝑎𝑛ℎ as the 

activation function 𝑓. The number 𝑤 of neurons is the hyperparameter of our model. Because of the 

existence of nonlinear activation functions, the Single Layer Network can capture nonlinear interactions 

between different discourse units and between the discourse unit and the paragraph. Bilinear focuses on 

capturing linear interactions, while Single Layer Network focuses on capturing non-linear interactions, 

and thus, Single Layer Network can make up for the lack of Bilinear to some extent. We can obtain 

nonlinear feature vectors 𝒗𝑆12
, 𝒗𝑆1𝑃

 and 𝒗𝑆2𝑃
∈ ℝ𝑤 by Single Layer Network as follows: 

 

𝒗𝑆12
= 𝑓(𝑽1[𝒗1, 𝒗2] + 𝒃1)

𝒗𝑆1𝑃
= 𝑓(𝑽2[𝒗1, 𝒗𝑃] + 𝒃2)

𝒗𝑆2𝑃
= 𝑓(𝑽2[𝒗2, 𝒗𝑃] + 𝒃2)

 (6) 

With Cosine, Bilinear, and Single Layer Network, we measure the similarity and capture the linear 

and non-linear interactions among the discourse units and between the unit and the paragraph, and by 

training the parameter matrices 𝑾,𝑽1, 𝑽2 and the parameter vectors 𝒃1, 𝒃2, the matching features that 

play an important role in recognising nuclearity are extracted. This process is how our Text Matching 

module identifies important information in the discourse unit and performs text matching methods under 

supervised learning. 

3.3 Nuclearity Classification 

Based on the discourse unit 𝐷𝑈1, 𝐷𝑈2 and the paragraph 𝑃𝑎𝑟𝑎, we obtain the semantic representation 

vectors 𝒗1, 𝒗2 from the Text Encoding module and the Cosine values, the Bilinear values and the non-

linear feature vectors from the Text Matching module. We concatenate all of these values and the vectors 

above as the input feature vector �̃� of the Nuclearity Classification module as follows: 

 

𝒗𝑐𝑜𝑠 = [cos (𝒗1, 𝒗2), cos (𝒗1, 𝒗𝑃), cos (𝒗2, 𝒗𝑃)]
⊤

𝒗𝑏𝑙 = [𝒗1
⊤𝑾𝒗2, 𝒗1

⊤𝑾𝒗𝑃, 𝒗2
⊤𝑾𝒗𝑃]

⊤

𝒗𝑠𝑙𝑛 = [𝒗𝑆12
, 𝒗𝑆1𝑃

, 𝒗𝑆2𝑃
]

�̃� = [𝒗1, 𝒗2, 𝒗𝑐𝑜𝑠, 𝒗𝑏𝑙 , 𝒗𝑠𝑙𝑛]

 (7) 
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We implement the Nuclearity Classification module using a two-layer feedforward neural network. 

The input vector is first sent to a nonlinear transformation and then fed into a standard softmax layer, 

where the nonlinear transformation uses the 𝑅𝑒𝑙𝑢 function (Nair and Hinton, 2010) as follows: 

 𝒕 = 𝑅𝑒𝑙𝑢(𝑾𝑡 �̃� + 𝒃𝑡) (8) 

 �̃� = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑾𝑠𝒕 + 𝒃𝑠), (9) 

where 𝑾𝑡 ∈ ℝ𝑤𝑡×(2𝑐+6+3𝑤), 𝒃𝑡 ∈ ℝ𝑤𝑡  and 𝑾𝑠 ∈ ℝ3×𝑤𝑡 , 𝒃𝑠 ∈ ℝ3  are the parameters in the nonlinear 

transformation and in the softmax layer, respectively. Additionally, the number 𝑤𝑡 of neurons in the 

nonlinear transformation layer is the hyperparameter of our model. During the training, we use the Adam 

optimiser (Kingma and Ba, 2014) to optimise the network parameters by maximising the log-likelihood 

loss function between the predicted label �̃� and the real label 𝑦. 

4 Experimentation 

In this section, we first introduce the CDTB corpus in the Chinese and experimental setting, and then 

we report and analyse the experimental results. 

4.1 CDTB Corpus  

Following the tree structure, the representation of nuclearity in RST and the representation of connec-

tives in the Penn Discourse Treebank (PDTB) (Prasad et al., 2008), Li et al. (2014) built the Chinese 

Discourse TreeBank (CDTB) corpus based on the Chinese Treebank (CTB) (Xue et al., 2005) with a 

connective-driven dependency tree scheme. In CDTB, each paragraph is marked as a connective-driven 

dependency tree (CDT), where its leaf nodes are EDUs, its intermediate nodes represent connectives, 

and EDUs connected by connectives can be combined into higher level discourse units. 

Similar to RST-DT, there are three types of nuclearity in CDTB: Nucleus-Satellite, Satellite-Nucleus 

and Nucleus-Nucleus. However, CDTB labels relations that link two discourse units on their parent node, 

and thus, a binary tree with n EDUs has only n-1 relations. Moreover, CDTB marks paragraphs instead 

of documents as discourse trees, which will also lead to fewer annotated relations. 

Currently, the CDTB corpus consists of 500 newswire articles, which are further divided into 2342 

paragraphs with a CDT representation for one paragraph. CDTB contains 10650 EDUs, and each EDU 

has 22 Chinese characters on average. There are 7310 annotated relations in CDTB in which 3555 

(48.6%) relations are mononuclear relations, with 2110 Nucleus-Satellite and 1445 Satellite-Nucleus, 

while the remaining 3755 (51.4%) relations are Nucleus-Nucleus. The reason is that COORDINATION 

(mononuclear/multinuclear: 468/3683) is the largest category (56.8%) in CDTB, which leads to a large 

number of multinuclear instances. 

4.2 Experimental Setup 

We evaluate our model on the corpus CDTB. Following the previous work (Kong and Zhou, 2017), we 

also choose the same 450 documents as the training set and 50 documents as the testing set. The specific 

division and labelling situation is shown in Table 1. In our evaluation, all of the non-binary trees are 

transformed into left binary trees, and the numbers of multinuclear relations in the converted training 

set and testing set are 4257 and 485, respectively. Moreover, we report the Precision (P), Recall (R) and 

F1 on each nuclearity type and also give the micro-average and macro-average F1. 

 
 Training set Testing set 

Document 0001-0090, 0101-0190, 0201-0290, 

0301-0325, 0400-0454, 0500-0509, 

0520-0554, 0590-0596, 0600-0647 

0091-0100, 0191-0200, 

0291-0300, 0510-0519, 

0648-0657 

Nuclearity #Nucleus-Satellite/#Satellite-Nucleus: 

1901/1343 

# Nucleus-Nucleus: 3371 

#Nucleus-Satellite/#Satellite-Nucleus: 

207/104 

# Nucleus-Nucleus: 384 

 
Table 1: Division of dataset. There are 3244 mononuclear relations and 3371 multinuclear relations in 

the training set, and these figures are 311 and 384 in the testing set, respectively. 
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The dimension of the word embeddings is set to 300, and the dimension of the POS embeddings is 

set to 50. We pre-trained the word embeddings with Word2Vec (Mikolov et al., 2013) on the Wikipedia 

Chinese corpus1. We used HanLP2 to preprocess the texts, including the word segmentation and POS 

tagging, and we used the Keras3 library to implement our model. All of the parameters are randomly 

initialised except for the word embeddings. We adopted the dropout strategy (Hinton et al., 2012) to 

avoid overfitting and set the dropout rate to 0.5. 

We selected one-ninth of the samples from the training set as a development set to tune the hyperpa-

rameters by a grid search, and for a fair comparison, all of the models in our experiment use the same 

parameters. In the Text Encoding module, the number 𝑙 of LSTM neurons is set to 50, and the size 𝑘 

and the number 𝑐 of the CNN convolution kernels are set to 5 and 400, respectively, according to the 

empirical results in Table 2. In the Text Matching module, the number of neurons 𝑤 in the Single Layer 

Network is set to 50. In the Nuclearity Classification module, the number 𝑤𝑡 of neurons in the nonlinear 

transformation layer is set to 128. 

 

Filter size #Feature map 

100 200 300 400 500 

3 55.06 57.73 58.34 58.18 59.38 

4 56.47 57.23 58.42 59.21 59.66 

5 56.84 57.71 59.17 59.70 58.44 

6 56.65 58.85 58.22 58.53 57.05 

 

Table 2: Macro-average F1 with different CNN parameter settings on the development set. 

4.3 Experimental Results 

To exhibit the effectiveness of our TMN model, the experiment results consist of two parts: the baselines 

and TMN. 

Baselines: We collect five baselines for our experiment: ME (Kong and Zhou, 2017), Bi-LSTM, Bi-

LSTM(A), Bi-LSTM+CNN and Bi-LSTM(A)+T (Li et al., 2016). The ME model proposed by (Kong 

and Zhou, 2017) used contextual features, lexical features and dependency tree features to recognise 

nuclearity by an ME classifier. We obtained their source codes and found a data partition error in their 

system: some instances appeared in both the training set and the testing set. For a fair comparison, we 

corrected the data partition following their paper and report the revised results of their system in this 

paper. Considering that the attention-based hierarchical Bi-LSTM network proposed by (Li et al., 2016) 

performs better than the recursive neural model (Li et al., 2014), we implemented four neural network-

based systems. The first is a Bi-LSTM network model (Bi-LSTM), and the second is a Bi-LSTM net-

work model with the attention mechanisms (Bi-LSTM(A)). The third is a Bi-LSTM network model with 

the attention mechanisms and the tensor-based transformation function (Bi-LSTM(A)+T) (Li et al., 

2016). The fourth is a Bi-LSTM+CNN model that combines Bi-LSTM and CNN. 

 

Model Nucleus-Satellite 

P   /   R   /   F1 

Satellite-Nucleus 

P   /   R   /   F1 

Nucleus-Nucleus 

P   /   R   /   F1 

Macro-

F1 

Micro-

F1 

ME 32.2 / 15.1 / 20.5 40.0 / 15.0 / 21.8 65.6 / 87.8 / 75.0 42.3 60.5 

Bi-LSTM 53.6 / 50.2 / 51.9 30.4 / 33.7 / 32.0 74.3 / 74.6 / 74.5 52.8 62.9 

Bi-LSTM(A) 55.7 / 44.9 / 49.7 34.9 / 36.5 / 35.7 74.6 / 80.0 / 77.2 54.4 65.2 

Bi-LSTM+CNN 59.6 / 46.4 / 52.1 40.2 / 31.7 / 35.5 73.2 / 83.5 / 78.0 55.7 67.1 

Bi-LSTM(A)+T 56.8 / 50.7 / 53.6 37.5 / 43.4 / 40.2 77.0 / 77.9 / 77.5 57.2 66.3 

TMN 69.1 / 45.4 / 54.8 39.2 / 49.0 / 43.6 76.2 / 83.3 / 79.6 60.4 69.0 

 

Table 3: The experimental results of five baselines and TMN. 

 

The experimental results of the above models are shown in Table 3, and these results show that our 

                                                      
1 https://dumps.wikimedia.org/zhwiki/ 
2 https://github.com/hankcs/HanLP 
3 https://keras.io/ 
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TMN model outperforms the other five baselines in both the micro-average and macro-average F1. 

Compared with the traditional method ME, the other five neural network models improve the micro-

average and macro-average F1 significantly, especially the macro-average F1, with large gains from 

10.5 up to 18.1. These results justify the effectiveness of the neural network models on the nuclearity 

recognition to capture the deeper semantic information that is hiding in the discourse units. 

Compared with Bi-LSTM, Bi-LSTM(A) improves the macro-average and micro-average F1 by 1.6 

and 2.3, respectively, because Bi-LSTM(A) can pick up prominent semantic information on the output 

of Bi-LSTM using the attention mechanism. Furthermore, the performance of Bi-LSTM(A)+T is better 

than Bi-LSTM(A), and this result ensures that tensor-based transforms are also helpful to Bi-LSTM. 

Moreover, due to the Bi-LSTM+CNN model combining the ability of capturing the global information 

by Bi-LSTM and the local information by CNN, it performs better than both Bi-LSTM and Bi-LSTM(A).  

Our TMN model outperforms all of the other five models, with large gains from 3.2 up to 18.1 in the 

macro-average F1 and a significant gain from 1.9 up to 8.5 in the micro-average F1. Compared with the 

Bi-LSTM, Bi-LSTM(A) and Bi-LSTM+CNN, which focus on obtaining the representations of text, our 

TMN model can capture the semantic features and incorporates interactions between the representations 

of the discourse units and the paragraphs. Moreover, compared with the Bi-LSTM(A)+T model, our 

TMN combines both Bi-LSTM and CNN in the Text Encoding module and uses many simple but effi-

cient methods to incorporate richer interactions in the Text Matching module. 

4.4 Analysis 

We also compare the performances of the different nuclearity types, and Table 3 shows that the perfor-

mance of multinuclear (Nucleus-Nucleus) is much higher (>24 in F1) than that of the mononuclear 

relations (Nucleus-Satellite and Satellite-Nucleus). This result derives from two aspects. The first is that 

the majority of the training set is Nucleus-Nucleus, which occupies 56.8% of all annotated nuclearity, 

while the percentages of the Nucleus-Satellite and Satellite-Nucleus are 25.3% and 17.9%, respectively. 

The second is that our Text Matching module is helpful for identifying similar discourse units via the 

matching mechanisms of Cosine, Bilinear and Single Layer Network, and then assigns Nucleus-Nucleus 

to them. 

The Bi-LSTM+CNN model is a simplified version of TMN that does not use the Text Matching mod-

ule. Compared with the Bi-LSTM+CNN model, TMN combines the semantic similarity and the inter-

action information simultaneously to improve the macro-average and micro-average F1 by 4.7 and 1.9, 

respectively. These figures justify our first hypothesis that there are strong correlations between the 

nuclearity and the semantic similarity or the interactions of two different discourse units. 

To analyse the contribution of each mechanism in the Text Matching module, we conduct experiments 

on some variants of TMN, and the results are shown in Table 4. In Table 4, the basic model (TMN-CBS) 

is equal to Bi-LSTM+CNN, which does not have the Text Matching module. The TMN-BS model refers 

to the TMN model whose Text Matching module only uses Cosine, while TMN-C refers to the TMN 

model whose Text Matching module only uses Bilinear and Single Layer Networks. 

 

Model Nucleus-Satellite 

P   /   R   /   F1 

Satellite-Nucleus 

P   /   R   /   F1 

Nucleus-Nucleus 

P   /   R   /   F1 

Macro-

F1 

Micro-

F1 

TMN-CBS 59.6 / 46.4 / 52.1 40.2 / 31.7 / 35.5 73.2 / 83.5 / 78.0 55.7 67.1 

TMN-BS 56.5 / 50.7 / 53.4 47.6 / 28.9 / 35.9 74.2 / 83.7 / 78.7 56.8 68.0 

TMN-C 61.5 / 54.1 / 57.6 39.6 / 34.6 / 36.9 75.7 / 81.7 / 78.6 57.8 68.3 

TMN-P 60.9 / 51.2 / 55.6 34.7 / 41.4 / 37.7 76.9 / 79.0 / 77.9 57.3 66.8 

TMN 69.1 / 45.4 / 54.8 39.2 / 49.0 / 43.6 76.2 / 83.3 / 79.6 60.4 69.0 

 
Table 4: Experimental results of variants of the TMN Model. 

 
Compared with TMN-CBS, the TMN-BS model and the TMN-C model improve the macro-average 

and micro-average F1, and these improvements show that the semantic similarity or interaction infor-

mation captured by the Cosine, Bilinear, and Single Layer Network are helpful for nuclearity recognition. 

Especially after adding the interaction information using the Bilinear and Single Layer Network, the F1 

of the relation Nucleus-Satellite achieves a 5.5% improvement. 
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The TMN-P model is a simplification of the TMN model, which removes the input of the paragraph 

Para in Figure 2. TMN-P captures only the similarity and interaction information between the different 

discourse units, without the similarity and interaction information between the discourse unit and the 

paragraph. Compared with TMN-P, TMN significantly improves the macro-average and micro-average 

F1 by 3.1 and 2.2, respectively, which justifies our second hypothesis that nuclearity recognition is rel-

evant to the topic of the paragraph. 

 

Nuclearity Nucleus-Satellite Satellite-Nucleus Nucleus-Nucleus 

Nucleus-Satellite - 14.5% 40.1% 

Satellite-Nucleus 9.6% - 41.4% 

Nucleus-Nucleus 6.6% 10.1% - 

 
Table 5: The percentages of misclassified samples. 

 
Table 5 shows the error statistics of our TMN model in nuclearity recognition. It shows that 40.1% of 

the Nucleus-Satellite instances and 41.4% of the Satellite-Nucleus instances are frequently identified as 

Nucleus-Nucleus by our TMN model. These results show that the errors mainly arise from the judgment 

of whether an instance is mononuclear or multinuclear. This finding is mainly due to two reasons: 1) the 

number of Nucleus-Nucleus instances accounts for more than half of the training set; and 2) many dis-

course units differ in nuclearity but are semantically similar. We consider the following two discourse 

units as examples. 

Example 2: 农业获得较好收成 a，全年粮食总产量达七十六点六亿公斤 b。Farming received 

good harvests a, the total grain output in the year amounted to 7.66 billion kg b. 

The nuclearity type between the two EDUs a and b in Example 2 is Nucleus-Satellite due to the 

content in EDU a being more generalised and being able to semantically contain the content described 

in EDU b. However, there is a strong correlation between “农业 farming” and “粮食 grain” and between 

“收成 harvest” and “产量 output”, at a semantic level. Therefore, the Text Matching module will mis-

judge their relation as Nucleus-Nucleus via the similarity and interaction information between the two 

EDUs a and b. 

5 Conclusions 

In this paper, we propose a novel TMN model for nuclearity recognition in Chinese discourse. First, we 

employ a Text Encoding module to capture both the global dependency information and the local n-

gram information via Bi-LSTM and CNN. In this way, the overall discourse semantics can be much 

better represented. Then, we employ a Text Matching module to capture various similarities and inter-

actions between different discourse units and between the encoded unit and the paragraph by the Cosine, 

Bilinear and Single Layer Network. Here, while Cosine calculates the semantic similarity, Bilinear and 

Single Layer Network incorporate the strong linear and nonlinear interactions between the semantic 

vectors. Experimental results on the CDTB corpus show that our TMN model significantly outperforms 

various strong baselines both in micro-average and macro-average F1. Our future work will focus on 

how to better tune the input of our neural network model and apply this model to other languages. 
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