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Abstract

Distantly supervised relation extraction greatly reduces human efforts in extracting relational
facts from unstructured texts. However, it suffers from noisy labeling problem, which can de-
grade its performance. Meanwhile, the useful information expressed in knowledge graph is still
underutilized in the state-of-the-art methods for distantly supervised relation extraction. In the
light of these challenges, we propose CORD, a novel COopeRative Denoising framework, which
consists two base networks leveraging text corpus and knowledge graph respectively, and a co-
operative module involving their mutual learning by the adaptive bi-directional knowledge distil-
lation and dynamic ensemble with noisy-varying instances. Experimental results on a real-world
dataset demonstrate that the proposed method reduces the noisy labels and achieves substantial
improvement over the state-of-the-art methods.

1 Introduction

Relation extraction aims to discover the semantic relationships between entities. Recently, it has at-
tracted increasing attention due to its broad applications in many machine learning and natural language
processing tasks such as Knowledge Graph (KG) construction (Shin et al., 2015), information retrieval
(Kadry and Dietz, 2017), and question answering (Abujabal et al., 2017).

Distant supervision is one of the most important techniques in practice for relation extraction due to its
ability to generate large-scale labeled training data automatically by aligning KGs to text corpus. Despite
its effectiveness, it suffers from noisy labeling problem such as false negative examples, which can
severely degrade its performance. To alleviate this limitation, multi-instance learning and probabilistic
graphical models have been widely explored by existing work (Riedel et al., 2010; Hoffmann et al.,
2011; Surdeanu et al., 2012). Due to the success of deep learning, there has been increasing interest
in applying deep neural networks to solve this problem. Zeng et al. (2015) proposed a piecewise CNN
model combining multi-instance paradigm, Lin et al. (2016) and Lin et al. (2017) introduced sentence-
level and multi-lingual attention to alleviate the side-effect caused by noisy instances, and Luo et al.
(2017) further modeled noises explicitly.

However, most existing studies reduce noises by leveraging information within text corpus, ignoring
the relational facts expressed in other information sources, such as KG triples or semi-structured tables.
Leveraging various information sources simultaneously, which takes full advantage of diverse and sup-
plementary information in different sources, is beneficial to reduce noisy labels for distant supervision.
To be more specific, we transform each sentence into entity sequence based on KG information, which is
helpful to locate critical entities and adjust word-based network when their predictions are not consistent.

Moreover, by incorporating information from other sources, distantly supervised relation extraction
methods can better handle “Not A relation” (NA) class, which is the main reason for the noisy label
problem. The large proportion of NA instances is typical in distantly supervised relation extraction task,
and it’s non-trivial to characterize the NA patterns only based on text-corpus information. By considering
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Figure 1: Overview of the proposed Cooperative Denoising Framework.

the information from KG, entity sequence can easily discriminate NA from other relations, since entities
appeared in NA sentence usually are not connected in KG.

Motivated by the above observations, we propose a novel cooperative denoising framework (see Fig-
ure 1) to leverage the corpus-based and KG-based information. Specifically, we design two base net-
works, Corpus-Net and KG-Net, which are modeled with two separate Gated Recurrent Unit (GRU)
networks, to predict relations using word-sequence and entity-sequence respectively. For KG-Net, we
employ network embedding and KG embedding methods to pre-train the entity embeddings, and then
project the prediction to a logic rule regularization subspace. Afterward, we design a cooperative module
which involves the interactive learning between the two base networks with an adaptive bi-directional
knowledge distillation mechanism, and the predictions of the base networks are dynamically integrated
by an ensemble method. The key insight is that the base networks trained on different sources can learn
complementary information, and thus the cooperative learning can benefit from the complementarity of
different expressions of the same relational fact.

Our main contributions are as follows:

• We explore the feasibility of distantly supervised relation extraction by leveraging the information
from different sources cooperatively.

• We devise a bi-directional knowledge distillation mechanism to enhance each base network via
supplementary supervision.

• We design an adaptive imitation rate setting and a dynamic ensemble strategy to guide the training
procedure and help the prediction of noisy-varying instances.

• The experimental results on a benchmark dataset show that the proposed method has robust superi-
ority over compared methods.

2 Methodology

In this paper, we focus on the task of distantly supervised relation extraction. Our goal is to predict
relation r for a given entity pair < e1, e2 >. The proposed framework CORD conducts with multi-
instance learning, i.e., we take a bag of sentences mentioning both entity e1 and e2 as input, and we
compute the probabilities for each relation expressed by this bag as output.

As Figure 1 shows, given a collection of sentences containing the target entity pair, we first transform
each sentence into its distributed word-sequence and entity-sequence representations, and predict relation
respectively using the attention weighted representation via a multi-instance learning mechanism. We
also project the prediction of KG-Net to a logic rule regularization subspace. Then, we train the two base
networks simultaneously with a bi-directional knowledge distillation method, in which the predictions
of KG-Net and Corpus-Net are used as soft labels for each other. The final prediction is the ensemble
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of the two base networks, and their weights in the ensemble are dynamically adjusted. In the rest of this
section, we elaborate each component of CORD in detail.

2.1 Corpus-Network

We first introduce the word-sequence encoder shown in Figure 2, which transforms each sentence si to
corresponding word-based sentence representation swi .

Input Representation Each word in the sentence is mapped to a low-dimensional embedding wi ∈
Rdw through a word embedding layer, where dw denotes the size of the embedding. Similar to Zeng et
al. (2014) and Lin et al. (2016), we encode the relative distances to entity e1 and e2 as pi ∈ R2dp , where
2dp is the size of the position embedding. The distances are helpful in emphasizing how informative
the word is thereby enabling better discrimination for relation extraction. We concatenate word vector
wi and position vector pi as wi = wi‖pi, wi ∈ Rdw+2dp , and feed words input si = {w1, . . . ,wn} to
Bi-GRU layer.

Bi-directional GRU Layer We employ bi-directional GRU to encode patterns in si into a hidden
representation swi = {hf1‖hbT , . . . , h

f
T ‖hb1}, which is obtained by concatenating each forward state hfj

and backward state hbT−j+1 at step j given input si, swi ∈ R2dh and dh means the hidden size of GRU.

The forward sequence [hf1 , h
f
2 , . . . , h

f
T ] and backward sequence [hb1, h

b
2, . . . , h

b
T ] are calculated by GRU

(Cho et al., 2014).
Hierarchical Attention As Figure 2 and Figure 1 show, we apply hierarchical attention for Corpus-

Net involving word and sentence levels respectively. The motivation is that the semantic meaning of a
sentence bag representation is gathered by vectors in different levels from the bottom to up, and the vec-
tors in different context do not contribute equally. Some words express targeted relation more relevantly
than others in a sentence. Furthermore, since we concatenate position vector to each word, a word with
different distance is also importance-varying. As for sentence-level attention, it can reduce the weights of
the sentences that suffer from wrong-labeling and improper-bagging (i.e., express inconsistent relations)
problems. Inspired by Lin et al. (2016), we calculate the aggregation of different level attentions with
unified form as:

X =
n∑

i=1

aixi; ai =
exp(xiAr)∑n
j=1 exp(xjAr)

, (1)

where xi is individual input vector in different levels, X is the corresponding sum of them, r is ran-
domly initialized global relation vector. Note that we set different r and weighted diagonal matrix A for
different attention levels.
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Finally, the Bi-GRU output of each word wi is gathered to sentence representation sw, and then to the
bag-wise representation Sw. We feed the resulting vector Sw to a Softmax classifier.

Prediction With Sw as input, the condition probability of each relation j is calculated as:

pj(S
w) =

exp(oj)∑nr
i=1 exp(oi)

; o = WSw + b, (2)

where o = [o1, . . . , onr ] is calculated with coefficient matrix W ∈ Rnr×(2dh) and bias b ∈ Rnr . nr is
the number of relations and oj measures how well Sw matches relation j.

2.2 KG-Network

Besides Corpus-Net, we propose another base network to incorporate information of KG. The entity-
sequence encoder transforms each sentence si to entity-based sentence representation sei as illustrated in
Figure 3.

Input Representation One of the key challenges of leveraging KG information is identifying what
information to use. Here we employ an extensible manner by using different entity embedding methods.
For instance, network embedding methods such as DeepWalk (Perozzi et al., 2014) primarily encode
graph structure information, while knowledge embedding methods such as TransE (Bordes et al., 2013)
usually focus on triples information, we can flexibly use one of them or merge them together. Specifi-
cally, we link the detected entity names in sentences to the Freebase5M (Bordes et al., 2015) by n-gram
text matching, and use the DeepWalk and TransE embeddings of linked entity candidates denoted as
{e1,1, e1,2, . . . , em,k−1, em,k}, where k is the amount of candidates for each entity, m is the amount of
entities appearing in sentence.

In addition, we use the position vectors of Corpus-Net for KG-Net because the word-based distances
are more discriminative than the entity-based distances. To be specific, the transformation between them
is not one-to-one mapping because different word-sequences may result in the same entity-sequence and
hence loss of information, e.g., “Obama flew to the US” and “Obama left the US” are both mapped to
“Obama, US”.

Bi-GRU and Attention Then we employ a similar architecture of the Bi-GRU component and the
attention aggregation of Corpus-Net. As shown in Figure 3, the linked candidates {ei,1, . . . , ei,k} are
aggregated to ei for each entity, then entity vectors {e1, . . . , em} and position vectors {p1, . . . , pm} are
concatenated in element-wise and as input to Bi-GRU layer. The Bi-GRU outputs are gathered to se

with entity-level attention, then to Se with bag-level attention, and fed to a Softmax classifier similar to
Corpus-Net.

External Rule Knowledge We regard the patterns learned automatically from word and entity se-
quences as internal knowledge and manage to transfer external human knowledge such as logic rules
into the base network. Furthermore, the KG-specific rules can be incorporated into Corpus-Net gradu-
ally by bi-distillation and vice versa.

Here we concentrate on relation-specific type rules because: (1) We observe some typical false predic-
tions which could be corrected with type rules (e.g., it is unreasonable to predict two person entities as
relation place of birth whose tail type cannot be a person). (2) We can automatically obtain large-scale
type resources because most KG reserved this information. For example, in Freebase, we can collect
the types of entities located in type/instance field and the relation-specific type constraints located in
rdf-schema#domain and rdf-schema#range fields.

To be specific, given all types (an entity can have many types) for an entity pair j as tj,1 and tj,2, we
design the logic rule for each relation i as Ti,1 and Ti,2 are not missing =⇒ (Ti,1 ∈ tj,1) ∧ (Ti,2 ∈
tj,2) where Ti,1 and Ti,2 are the relation-specific type constrains for relation i. Here we apply probabilistic
soft logic (Bach et al., 2017) to encode rules flexibly, i.e., the rule scores are continuous truth values in
the internal [0, 1] rather than {0, 1} and logic ∧ denotes averaging of truth values.

Moreover, considering type granularity, i.e., type information that is usually specified with hierarchy
form (e.g., /people/person/spouse), we divide the number of matched levels (fields) of the type hierarchy
by field amount as the value of (Ti ∈ tj) to gain fine-grained features.
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Finally, with prediction p(Se) from Softmax classifier, we use a posterior regularization fashion (Hu
et al., 2016) to project p(Se) into a constrained subspace p′(Se) as follows:

(p′(Se))∗ ∝ p(Se)× esr , sr = −
l∑

i=1

Cλi(1− ri(Se)), (3)

where λi is confidence of each rule, C is regularization parameter and sr is rule score factor, which
indicates how Se satisfies the rules. This is the closed-form solution obtained by solving an optimiza-
tion problem which finds the optimal p′(Se) fitting rules meanwhile staying to p(Se). We set λi as
pi(S

e), i.e., the higher probability classifier predicts (believes), the stronger effect rule-constraint takes
for relation i. We can design other rules and enable to scale with similar manner.

2.3 Cooperative Module
In this section, we introduce how to ensemble two base networks cooperatively.

Bi-directional Knowledge Distillation We observe that KG-Net and Corpus-Net have different hard
examples and different wrong predictions, i.e., for the same sentence bag, Corpus-Net may predict higher
probability than KG-Net and sometimes, the contrary (we demonstrate the differences in Experiments
Section). This observation encouraged us to train them cooperatively with mutual knowledge supple-
mentation.

We devise a bi-directional knowledge distillation method to enhance their supervision information in
label space. Specifically, the two base networks learn with the hard label y from distant supervision.
Meanwhile, we set the predicted probability of the two base networks pc and pk as soft label to each
other simultaneously:

Lc =
N∑
i=1

(`(yi,p
c
i ) + πc`(p

k
i ,p

c
i )), Lk =

N∑
i=1

(`(yi,p
k
i ) + πk`(p

c
i ,p

k
i )), (4)

where ` is cross entropy loss, π is imitation rate, and N is batch size. We update the model parameters
by minimizing Lc and Lk with Adam (Kingma and Ba, 2014) optimizer.

The learning process can be regarded as the fact that the two base networks not only learn from the
coarse-grained hard label which is one-hot and low entropy, but also learn from the teacher network
which expresses specific supplementary knowledge and dependencies between relations with soft label.
For example, label [0.3, 0.2, 0.9] is more informative than [0, 0, 1].

Also note that the early base network is not reliable and gives low quality knowledge through soft
label, so we pre-train the two base networks separately with certain steps before mutual learning.

Adaptive Imitation Rate The classification difficulty of the two base networks is varying with differ-
ent entity pair bag instance, sometimes KG-Net is a better qualified teacher for Corpus-Net and some-
times vice versa. To transfer more reliable knowledge of each base network to another and train them
more effectively, we set the imitation weights as following:

πc =
`(yi,p

k
i )

`(yi,pc
i ) + `(yi,pk

i )
, πk =

`(yi,p
c
i )

`(yi,pc
i ) + `(yi,pk

i )
, (5)

where πc and πk are inversely proportional to the hard-label loss of each other, i.e., the smaller the loss
is, the more qualified is the base network as teacher toward each other. In addition, from the perspective
of optimization, the adaptive imitation can prevent the gradient from being dominated by ill-classified
examples and hence be able to train the model effectively.

Later, in Section 3.4, we will demonstrate the effectiveness of the adaptive imitation rate by comparing
with the fixed setting.

Dynamic Ensemble Prediction The final prediction pco of the CORD framework is an ensemble of
the two base networks predictions pc and pk because each of them has its strong points. We propose a
dynamic ensemble strategy considering that (1) A high type-rule score indicates KG-Net may classify
current sentence bag well because the predictions of the classifier satisfy the rules; (2) Ideally, entity
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name in a sentence should be linked to only one entity in KG, so the KG-Net would be more confused
with more linked candidates. Thus, with the above two factors, we can specify the dynamic ensemble
prediction pco as follows:

pco = (1− wk)p
c + wkp

k, wk = α+ β(
sr
nr
− nc
ne ×Ne

), (6)

where α is the empirical KG-Net base weight, β is the wave range. They can be set as the ratio of some
evaluation indicators (such as F-score) of separate-trained base network. Then the prediction weight of
KG-Net wk ∈ [α−β, α+β] depends on the normalized (∈ [0, 1]) rule score factor and candidates score,
i.e., average rule score per-relation and number of candidates per-entity dividing Ne, which is the upper
limit on the number of candidates for linking. And sr is the rule score factor in Eq. 3, nr, nc ne are the
amounts of relations, all entities candidates and gathered entities in sentence respectively.

As a comparison, we also deploy a naive baseline using static ensemble weight and report the results
in Section 3.4.

3 Experiments

In this section, we aim to evaluate the effectiveness of the proposed CORD framework. We conduct an
overall performance comparison with baseline methods and perform a comprehensive examination of the
KG-Net and the Cooperative Module.

3.1 Experiment setup
Dataset and Evaluation Metrics We conduct experiments on the widely used benchmark dataset
NYT10 (Riedel et al., 2010), which is built by aligning triples in Freebase to the New York Times
corpus and contains 53 relations. There are 522,611/172,448 sentences, 281,270/96,678 entity pairs, and
18,252/1,950 relation mentions in train/test dataset respectively. Following previous works (Mintz et al.,
2009; Lin et al., 2016), we evaluate our method in the held-out evaluation with P-R curve and P@N
metric without expensive human evaluations.

Parameter Settings We set the embedding dimensions as 5, 50, 64, 64 for position, word2vec, Deep-
Walk and TransE respectively. For both base networks, we set the cell size of GRU as 230, learning rate
as 0.001, dropout probability as 0.5 and batch size as 20. For the cooperative module, we set the base
weight α and wave range β as 0.4, 0.2 respectively, and fixed wk as 0.4 for ensemble comparison.

3.2 Comparison with Baseline Methods
We compare our approach with three traditional feature-based methods and two state-of-art neural-based
methods.

Feature-based Methods Mintz (Mintz et al., 2009) is a multiclass logistic regression model; Mul-
tiR (Hoffmann et al., 2011) is a probabilistic graphical model which can handle overlapping relations;
MIML (Surdeanu et al., 2012) is also a probabilistic graphical model but using a multi-instance multi-
label paradigm.

Neural-based Methods CNN+ATT (Lin et al., 2016) is a sentence-level attention model based on
CNN, which can dynamically reduce the weights of noisy instances; PCNN+ATT (Lin et al., 2016)
achieves state-of-art results by applying sentence-level attention to the piecewise max pooling model,
PCNN (Zeng et al., 2015).

The precision-recall curve results are shown in Figure 4, where Base-Net-Corpus and Base-Net-KG are
our best results for the two base networks with independent training, CORD is the cooperative training
and dynamic ensemble results. For the aforementioned five methods, we directly use the results reported
in (Lin et al., 2016).

Figure 4 demonstrates that: (1) The KG-Net achieves higher coverage than the feature-based methods,
comparable precision with the MultiR and MIML and an obvious gap with other neural-based methods.
This indicates that the KG-Net and feature-based methods can capture certain patterns effectively but
with relatively low coverage. On one hand, the decent precision shows potentials of the KG-Net to
capture patterns with entity-sequence and KG information. On the other hand, we suggest that the
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Figure 4: P-R Curve Comparison with Mintz, MIML, MultiR, CNN+ATT and PCNN+ATT.

weakness of the KG-Net might be caused by the sparsity of entity-sequence space (the dataset scales
down after word-to-entity mapping), and we can enhance it by exploring other information such as
relational paths (Lin et al., 2015; Zeng et al., 2017); (2) Corpus-Net achieves comparable results with
CNN+ATT and PCNN+ATT, which reveals the effectiveness of Corpus-Net that could be the backbone
of the CORD framework; (3) The CORD outperforms other methods on most recall area, demonstrating
the effectiveness of our methods. Note that the CORD framework is significantly superior to the two
separate trained base networks, especially in the rightmost area. This shows the cooperative module
takes advantages of two base networks effectively and achieves better generalization. Also note that in
the right-side area, CORD is still robust although the separate trained KG-Net is weak, which verifies
the effectiveness of the CORD with different strengths of the base networks.

3.3 Performance of the KG Network

To evaluate the effect of incorporating KG information, we first compare P-R curve for different KG-Net
setups, then we explore the benefit of using external logic rules and make a case study.

Comparison for Different Setups We experiment three KG-Nets without rule knowledge, using
DeepWalk, TransE and their concatenation as entity embedding respectively. Based on whichever yields
the best results, we experiment with rule knowledge and report results in Figure 5.

Figure 5: P-R Curve Comparison with Different Setup for the Base KG-Net.

From Figure 5, we can observe that: (1) The results of DeepWalk and TransE are slightly different
and their concatenation improves, verifying the extendibility with different kinds of KG information
embeddings; (2) After incorporating logic rules, the result is improved significantly as shown in left
recall area, indicating that type-constraints helps to capture certain patterns more precisely.

Robustness on Long Tail Situation Efforts based on bag-level denoising such as sentence attention
are liable to failure because of the long-tail situation in real-life datasets. For example, we observe that
77.63% entity pairs have only one relation instance in NYT10. We expect that supplementary external
knowledge (logic rules) can enhance the robustness of this situation. We evaluate P@N of the KG-Net
without rules p(Se) and compare the rule-projected p′(Se) on two kind of sentence amounts setup in
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Table 1, where (≥ 1) means whole test dataset and (> 1) means filtering entity pairs which have only
one instance.

#Entity Pair
Sentence

P@100
(%)

P@200
(%)

P@300
(%)

Average
(%)

KG-Net >1 60.2 54.0 46.4 53.5
≥ 1 60.3(+0.1) 51.5(-2.5) 46.0(-0.4) 52.6(-0.9)

KG-Net
+ Rule

>1 69.2 57.0 48.6 58.3
≥ 1 73.5(+4.3) 60.4(+3.4) 51.7(+3.1) 61.9(+3.6)

Table 1: P@N for Long Tail Situation.

From Table 1, we can observe that the KG-Net gets lower precisions (average reduces 0.9%) on the
whole test data comparing with the filtered data. In contrast, the KG-Net with rules gets higher precisions
on the whole test data because it can deal with noisy instances effectively in sentence-level and hence be
more robust on long tail situation.

Case Study Here we pick an example instance in Table 2 to illustrate the effect of type rules. The
KG-Net predicts wrong relation place of death probably because the appearance of entity Joe Williams.
In contrast, it can predict correctly with the help of relation-specific type constraints.

Predicted Relation Relation-Specific Type
KG-Net /people/deceased person/place of death /people/deceased person, /location/location
KG-Net+ Rule /location/location/contains /location/location, /location/location

text In Suffolk County, Fire Island suffered the most damage, according to
Joe Williams, commissioner of the county ’s office of emergency management.

Table 2: Effect of Type Constraint Rules. Bold indicates entity, italic indicates targeted entity pair.

3.4 Performance of the Cooperative Module

To investigate the effectiveness of the cooperative module, we compare the adaptive imitation rate with
the fixed, the dynamic ensemble strategy with the static, and then perform a thorough case study.

Adaptive vs Fixed Imitation Rate We find that the adaptive imitation is crucial for the effective
training of the CORD. To demonstrate this, we deploy some fixed imitation rate setups comparing the
adaptive imitation rate. We set imitation rate (πc, πk) as {(0.5, 0.5), (0.6, 0.4), (0.4, 0.6)}, and report
the loss curves of the dynamic, and only (0.5, 0.5) for the fixed in Figure 6 because the other two have
similar results.

Figure 6: Loss for Adaptive and Fixed Imitation.

Figure 6 shows the remarkable difference between the fixed and the adaptive imitation, where the loss
of the adaptive setting reduce gradually while the fixed fluctuates wildly. The waves of fixed KG-Net and
fixed Corpus-Net are similar, meanwhile they mislead each other and the gradients are dominated by hard
examples, resulting in the non-convergence. Conversely, the adaptive networks are trained effectively
because the data speak for itself by providing loss values as clues to reveal the difficulty of predicting
current instance. Note that the base networks are pre-trained independently and both descend gradually
within the first 10k steps.

Dynamic vs Static Ensemble We also compare the dynamic ensemble strategy with the static and
report their P@N results within identical base networks in Table 3. It shows that the dynamic outperforms
the static and leverages the two base networks better. Note that the improvements decrease as recall
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P@100
(%)

P@200
(%)

P@300
(%)

Average
(%)

Base-KG 64.0 55.2 49.3 56.2
Base-Corpus 77.3 72.0 66.5 73.9

Static 80.7 73.1 64.0 72.8
Dynamic 84.5 76.0 66.7 76.1

Table 3: P@N for Dynamic and Static Ensemble. Figure 7: Top300 Predictions of the CORD.

increases, and the degree of decrease for the dynamic is less than the static, demonstrating the dynamic
is more robust than the static.

Case Study To gain further insight about how the CORD works, we plot the top 300 predictions of
the CORD in descending order, and compare it with its two base networks in Figure 7.

Figure 7 presents the predictions of KG-Net and Corpus-Net which go up and down around the CORD
curve. The prediction differences between KG-Net and Corpus-Net are nonuniformly time-varying,
indicating that some hard instances for KG-Net are easy to classify by Corpus-Net and vice versa. This
supports again our view of employing adaptive imitation and dynamic ensemble.

To further demonstrate the different advantages of KG-Net and Corpus-Net, we choose two points
which are predicted correctly and have significantly different values from Figure 7. The result is showed
in Table 4, where prediction ID 137 and ID 257 have the different dominating network, KG-Net and
Corpus-Net respectively.

ID in Figure 7 Prob-KG Prob-Corpus Relation Text

137 0.9809 0.7591 location contains

when Julian Resuello, the mayor of San Carlos City
in the northern Philippines, was killed by gunmen at a
campaign rally on April 28, his brother quickly stepped
into his shoes.

257 0.6763 0.9583 place of death
Ernst Haefliger, a Swiss tenor who was most renowned
as an interpreter of German art song and oratorio roles,
died on Saturday in Davos, Switzerland.

Table 4: Hard Example of KG and Corpus Net. Bold indicates entity, italic indicates targeted entity pair.

From Table 4, we can see that different networks contribute each other from the view of semantic: (1)
KG-Net predicts relation location contains more accurately and Corpus-Net may fail if the wording of the
sentence doesn’t clearly state the relation between two entities. With the help of position and three entity
embeddings, KG-Net can capture the relation-dependent features better from the view of graph structure.
In contrast, Corpus-Net might be confused by the expression “the mayor of ...” and the uncorrelated latter
part, “was killed by ...”; (2) Corpus-Net predicts relation place of death more accurately and KG-Net may
fail if two entities are already known to be related by more than one relation. Here Corpus-Net provides
reliable prediction because of the appearance of featured expression “died on ...” in the last sentence.
Contrarily, KG-net may lack discriminative information and be confused by other possible relations such
as place of birth, because the targeted person entity is followed by too many location entities.

4 Related Work

Relation extraction is one of the most important topics in NLP. Many approaches to relation extraction
have been proposed, such as supervised classification (Zelenko et al., 2003; Bunescu and Mooney, 2005),
bootstrapping (Carlson et al., 2010), distant supervision (Mintz et al., 2009; Krause et al., 2012; Min et
al., 2013; Pershina et al., 2014; Ji et al., 2017), and generative model (Zhang et al., 2018). Among them,
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distant supervision is popular as it is efficient to obtain large-scale training data automatically. However,
it suffers from noisy labeling problem which severely degrades its performance.

To tackle this problem, Riedel et al. (2010; Hoffmann et al. (2011; Surdeanu et al. (2012) model
distant supervision as a multi-instance learning problem under the at-least-one assumption and make it
more practical. With the advances in deep learning, Zeng et al. (2015), Lin et al. (2016) and Lin et al.
(2017) apply CNN and attention mechanism, Feng et al. (2017) further introduces memory network to
reduce noises. Compared with these methods, the proposed framework leverages information from other
sources such as KG and combine it with information from text corpus by knowledge distillation.

5 Conclusion

In this paper, we propose a novel neural relation extraction framework with bi-directional knowledge
distillation to cooperatively use different information sources and alleviate the noisy label problem in
distantly supervised relation extraction. Extensive experiments show that our framework can effectively
model relation patterns between text corpus and KG information, and achieve the state-of-the-art results.
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