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Abstract

Recently, a significant number of studies have focused on neural information retrieval (IR) mod-
els. One category of works use unlabeled data to train general word embeddings based on term
proximity. The general embeddings can be integrated into traditional IR models. The other
category employs labeled data (e.g. click-through data) to train end-to-end neural IR models
consisting of layers for target-specific representation learning. The latter idea accounts better for
the IR task and is favored by recent research works, which is the one we will follow in this paper.
We hypothesize that general semantics learned from unlabeled data can complement task-specific
representation learned from labeled data of limited quality, and that a combination of the two is
favorable. To this end, we propose a learning framework which can benefit from both labeled and
more abundant unlabeled data for representation learning in the context of IR. Through a joint
learning fashion in a single neural framework, the learned representation is optimized to min-
imize both the supervised loss on query-document matching and the unsupervised loss on text
reconstruction. Standard retrieval experiments on TREC collections indicate that the joint learn-
ing methodology leads to significant better performance of retrieval over several strong baselines
for IR.

1 Introduction

In recent years, the research community has noticed the great success of neural networks in computer
vision (Krizhevsky et al., 2012), speech recognition (Hinton et al., 2012) and natural language processing
(Mikolov et al., 2013) tasks. However, the potential of neural networks has not been fully investigated
in the IR field. Although a significant number of studies (e.g. (Huang et al., 2013; Ganguly et al., 2015;
Zheng and Callan, 2015; Guo et al., 2016; Zamani and Croft, 2016; Dehghani et al., 2017; Mitra et al.,
2017)) try to apply neural networks in IR, there have been few studies reporting the performance that is
comparable to state-of-the-art IR models. These approaches rely on the general idea that neural network
can provide a low-dimensional and semantics-rich representation for both queries and documents. Such
a representation can bridge lexical and semantic gaps in traditional IR models. Depending on if the
embeddings are trained with discriminative information for IR tasks, existing works can be broadly
divided into two categories (Zhang et al., 2016; Mitra and Craswell, 2017).

The first category of approaches extend traditional IR models to incorporate word embeddings that are
trained on huge and unlabeled corpora with existing models such as Word2vec (Mikolov et al., 2013) and
GloVe (Pennington et al., 2014) in an unsupervised manner. These approaches (e.g. (Zheng and Callan,
2015; Nalisnick et al., 2016)) leverage semantic information captured by word embeddings in order to
enhance traditional IR models. We note that such models trained without references to the retrieval task
model term proximity and do not contain discriminative information adapted for IR (Zamani and Croft,
2017). The second category (e.g. (Huang et al., 2013; Guo et al., 2016)) tries to incorporate word
embedding learning within neural models for IR, which reflects a more significant shift toward an end-
to-end framework. These approaches treat word embeddings as layers in neural IR models, to be learned
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along with all model parameters in a supervised manner. Most studies in the second category rely on
click-through data for relevance judgment between queries and documents. Text representation learned
with relevance information captures relevance rather than term proximity, which clearly accounts better
for IR requirements (Zamani and Croft, 2017). However, supervised signals such as click-through data
are often limited outside of large industrial research labs, probably due to user privacy concerns. It is
thus not surprising to see that many authors following this methodology have industrial background (e.g.
(Huang et al., 2013; Shen et al., 2014b; Nalisnick et al., 2016; Mitra et al., 2017)). In addition, Ye et
al. (2015) point out that previous studies using click-through data make implicit but strong assumptions
about clicked query-document pairs which are not necessarily met in practice.

Neural networks are hungry for data, a fact which also holds for neural IR tasks. One can find from
above discussions that the second category of approaches suffer from the data spareness problem, al-
though there have been recent attempts (Gupta et al., 2017; Dehghani et al., 2017) trying to pseudo label
query-document pairs automatically with unsupervised retrieval models such as BM25. Using pseudo
labels as relevance signals relieves data spareness in terms of quantity but not quality. The idea of using
unsupervised learning to complement supervision has been practiced successfully in computer vision
(Yang et al., 2013) and natural language processing (Rasmus et al., 2015) tasks. In such a background,
we hypothesize that semantics learned from unlabeled data can complement task-specific representation
learned from pseudo-labeled data of limited quality, and a combination of the two is favorable in IR. To
the best of our knowledge, such a combination has never been investigated in neural IR models.

In this paper, we propose a learning framework which can benefit from both labeled and more abundant
unlabeled data for representation learning in IR. Through joint learning in a single neural network, the
learned representation can account for task-specific characteristics via supervised loss optimization on
query-document matching, as well as preserving general semantics via unsupervised loss optimization
on text reconstruction. We demonstrate by experiments that the joint learning model leads to significantly
better performance over state-of-the-art IR models.

2 Related work

Representation learning approaches based on neural networks have gained in prominence in recent years
due to their extreme efficiency. They motivate the emerging research field of Neural IR. Neural ap-
proaches have attracted increasing interests of the IR community in very recent years. Apart from learn-
ing to rank approaches that train their models over a set of hand-crafted features (Liu, 2009), neural IR
models typically accept the raw text of queries and documents as input. The dense representations of
words or texts can then be learned with or without reference to retrieval tasks, respectively corresponding
to the two categories of methods summarized in section 1.

Unsupervised approaches learn general text representation without query and document interaction
information. Embeddings pre-trained on unlabeled text with tools such as Word2vec (Mikolov et al.,
2013) and Glove (Pennington et al., 2014) have been used to extend traditional IR models. Ganguly et al.
(2015) develop a generalized language model with query-likelihood language modeling for integrating
word embeddings as additional smoothing. Zheng and Callan (2015) represent term and query as vectors
in the same latent space based on word embeddings so as to learn a model to reweight terms. Nalisnick et
al. (2016) retain both input and output embeddings of Word2vec and map query words into the input space
and document words into the output space. Zamani and Croft (2016) propose to use word embeddings to
incorporate and weight terms not present in the query, acting as smoothing and query expansion. There
are also studies developing their own embedding learning algorithms instead of using standard tools for
embedding learning. For instance, Salakhutdinov and Hinton (2009) propose a deep auto-encoder model
to generate a condensed binary vector representation of documents. Clinchant and Perronnin (2013) use
latent semantic indexing to induce word embeddings for IR. Vulić and Moens (2015) propose to learn
from document-aligned comparable corpora the embeddings that can be used for both monolingual IR
and cross-lingual IR.

Supervised approaches use query-document relevance information to learn the representation that is
optimized end-to-end for the task at hand. With click-through data, Huang et al. (2013) develop DSSM, a



295

feed forward neural network with a word hashing phrase as the first layer to predict the click probability
given a query string and a document title. DSSM is extended in (Shen et al., 2014a; Shen et al., 2014b)
by incorporating convolutional neural network and max-pooling layers to extract the most salient local
features. Since the DSSM related methods make implicit but strong assumptions about clicked data, Ye
et al. (2015) try to relax the assumptions in their model. Guo et al. (2016) develop the DRMM model that
takes the histogram-based features representing interactions between queries and documents as input into
neural networks. DRMM is one of the first neural IR models to show improvement over traditional IR
models. Mitra et al. (2017) aim to simultaneously learn local and distributional representation to capture
both lexical matching and semantic matching in IR. Following the discussion in section 1, we note that
click-through data are not always available in massive amount outside of industrial labs. More recent
works propose to use unsupervised IR models to pseudo label query-document pairs that provide weak
supervision for representation learning. Dehghani et al. (2017) use BM25 to obtain relevant documents
for a large set of AOL queries (Pass et al., 2006) which are then used as weakly supervised signals
for joint embedding and ranking model training. Zamani and Croft (2017) employ similar supervision
signals as (Dehghani et al., 2017) to train an embedding network similar to Word2vec and use the obtained
embeddings for query expansion and query classification. Gupta et al. (2017) develop a cross-lingual IR
model based on weak supervision. Luo et al. (2017) propose to train deep ranking models with weak
relevance labels generated by click model based on click behavior of real users.

We can conclude from above discussions that supervised approaches account better for task-specific
features and are superior in IR. They rely on relevance information between query-document pairs of
which the quality is relatively low in practice. In this paper, we follow successful practice in CV and
NLP tasks and hypothesize that general and rich semantics learned from unlabeled data can complement
task-specific representation learned from labeled data of limited quality. We will propose in section 3 a
learning framework which can simultaneously learn from labeled and more abundant unlabeled data in
the context of IR. By the way, we note that the joint learning framework resembles those studies (e.g.
(Liu et al., 2015)) which couple IR with another supervised learning task. Our framework differs from
those studies in that we do not require additional data that are labeled for another supervised learning
task.

3 Joint learning framework for IR

In this section, we will develop a joint framework to learn low-dimensional representation of queries and
documents from both labeled and unlabeled data.

3.1 Learning framework

The joint learning framework is illustrated in figure 1. It consists of three crucial components:

• An encoding network. It embeds the raw input into low-dimensional representations that are de-
signed to capture target-specific characteristics of IR.

• A decoding network. It tries to reconstruct the input so as to benefit from unlabeled data.

• A pairwise ranking model. It makes use of supervision signals from labeled query-document pairs
to perform document ranking.

On top of the network structure, we perform joint optimization of both supervised loss and unsuper-
vised loss. The unsupervised learning process uses all the text collection (e.g. queries and documents)
for learning rich and general semantics. The supervised learning process learns, from labeled query-
document pairs, discriminative representations adapted for IR. The joint training fashion makes two
learning processes complement each other via co-tuning the shared hidden layers in the encoding net-
works to help the representation generalize better in the IR task.
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Figure 1: The joint learning framework with labeled and unlabeled data. It consists of an encoding
network, a decoding network and a pairwise ranking model. We impose an unsupervised loss and a su-
pervised loss respectively on the reconstruction output and the pairwise ranking output, which is learned
in a joint fashion in this paper. The low-dimensional representation is the one our model aims to learn.

3.2 Unsupervised learning

The unsupervised part learns the low-dimensional representation of text via an autoencoder style, which
uses all the available text data. Following previous studies on text autoencoder (Chen and Zaki, 2017),
we opt for the simple feed-forward neural network architecture for both the encoding and decoding parts
in figure 1. For each layer of the encoding/decoding networks, we use Rectified Linear Unit (ReLU) as
the activation function, a function recommended by many works in deep learning (LeCun et al., 2015).
In the feed-forward step, each layer l(l ≥ 1) is a fully-connected layer and its activation potential zl is
given by:

zl = max(0,Wlzl−1 + bl)

where Wl is the weight matrix at layer l and bl is the corresponding bias.
The input layer (corresponding to l = 0) maps the input text into fixed-length vector. There have been

two methodologies we can employ to represent the input text: one is the one-hot representation (Gupta
et al., 2017) and its variants (Zhai and Zhang, 2016); the other one is the dense and semantically rich
representations (He et al., 2017). Empirical results do not indicate that one is always better than the
other and we will make use of the former one in this paper. Given the set of text T , we follow previous
studies such as (Zhai and Zhang, 2016; Chen and Zaki, 2017) and represent each input text t in T as
log-normalized word count vector x ∈ R|V | where |V | is the size of the vocabulary V . Each dimension
of the input vector x is represented by:

xi =
log[1 + tf(i)]

maxi∈V log[1 + tf(i)]
, for i ∈ V

where tf(i) is the term frequency of the i-th word in the vocabulary. Since the unsupervised learning
part of the framework is modeled as an autoencoder, we want the unsupervised output x′ to resemble the
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input x, leading to the binary cross-entropy loss function lu on t that can be defined as:

lu(t) = −
∑
i∈V

[xi log(x
′
i) + (1− xi) log(1− x′i)] (1)

3.3 Supervised learning
The document ranking problem can not be modeled with the standard classification or regression frame-
work. Following the methodology in learning to rank (Liu, 2009), we model document ranking in the
pairwise style where the relevance information is in the form of preferences between pairs of documents
with respect to individual queries. In addition, we follow previous studies (Gupta et al., 2017) and make
use of well-performing unsupervised retrieval models (e.g. BM25) to pseudo-label query and document
pairs so as to obtain the relevance information. More details will be given in section 4.1.

From figure 1 one can note that the hidden layers in the encoding networks are shared by unsupervised
and supervised learning, and one can refer to the unsupervised learning part for details of the layers in
the encoding networks. The supervised model, on top of the top-level representation layer (i.e. low-
dimensional representation), tries to learn a model that, given the query q, assigns a larger score to
document d1 than document d2 if the ground truth is that d1 matches to q better. The supervised model
is implemented as a pairwise ranking model in figure 1, which is again a feed forward neural networks.
Inspired by such studies as (Yih et al., 2011), we can derive the probability P ′(d1 �q d2) that d1 is
ranked higher than d2 with respect to the query q via a logistic function:

P ′(d1 �q d2) =
1

1 + e−σ[score(q,d1)−score(q,d2)]

where the score function is computed with the pairwise ranking model, and the parameter σ is used to
determine the shape of the sigmoid. The supervised training objective ls on a triplet of query-document
pair (q, d1, d2) can then be defined as the cross entropy loss, which is:

ls(q, d1, d2) =− P (d1 �q d2) logP ′(d1 �q d2)
− [1− P (d1 �q d2)] log[1− P ′(d1 �q d2)] (2)

where P (d1 �q d2) is the actual probability that d1 is ranked higher than d2 according to annotations
(i.e. pseudo-labels of query-document pairs). The actual probability in this paper is estimated in a similar
way as in (Dehghani et al., 2017), which is:

P (d1 �q d2) =
1

1 + e−σ[s(q,d1)−s(q,d2)]

where s denotes the relevance scores obtained from training instances. In the training process, the pos-
itive sample d1 for the query q can be chosen as the most relevant documents according to annotated
relevance scores. The negative sample d2 is selected randomly from the document collection.

3.4 Joint learning with regularization
Combining the unsupervised loss lu in equation 1 on all text data, the supervised loss ls in equation 2 on
all labeled query-document pairs, and the L2 norm regularization for weight matrices, one finally arrives
at the objective function for the joint learning model, which is:

L(T,DS) =
α

|T |
∑
t∈T

lu(t) +
β

|QD|
∑

(q,d1,d2)∈QD

ls(q, d1, d2)

+
∑
l∈LY

‖Wl‖2F (3)

where T and |T | denote the set of text data and its size, QD and |QD| denote the set of labeled query-
document pairs and its size, LY stands for all the hidden and output layers of the framework in figure
1, and Wl is the weight matrix of the layer l in the network. The hyper-parameters α, β control the
importance of the unsupervised loss and the supervised loss. The joint loss function L(T,DS) can be
optimized in the gradient-based way, and we use the Adam algorithm (Kingma and Ba, 2015) to compute
the gradients.
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4 Experiments and results

In this section, we conduct IR experiments to demonstrate the effectiveness of our proposed model.

4.1 Data sets

The IR experiments are carried out against standard TREC collections consisting of one Robust track
and one Web track, which represent different sizes and genres of heterogeneous text collections. These
collections have been broadly used in recent studies (Zheng and Callan, 2015; Guo et al., 2016; Dehghani
et al., 2017). The details of these collections and corresponding queries are given in table 1. The Robust
dataset is used in the standard form without change. The ClueWeb-09-Cat-B collection (or ClueWeb for
short) is filtered to the set of documents with spam scores in the 60-th percentile with Waterloo Fusion
spam scores1. For all TREC queries, we only make use of the title fields for retrieval.

Table 1: IR collection statistics (M = million, B=Billion).
Collections Doc count Word count TREC topics
Robust04 0.5M 252M 301-450, 601-700
ClueWeb 34.0M 26.1B 1-200

In order to build the labeled query-document pairs for supervised learning, we choose to use the more
general methodology in (Gupta et al., 2017) instead of the one in (Dehghani et al., 2017) to relieve
from data (i.e. AOL queries) only available from industrial labs. We fetch a set of news titles from the
China Daily website2 and use these titles as training queries to produce annotated query-document pairs.
We use these training queries to retrieve the document collection with BM25. We make sure that no
training queries appear in the evaluation query set in table 1. For each training query, we take the top 500
retrieved documents as positive samples. The negative samples are picked randomly from the document
collection. There are other strategies for choosing negative samples (Wieting et al., 2015), which is out
of the scope of this paper. For unsupervised learning, we make use of training queries and evaluation
document sets listed in table 1, as well as the Wikipedia articles3 as the external resource.

4.2 Experimental setup

We set the hyper-parameters of our model by following similar tasks such as (Dehghani et al., 2017).
The size and number of hidden layers are respectively selected from {64, 128, 256, 512, 1024} and
{1, 2, 3, 4}. The values of α, β in equation 3 are chosen from {0.001, 0.01, 0.1, 1, 10, 100, 1000}. We
select the initial learning rate from {10−3, 10−4, 5∗10−4, 10−5, 5∗10−5}. The batch size for learning is
selected from {64, 128, 256, 512}. These model hyper-parameters are tuned on the validation set (20%
of the training queries used for validation).

For IR evaluation, we make use of mean average precision (MAP) of top-ranked 1000 documents ,
precision at rank 20 (P20), and normalized discounted cumulative gain at rank 20 (nDCG20). Statistically
significant differences between various models are determined using the two-tailed paired t-test with
p < 0.05.

We compare the retrieval performance of our joint learning retrieval model with two categories of IR
models: classic IR models showing state-of-the-art performance, and the recent neural ranking models
for IR. Since our model is representation-focused rather than interaction-focused, we do not plan to
compare our model with those based on relevance matching (Guo et al., 2016) in this paper. More
importantly, since our model learns from weakly supervised signals by BM25, we are more interested in
the comparisons to BM25 and similar models using weakly supervised signals, an experimental strategy
also employed in (Dehghani et al., 2017). Under such considerations, we perform experiments with the
following baselines:

1https://plg.uwaterloo.ca/˜gvcormac/clueweb09spam
2http://www.chinadaily.com.cn
3The wikipedia dump on September 1, 2017 can be obtained from https://dumps.wikimedia.org
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Table 2: Retrieval performance of all models on TREC collections. Significant improvement or degrada-
tion at the level 0.05 with respect to BM25 is indicated as (+/-). The other significance comparisons are
given in the text.

Robust04 ClueWeb
MAP P20 nDCG20 MAP P20 nDCG20

BM25 0.248 0.351 0.406 0.091 0.237 0.190
QL 0.245 0.352 0.404 0.092 0.239 0.193

DSSM 0.088− 0.163− 0.184− 0.037− 0.126− 0.104−

NRMS 0.275+ 0.378+ 0.441+ 0.127+ 0.302+ 0.236+

Our Model 0.287+ 0.391+ 0.450+ 0.136+ 0.317+ 0.251+

• Classic models: The probabilistic BM25 model and query likelihood (QL) model based on Dirichlet
smoothing are highly efficient IR models.

• DSSM: It is a representative deep matching model proposed in (Huang et al., 2013), which is a
representation-focused model. The model is framed as a feed forward neural network with a word
hashing layer.

• NRMS: It is a weakly-supervised neural IR model learned with automatically annotated query-
document pairs (Dehghani et al., 2017). NRMS shows significant improvement over traditional IR
models.

4.3 Results and analysis

Comparisons to classic models. We use here the recommended settings of the baseline models accord-
ing to their original papers. Table 2 reports the experimental results on TREC datasets for our model and
all the baseline models. One can find from the results that classic IR models BM25 and QL perform sim-
ilarly on the two collections, a conclusion that is coincident with previous findings. Since BM25 is the
model we employ to produce pseudo labels for supervised learning, we will not compare neural models
with QL in the following discussions. The neural IR model DSSM performs significantly worse than
the traditional BM25 model, due to its unsuitability for relevance matching and for handling the diverse
matching requirements in long documents (Guo et al., 2016). NRMS is a neural ranking model learned
from automatically labeled data, which resembles our model. NRMS shows all the significant improve-
ments over BM25. Our model proposed in this paper, by jointly learning from the labeled and unlabeled
data, achieves the best overall performance. Our model always significantly outperforms BM25 by a
large margin.

Comparisons to neural models. We further compare our model with the neural IR models DSSM and
NRMS. We find that our model performs better than DSSM and NRMS on all collections. Our model
significantly outperforms DSSM in all the cases considered above. Our model significantly outperforms
NRMS with only one exception that is not significant on Robust04 with nDCG20. By the way, we find
that NRMS is also always significantly better than DSSM on all collections. The experimental conclusion
is that our model is always significantly better than traditional IR models and mostly outperforms neural
IR models considered above. Furthermore, we find that using unlabeled data for training in neural IR
models is useful, since it leads to significant improvement over the neural models only using labeled
data.

Impact of unsupervised learning. It has been confirmed above that our model shows the best per-
formance overall. However, it is not clear how much unsupervised learning contributes to the retrieval
performance. We thus compare representations learned in a different setting without the help of unsu-
pervised loss, which amounts to removing the unsupervised loss lu from equation 3. We perform IR
experiments with the new model over data sets in table 1 and list results in table 3. From the results one
can find that the performance of the model without unsupervised loss decreases from the joint model
with significance in all the cases considered. It indicates that it is beneficial to combine unsupervised
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Table 3: Retrieval performance of the model without unsupervised loss. Significant degradation at the
level 0.05 with respect to our original model is indicated as -.

Robust04 ClueWeb
MAP P20 nDCG20 MAP P20 nDCG20

Original Model 0.287 0.391 0.450 0.136 0.317 0.251
Without unsupervised loss 0.262− 0.356− 0.413− 0.114− 0.298− 0.231−

learning with supervised learning in neural IR. Empirical results in this part support our claim in this
paper that learning from unlabeled data complements knowledge learned from labeled data in neural IR.

5 Conclusions

In this paper, we propose a neural IR model which jointly learns from labeled and unlabeled data to
benefit from both the rich and general semantics in unlabeled data and target-specific features in labeled
data. As far as we can tell, it is the first time such a combination is investigated in neural IR. Experiments
on TREC collections show that our model, without any human annotation, is significantly better than
traditional IR models and recently proposed models based on neural networks. Experiments also show
that using unsupervised learning to complement supervised learning with weak supervision is important
in IR. A future direction to follow would be to use more expressive architectures such as LSTM to replace
feed-forward networks used in this paper.
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