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Abstract 

This paper proposes to perform natural language inference with Word-Pair-Dependency-
Triplets. Most previous DNN-based approaches either ignore syntactic dependency among 
words, or directly use tree-LSTM to generate sentence representation with irrelevant infor-
mation. To overcome the problems mentioned above, we adopt Word-Pair-Dependency-
Triplets to improve alignment and inference judgment. To be specific, instead of comparing 
each triplet from one passage with the merged information of another passage, we first pro-
pose to perform comparison directly between the triplets of the given passage-pair to make the 
judgment more interpretable. Experimental results show that the performance of our approach 
is better than most of the approaches that use tree structures, and is comparable to other state-
of-the-art approaches. 

1 Introduction 

Natural language inference (NLI) refers to the following task: given a text passage P (Premise) (which 
might have more than one sentence) and a text passage H (Hypothesis), whether we can infer H from 
P, i.e., identifying a specific relationship among entailment, neutral and contradiction. It has many 
applications such as question answering (Bhaskar et al., 2013; Harabagiu and Hickl, 2006), infor-
mation extraction (Romano et al., 2006), machine translation (Pado et al., 2009), automatic text sum-
marization (Harabagiu et al., 2007) and so on. Some evaluations about this task have been organized in 
the past decades, such as the PASCAL Recognizing Textual Entailment (RTE) Challenge (Dagan et al., 
2005), SemEval-2014 (Marelli et al., 2014) and RITE (Shima et al., 2011). 

Many previous approaches adopt statistical frameworks (Heilman et al., 2010; Kouylekov and 
Magnini, 2005). However, neural network approaches have emerged after Stanford Natural Language 
Inference (SNLI) dataset (Bowman et al., 2015) was released. Most of them adopt an increasingly 
complicated network structure to represent text passages, and then predict the relationship between 
them (Bowman et al., 2016; Liu et al., 2016b). However, P might include extra words which are not 
directly related to H. Actually, only the words in P that are associated with the words in H should be 
paid attention to. Those relevant words should be emphasized more while the irrelevant words should 
be less weighted during decision making. Therefore, some approaches (Parikh et al., 2016; Chen et al., 
2017a) adopt attention mechanism to implicitly align the words between two passages to yield a better 
performance. This idea is very similar to how human make the entailment judgment, and the result 
shows that it is very effective for performing natural language inference on SNLI corpus in which 
most words in H can find their corresponding ones in P. 

                                                      
 This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http:// crea-
tivecommons.org/licenses/by/4.0/ 
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Figure 1. Dependency trees1 for Premise “An older man sits with his orange juice at a small table in a 
coffee shop while employees in bright colored shirts smile in the background.” and Hypothesis “An 
elderly man sitting in a small shop.” The relationship between them is “neutral”. 

 
However, after having analyzed some errors generated from an attention-based approach (Parikh et 

al., 2016), we find that it will introduce mis-alignment and might cause wrong inference. Although 
context information is used to alleviate this problem, it still cannot handle long distance dependency. 
Take the following sentence pair as an example (The benchmark is neutral): 

Premise: An older man sits with his orange juice at a small table in a coffee shop while employees 
in bright colored shirts smile in the background. 

Hypothesis: An elderly man sitting in a small shop. 

The attention-based approach (Parikh et al., 2016) cannot catch the relation between “shop” and 
“small” in P precisely (which is important for the prediction). In this example, the relationship be-
tween P and H will be predicted as “entailment”, because all the words in H can be found in P, alt-
hough the word “small” in these two sentences does not modify the same thing (e.g., “small” modifies 
“table” in premise while modifies “shop” in hypothesis). 

The above example clearly shows that a sentence is not a set of independent words. It is a sequence 
of words with syntactic relationship. Based on this observation, we propose to adopt the Word-Pair 
Relation-Head-Dependent (RHD) triplet 2  for conducting alignment and comparison. Furthermore, 
Parikh et al. (2016) and other previous models only compare each word in H with the vector merged 
from all the words in P according to their associated alignment scores, and vice versa. However, as 
shown in Figure 1, human compares H and P mainly based on Structure Analogy (Du et al., 2016; 
Gentner 1983; Gentner & Markman, 1997) instead of the merged meaning which will not only import 
irrelevant text but also lose information during merging. Consequently, only words with closely relat-
ed syntactic/semantic roles (of the aligned predicates) should be compared.  

Therefore, we first create two sets of RHD from P and H to denote their corresponding structures, 
and then perform comparison between triplets in P and those in H. Accordingly, two RHD triplets 
should be aligned if their relations are related and their head-words are aligned (e.g., the triplets with 
the same indexes are aligned in Figure 1). Particularly, when two RHD triplets are compared, each part 
of RHD triplet (i.e., Relation, Head, and Dependent) should be compared separately. Besides, as the 
words of some triplet pairs possess reversed head-dependent relations (e.g., the Dependent in “(nsubj, 
sits, man)” is linked to the Head in “(vmod, man, sitting)”, as shown by the triplet pair with index 3 in 
Figure 1), we introduce cross-comparison to compare the Head from “(nsubj, sits, man)” with the De-
pendent from “(vmod, man, sitting)”, and vice versa.  

                                                      
1 The words in black represent the nodes of the dependency tree, and the string on each line represents the dependency rela-
tion between two nodes. The red relation denotes that its associated triplet is important in making the judgment.  Links with 
the same indexes indicates that they are aligned and compared when judged the result by human. 
2 Each RHD triplet is denoted by “(rel, head, dep)”, where head and dep denote the head-word and the dependent-word of the 
dependency relation, respectively; and rel denotes the dependency relation between head and dependent. 
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Figure 2: The skeleton of the proposed approach. The rel, head and dep of the triplet are represented 

with green, purple, and light-blue colors, respectively. Also, ⊕ denotes the Comparison operation be-

tween triplets (see section 2.2.2 for “Matching layer”), while  denotes the Aggregation operation (see 
section 2.2.3 for “Aggregation layer”). Besides, the left part and the right part in Matching Layer rep-
resent P-aligned-to-H and H-aligned-to-P, respectively. 

 

Our contributions are summarized as follows: (1) The RHD triplet is first proposed to be the align-
ment and comparison unit in the neural network for NLI. In this way, the corresponding words could 
be aligned and compared more precisely. (2) Instead of comparing one RHD triplet of H with the 
merged meaning of all the RHD triplets in P (and vice versa), we propose to directly compare each 
RHD triplet of H with another RHD triplet of P; and each part in RHD triplet is compared separately. 
(3) We propose to use cross-comparison to compare the related words with different syntac-
tic/semantic roles.  

2 Proposed Approach 

In our model, we first transform P and H into two sets of RHD triplets. For each RHD triplet of P, we 
compare it with another RHD triplet of H (without merging) to generate an individual comparison vec-
tor (and vice versa). Afterwards, we use a self-attention mechanism to align and sum them to yield the 
one-side merged comparison vector between a triplet and the triplet set of the other side. Last, we ag-
gregate those one-side merged comparison vectors to give the overall entailment judgment. 

Figure 2 shows the skeleton of the proposed approach. It consists of the following 5 layers: (1) In-
put Layer, which initializes the embedding of the words and relations; (2) Triplet Embedding Layer, 
which is used to adapt the input embedding to yield a better representation for this task; (3) Matching 
Layer, which performs comparison within each RHD triplet pair, scores the alignment weights, and 
sum those individual comparison vectors to generate the one-side merged comparison vector between 
each triplet with the triplet set of the other side; (4) Aggregation Layer, which aggregates the one-side 
merged comparison vectors to get a directional comparison vector for each comparing direction; and 
(5) Prediction Layer, which uses two separated directional comparison vectors and a feed-forward 
neural network classifier to predict the overall judgment. 

Our model is symmetric about P and H. So for simplicity, we only describe the left parts which 
mainly about comparing each unit of P with H. Right part is exactly the same except that the roles of P 
and H are exchanged.  



417

 
Figure 3: An illustration for the comparison between a triplet ��  in Premise and a triplet ℎ� in Hypothesis. The 

rel, head and dep of the triplet are represented with green, purple, and light-blue colors, respectively. Comp(,) 
indicate the comparison function denoted in equation (2). H(,) is a multilayer perception denoted in equation (4). 
The green solid-line, purple solid-line and red solid-line represent the comparison of pair (rel, rel), (head, head) 
and (dep, dep), respectively. The purple dot-line represents the cross-comparison of pair (head, dep), and red 
dot-line represents the cross-comparison of pair (dep, head).  
 

2.1 Input Layer Generation 

We first use a dependency parser3 to transform P and H into two sets of RHD triplets. We define �̂ : =

(��,��,⋯,��) and �̂ : = (ℎ�,ℎ�,⋯,ℎ�) be two sets of RHD triplets, while �� and ℎ� denote the ��� 

RHD triplet and the ��� RHD triplet in P and H, respectively; also, m and n indicate the number of as-
sociated triplets in P and H, respectively. We then instantiate the Input Layer with the corresponding 
word-embeddings and rel-embedding of RHD triplets (For conciseness, we will let rel/head/dep denote 
both the original meaning and the corresponding embedding interchangeably from now on).  Each 
ℎ���, ��� ∈ ��� is a word embedding of dimension �� which is initialized with pre-trained GloVe 
word embedding (Pennington et al., 2014), while ��� ∈ ��� is a relation embedding vector of dimen-
sion �� and is initialized randomly with a standard normal distribution (Please note, only ��� will be 
tuned later during training). Each triplet-embedding will be presented as a triplet which contains three 
embedding corresponding to rel, head and dep respectively. 

2.2 Network Architecture 

2.2.1 Triplet Embedding Layer 

As we fix the value of word embedding during training, in order to obtain better relation/word embed-
ding representations to compare for this task, we use a simple feed-forward structure to adapt the three 
parts of the triplet to the task. The computations are as follows: 

 				��� = �� ∗ ����� + ��  
 ℎ��� = �� ∗ ℎ����� + �� (1) 
 			��� = �� ∗ ����� + ��  

where * is the multiplication of matrices, ����� ∈ ���, ℎ����� ∈ ��� and ����� ∈ ��� are the input 

embedding-vectors from Input Layer, ��� ∈ ���, ℎ��� ∈ ��� and ��� ∈ ��� are the new representa-

tions generated, �� ∈ ���×�� , 	�� ∈ ���×�� , �� ∈ ��� , 	�� ∈ ���  are the weight matrices to be 
learned. Here, all the rel share the same weight matrices, while all the words share the same weight ma-
trices.  

                                                      
3 http://nlp.stanford.edu/software/lex-parser.shtml#Download 
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2.2.2 Matching Layer 

This layer is the core of our model. It is mainly used to perform the individual comparison between two 
triplets and use associated alignment weights to focus on the individual-comparisons of the preferred 
alignments. In this step, we will use a one-side merged comparison vector to represent each comparison 
result of one triplet with the triplet-set of another side. For a triplet �� from Triplet Embedding Layer, it 

has three parts: ����� ∈ ���, ℎ����� ∈ ��� and ����� ∈ ���; and for ℎ�, it has ����� ∈ ���, ℎ����� ∈

��� and ����� ∈ ���.  

Figure 3 shows how the individual comparison-vector of one triplet-pair is generated. The vector 

��� ∈ �� denotes the comparison result between triplet �� and a triplet ℎ� from �̂, while d is the dimen-

sion of hidden layer. During comparison, each component of the triplet (i.e., rel, head and dep) is com-
pared independently, as shown in the figure. Here, the comparing function is denoted as comp(,) in equa-
tion (2). G is a multi-layer perceptron with one hidden layer and a Relu activation.  

 ����(��,��) = �([��; ��; �� − ��; �� ⊙ ��]) (2) 

Where �� and �� are any two embedding vectors. The notation “;” (within the bracket-pair in the above 
equation) denotes Concatenation; also, ‘−’ and ‘⊙’ are the difference and element-wise product of vec-

tors respectively. Then we can get the comparison results in Figure 3 as follows: 

								�����: = ���� ������,������  

				ℎ�����: = 	���� �ℎ�����,ℎ������  

ℎ���_���: = ���� �ℎ�����,������ (3) 

							�����: = 	���� ������,������  

			���_���: = 	���� ������,ℎ������  

Where  ℎ���_���  and ���_���   are the results of cross-comparison. Please note that the comparison func-

tions with the same input arguments share the same set of parameters in G. For example, all the functions 
comp(head, head) share a set of parameters while all comp(head, dep) share another set of parameters. 
After we obtain the comparison results of these components, we can incorporate them to yield the triplet 
individual comparison vector ��� between �� and ℎ� as follow. 

 ��� = �([�����; ℎ�����; ℎ���_��� ; �����; ���_���]) (4) 

Here H is a multi-layer perceptron with two hidden layers and a Relu activation. Afterwards, we need to 

generate the alignment weight ���  between triplet ��  and triplet ℎ�  to extract the key information for 

judgment. Most of the previous models (Chen et al., 2017a; Parikh et al., 2016) use the multiplication of 
two semantic unit vectors as their alignment weights. However, we find the individual comparison here 
can describe the relatedness of those triplet-pairs better. Consequently, we generate the alignment 
weights using these individual comparison vectors with a self-attention mechanism as follows. 

 ��� = ���tanh	(������) (5) 

 

Where ��� ∈ ��×� and ��� ∈ ��×� are weight matrices to be learned. Then we use ��� to obtain the 

one-side merged comparison vectors ��,� from various ��� as follow.  
 

��,� = �
���(���)

∑ ���(���))
��
���

��

���

��� (6) 
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Where ��,� is the one-side merged comparison vector between �� and the whole set �, �� is the number 

of RHD triplets in H; ��,� (the right part in Figure 2) is defined similarly between ℎ� and the whole �. 

2.2.3 Aggregation Layer 

In this layer, we aggregate all the one-side merged comparison vectors ��,�  and  ��,� (obtained above) 

to generate the final comparison vector for these two different directions between P and H. Like the pre-
vious approaches (Chen et al., 2017a; Parikh et al., 2016), we aggregate the information by summation 
and max pooling: 

 
��,��� = ∑ ��,�

��
���

,         ��,��� =
��

���
� = 1

��,�,         �� = [��,���; ��,���] 
 

 
��,��� = ∑ ��,�

��
��� ,         ��,��� =

��
���
� = 1

��,�,         �� = [��,���; ��,���] 
(7) 

Where �� and �� are the numbers of triplets in P and H, respectively. We get the overall comparison vec-

tor �� by concatenating the summation ��,���  and the max pooling ��,��� using the one-side merged 

comparison vectors of P (and vice versa). Afterwards, we use these overall comparison vectors to pre-
dict the relationship in the next section. 

2.2.4 Prediction Layer 

From the above section, we have obtained �� and  ��, which are the overall comparison vectors from �̂ 

to �̂ and from �̂ to �̂, respectively (i.e., the overall comparisons in two different directions). We then 
concatenate them and use a multi-layer perceptron classifier Q (it has two hidden layers with Relu activa-
tion and a softmax output layer) to generate the final overall judgment vector �̂ (as shown in Eq. (8)), 

where �̂ ∈ �� (C equals the number of classes) are the scores for each class. The predicted class can be 
got by setting � = argmax� �̂�. When we train the model, we use multi-class cross-entropy loss with 

dropout regularization (Srivastava et al., 2014). 

 �̂ = �([��; ��]) (8) 

3 Experiments 

3.1 Dataset  

We adopt both SNLI (Bowman et al., 2015) corpus4 and MultiNLI (Williams et al., 2018) corpus5  to test 
the performance. They are briefly introduced as follows. 

 

SNLI - It contains 570k sentence pairs. The sentence pairs in this corpus are labelled with one of the fol-
lowing relationships: entailment, contradiction, neutral and “-”, where “-” means that it lacks of consen-
sus from human annotators. In our experiments, we follow Bowman et al. (2015) to delete those sentence 
pairs labelled with “-“. Consequently, we end up with 549,367 pairs for training, 9,842 pairs for devel-
opment and 9,824 pairs for testing.  

MultiNLI - This corpus has 433k sentence pairs, which are collected from broad range of genre of 
American English such as written non-fiction genres (e.g. SLATE, OUP), spoken genres (TELEPHONE, 
FACE-TO-FACE), less formal written genres (FICTION, LETTERS), and that specialized on for 9/11. 
For the training set of this corpus, it selects half of the genres to create in-domain (matched) and out-
domain (mismatched) development/test sets. Since the test set labels of this corpus are not released, the 
test performance is obtained through submission to Kaggle.com6.   
 
                                                      
4 https://nlp.stanford.edu/projects/snli/ 
5 http://www.nyu.edu/projects/bowman/multinli/ 
6 Matched : https://www.kaggle.com/c/multinli-matched-open-evaluation  ; Mismatched:  https://www.kaggle.com/c/multinli-
mismatched-open-evaluation 
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Model  Training 
Acc. 

Test Acc. 

(1) LSTM (Bowman et al., 2015) 84.4 77.6 

(2) Classifier (Bowman et al., 2015) 99.7 78.2 

(3) 300D tree-based CNN encoders (Mou et al., 2016) 83.3 82.1 

(4) 300D SPINN-PI encoders (Bowman et al. 2016) 89.2 83.2 

(5) 100D LSTMs w/ word-by-word attention (Rocktaschel et al., 2015) 85.3 83.5 

(6) 300D mLSTM word-by-word attention model (Wang & Jiang, 2016) 92.0 86.1 

(7) 200D decomposable attention model (Parikh et al., 2015) 89.5 86.3 
(8) 200D decomposable attention model with intra-sentence attention (Parikh et al., 

2015) 
90.5 86.8 

(9) Binary Tree-LSTM + Structured Attention & Composition + dual-attention (Zhao et 
al., 2016) 

87.7 87.2 

(10) 300D Full tree matching NTI-SLSTM-LSTM w/ global attention (Munkhdalai and 
Yu, 2016) 

88.5 87.3 

(11) 300D Syntactic Tree-LSTM (Chen et al., 2017a) 92.9 87.8 

Human Performance (Gong et al., 2017) 97.2 87.7 

Our model 90.3 87.4 

Table 1. Performance on SNLI  

 

Model  Test Acc. 

 Matched  Mismatched  

(1)BiLSTM (Williams et al., 2018) 67.0 67.6 

(2) Inner Att (Balazs et al., 2017) 72.1 72.1 

(3) ESIM (Williams et al., 2018) 72.3 72.1 

(4) Gated-Att BiLSTM (Chen et al., 2017b) 73.2 73.6 

(5) Shortcut-Stacked encoder (Nie & Bansal, 2017) 74.6 73.6 

(6) DIIN (Gong et al., 2017) 78.8 77.8 

(7) Inner Att (ensemble) (Balazs et al., 2017) 72.2 72.8 

(8) Gated-Att BiLSTM (ensemble)  (Chen et al., 2017b) 74.9 74.9 

(9) DIIN (ensemble) (Gong et al., 2017) 80.0 78.7 

Human Performance (Gong et al., 2017) 88.5 89.2 

Our model 75.1 74.7 

Table 2. Performance on MultiNLI 

 

3.2 Details of training 

In order to initialize the words in the triplets, we used 300 dimensional Glove embedding (Pennington et 
al., 2014). For the relation vectors (the dimension is set to 20), we use a standard normal distribution to 
randomly initialize the values and then normalize each vector. Besides, for OOV words, we follow 
(Parikh et al., 2016) to initialize them by randomly selecting one from 100 random vectors. During the 
training, the word embedding including the 100 random vectors for OOV words are fixed while the em-
bedding of the relations will be updated. The dimensions of the Triplet embedding Layer for relation and 
head/dependent-words are set to 20 and 300, respectively. And the dimensions of other hidden layers are 
set to 1,024. Besides, Adadelta method (Zeiler, 2012) is adopted for optimization, and the batch size is 
32, the dropout ratio is 0.2, while the learning rate is 0.1. 

3.3 Results and Analysis 

Table 1 shows the results of different models on SNLI. The first group includes two baseline classifiers 
presented by Bowman et al. (2015). In model (1), they use LSTM to learn a representation for the pas-
sage, and then use the representation of the passage-pair to predict the judgment label. Model (2) uses a 
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traditional statistical classifier to predict the label with some handcrafted features such as the overlapped 
words, negation detection, etc. 

In the second group, Model (3) and model (4) are two models based on passage encoding with tree 
structure. In model (3), Mou et al. (2016) considers tree-based CNN to capture passage-level semantics, 
while Bowman et al. (2016) use parsing and interpretation within a single tree-sequence hybrid model in 
model (4).  

In the next group, models (5)-(11) are inter-passage attention-based models which are similar to ours. 
Model (5) and model (6) are LSTMs with word-by-word attention. In model (7), Parikh et al. (2016) de-
compose each passage into a set of words and then compare two word-sets of the passage-pair. They fur-
ther improve the performance by adding intra-passage attentions in model (8). Our model is inspired by 
their approach. Specifically, in models (9)-(11): Zhao et al. (2016) adopt tree-LSTM and attention mech-
anism based on binary tree to generate semantic units and compare; Munkhdalai and Yu (2016) con-
structs a full n-ary tree to improve the performance, while Chen et al. (2017a) use a syntactic tree-LSTM 
to extract the inner dependency relations in the passage and compare between the passage-pair. 

Table 1 shows that our model achieves an accuracy of 87.4%, which outperforms most of those mod-
els with tree structure (even those with complicated network architectures (Munkhdalai and Yu, 2016; 
Zhao et al., 2016)), and our model is more interpretable than the other models which are based tree struc-
ture. Specifically, our performance is better than Parikh et al. (2016) significantly though our model is 
inspired by theirs. 

In the first group of Table 2, models (1)-(6) show some published best performances on MultiNLI. 
And models (7)-(9) are some ensemble models which have a very complicated network architecture. 
From this table, we can see that our performance is better than models (1)-(5) on matched set (even out-
performs the ensemble models (7) and (8)), and better than models (1)-(5) on mismatched set. Please 
note that the structure of our model is more interpretable than that of others.  

 
 Train Acc. Test Acc. 

Original model 90.3 87.4 

(1) merged comparison 89.3 84.5 

(2) replace self-attention with inter-attention 92.1 86.6 

(3) remove cross-comparison 88.3 86.5 

Table 3. Ablation study on SNLI set 

3.4 Ablation analysis 

Table 3 examines the effect of each major component. In order to check whether the strategy of perform-
ing individual comparison between RHD triplets works well in this task, model (1) directly compares one 
triplet with the merged representation from the triplet-set of the other side (in the Matching Layer). In 
this model, we compute one representation for each triplet by concatenating its three parts, align between 
these triplet representations of the sentence pair, and then compare each triplet with the merged represen-
tation from the triplet-set of the other sentence as in (Parikh et al., 2016). It shows that the proposed indi-
vidual comparison strategy gives a better result. 

In model (2), instead of using self-attention to generate the alignment weight between one triplet pair, 
we first yield a semantic vector representation for each triplet by concatenating their three parts and pro-
cessing it with a linear transform. And then we use the multiplication of the vector representations of 
each triplet-pair as their alignment weight (as adopted in (Parikh et al., 2016)). When we do this altera-
tion, the accuracy drops to 86.6% on the test set. This again proves that adopting individual comparison 
for each triplet-pair can describe their relatedness more accurately. 

Last, we remove cross-comparison from our approach and list the result in model (3) to check the ef-
fect of this component. This component is mainly used to compare the words which are similar in se-
mantics but play different syntactic/semantic roles. It shows that when we remove this component, the 
accuracy drops to 86.5%.  
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Figure 4. Triplet alignment weights for the triplet-pair in Figure 1. The darker color represents greater value. The 
triplets for P are on the top, and the triplets for H are on the left. 
 

3.5 Visualization of Triplet Alignment 

Figure 4 shows the alignment weights ��� (i.e., the degree of relatedness between the triplets within the 

same sentence pair) of the example in Figure 1. In this figure, a darker color corresponds to a larger val-
ue of ���. From this figure, we can see that the related triplets do have larger alignment weights between 

them. For example, compared with other triplets of H, triplet (amod, man, elderly) in H (the red entry at 
the left of Figure 4) is more related to (amod, man, older) of P (the red entry at the top), which is echoed 
with a darker corresponding cell in Figure 4. Similarly, the corresponding cell for (nsubj, sits, man) of P 
and (vmod, man, sitting) of H shows a darker color, which also meets human judgment. This clearly 
shows that the alignment weights between these two triplet sets reflect the human interpretation closely. 

4 Related Work 

Early approaches for natural language inference usually adopted statistical models such as SVM (Joa-
chims, 1998), CRF (Hatoriet et al., 2009) and so on, which employed hand-crafted features, and utilized 
various external resources and specialized sub-components such as negation detection (Lai and 
Hockenmaier, 2014; Levy et al., 2013). Besides, all the adopted datasets are very small. 

After the SNLI corpus (Bowman et al., 2015) was released, a lot of work about natural language in-
ference based on neural networks have been published in recent years (Bowman et al., 2016; Liu et al., 
2016; Liu et al., 2016b; Munkhdalai and Yu, 2016; Mou et al., 2015; Sha et al., 2016). Basically, those 
neural network based approaches could be classified into 2 categories: (1) Merely computing the pas-
sage-embedding without introducing alignment (between the words in the sentences), and then compar-
ing these passage-embedding to get the prediction (Bowman et al., 2016, Mou et al., 2016). (2) Decom-
posing the passage into some semantic units, comparing each semantic unit with the passage of the other 
side and then aggregating these comparisons (Parikh et al., 2016; Wang et al., 2017). 

Within the first category, Bowman et al. (2015) used two LSTMs to get the representations of P and 
H, respectively. They then compare the vector representation of these two passages to predict the rela-
tionship between P and H. Besides, Bowman et al. (2016) used tree-LSTM to encode the representation 
of the passage. Although it uses the dependency relation in the passages to generate the representation, it 
cannot point out the difference among different words and is unable to catch the key information in the 
prediction step. 

For the second category, Zhao et al. (2017) used the intermediate representations from tree-LSTM to 
compare P and H. It compares each node representation with the merged representation of the other pas-
sage, and generates the result bottom-up. In this way, it can extract the dependency relations in the pas-
sages and compare semantics in different granularities. However, they adopt the tree-LSTM to bottom-
up generate the intermediate representations, and then directly compare each unit with the merged repre-
sentation of the other passage. As the result, they cannot catch the key information and filter out irrele-
vant text.  

Different from them, we transform P and H into two sets of RHD triplets, instead of comparing one 
RHD triplet of P with the merged information of the whole H (and vice versa), we directly compare a 
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RHD triplet of P with another RHD triplet of H to obtain the individual comparison vector (without 
merging). Specifically, when comparing two RHD triplets, each part in RHD triplet (i.e., rel, head, and 
dep) is compared separately and cross-comparison is adopted between nodes. Furthermore, we generate 
more precise alignment weights with these individual comparison vectors and self-attention mechanism. 
Consequently, our model is more interpretable than the previous models. 

5 Conclusion 

Inspired by how human judge the entailment relationship between the given Premise (P) and Hypothesis 
(H) text passages, we propose to transform the passages into two sets of word-pair dependency triplets, 
and then directly compare each triplet with every triplet from the other side to get the individual compar-
ison vector. In this way, we can filter out the irrelevant information and judge the relationship between 
two passages more precisely. In order to further improve the comparison precision, we compare each 
part (i.e., “rel, head, and dep”) of triplet separately and adopt cross-comparison to compare the related 
words which are with different syntactic/semantic roles. As these individual comparison vectors can de-
scribe the relatedness of the triplet-pair well, we use them and self-attention mechanism to generate the 
alignment weights between triplets from each passage. Afterwards, we use the alignment weights to in-
corporate these individual comparison vectors to yield the one-side merged comparison vector of one 
RHD triplet with the RHD triplet set of the whole other side. Finally, we aggregate those one-side 
merged comparison vectors to conduct the final overall entailment decision. 
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