
Proceedings of the 27th International Conference on Computational Linguistics, pages 107–118
Santa Fe, New Mexico, USA, August 20-26, 2018.

107

Sprucing up the trees – Error detection in treebanks

Ines Rehbein
Leibniz ScienceCampus
Heidelberg/Mannheim

rehbein@cl.uni-heidelberg.de

Josef Ruppenhofer
Leibniz ScienceCampus
Heidelberg/Mannheim

ruppenhofer@ids.mannheim.de

Abstract

We present a method for detecting annotation errors in manually and automatically annotated
dependency parse trees, based on ensemble parsing in combination with Bayesian inference,
guided by active learning. We evaluate our method in different scenarios: (i) for error detection
in dependency treebanks and (ii) for improving parsing accuracy on in- and out-of-domain data.

1 Introduction
Structural syntactic information is an important ingredient for many NLP applications. In recent years,
the Universal Dependencies (UD) framework (Nivre et al., 2016) has become increasingly popular as a
source for syntactically annotated training data, mainly for two reasons. First, the UD project provides
a unified framework for multilingual applications and second, its annotation scheme encodes semantic
information in a more transparent way, yielding better support for semantic applications.

The project already provides treebanks for over 60 languages, some of them, however, rather small. To
obtain high parsing accuracies, a sufficient amount of training data is needed, preferably from different
genres and domains. Since treebanking is a notoriously time-consuming task, most of the UD treebanks
have been automatically converted from other frameworks and thus include some noise introduced in
the conversion, in addition to the usual annotation noise that stems from inconsistencies in the human
annotations. Due to limited funding, a full manual quality check is often not feasible. Therefore, methods
that are able to detect errors in automatically predicted parse trees are of great value for data clean-up
and might also be of use for domain adaptation settings and when dealing with low-resource languages.

We present such a method, aimed at the detection of parser errors in manually and automatically
predicted parse trees. We evaluate our approach in two different scenarios, i) in an active learning (AL)
setup where we try to detect and manually correct errors in existing treebanks, and ii) in a domain
adaptation setting where we automatically improve parsing performance without manual correction. We
make an implementation of our approach publically available.1

2 Model
Our error detection model is an adaptation and substantial extension of MACE-AL (Rehbein and Rup-
penhofer, 2017) which combines a generative, unsupervised method for estimating annotator reliability
(MACE) (Hovy et al., 2013) with active learning for the task of error detection in automatically annotated
data. MACE-AL can be applied to any classification task and has been tested in two applications, POS
tagging and Named Entity Recognition (NER) (Rehbein and Ruppenhofer, 2017). The model is, how-
ever, not applicable to tasks with structured output such as trees or graphs. In contrast to POS tagging or
NER where we try to detect annotation errors in the predicted labels for individual tokens, when looking
for errors in parse trees we have to deal with directed, labelled relations between nodes, and changing
the relation or label between two nodes in the tree usually requires the adjustment of other attachment
and labelling decisions in the same tree.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.

1MACE-AL-TREE can be downloaded from http://www.cl.uni-heidelberg.de/research/downloads/

108

She eats spaghetti with chopsticks

nsubj dobj case
obl

She eats spaghetti with chopsticks

nsubj dobj case
nmod

She eats spaghetti with chopsticks

nsubj dobj case
obl

Figure 1: Correct tree (left), tree with label error (center) and tree with attachment error (right).

A high-precision method for error detection in automatically predicted trees, however, would be of
tremendous use for many treebanking projects. Below, we first describe the approach of Hovy et al.
(2013) and Rehbein and Ruppenhofer (2017) for unstructured data (§2.1) and then our extension of the
model for the purpose of error detection in tree structures (§2.2).

2.1 MACE-AL: Error detection in unstructured data

MACE-AL combines variational inference (VI) with active learning (AL) to model the reliability of
automatically predicted annotations. As input, it takes the output of a committee of classifiers (e.g. the
output of N POS taggers) and uses Bayesian inference to learn which taggers’ predictions are more
trustworthy than others. The method is unsupervised, meaning that the distribution of the true labels
Y = {y1, y2, ..., yn} is unknown. Instead, the model tries to approximate the posterior distribution over
the set of unobserved random variables Y by a variational distribution Q(Y), based on the observed data
X (the predictions made by the classifier committee).

MACE-AL is based on MACE (Hovy et al., 2013), a tool for estimating annotator reliability in a
crowdsourcing setting. MACE implements a simple graphical model where the observed annotations A
are generated as follows. The (unobserved) “true” label Ti is sampled from a uniform prior, based on the
assumption that the annotators always try to predict the correct label and thus the majority of the anno-
tations should, more often than not, be correct. To model each annotator’s behaviour, a binary variable
Sij (also unobserved) is drawn from a Bernoulli distribution that describes whether annotator j is trying
to predict the correct label for instance i or whether s/he is just spamming (a behaviour not uncommon
in crowdsourcing settings). If Sij is 0, the “true” label Ti is used to generate the annotation Aij . If Sij is
1, the predicted label Aij for instance i comes from a multinomial distribution with parameter vector ξj .

Rehbein and Ruppenhofer (2017) showed that MACE, while highly successful when applied to human
annotations from crowdsourcing, is not able to outperform the majority baseline when the predictions
have been generated automatically by a classifier committee. MACE-AL, however, addresses this short-
coming by combining variational inference with human feedback from active learning. Active learning
is an approach to minimise human annotation effort by only selecting instances for labelling that pro-
vide useful information to the classifier. It has been shown that annotating only a small set of carefully
selected instances not only reduces manual annotation effort but can yield the same accuracy as when
training on a larger set of randomly selected instances (Settles, 2009).

The extended model, guided by human feedback, is now able to pick up on the signal and significantly
outperforms the majority baseline as well as a query by committee strategy for error detection where the
next instance for manual inspection is selected based on the entropy in the classifiers’ predictions.

2.2 MACE-AL-TREE – An extension to structured data

To be able to apply the model to tree structures, we need to solve the following two problems. First, we
need to track two different types of errors, namely labelling errors and attachment errors, and encode
them in a meaningful way so that the variational model is able to learn from the data. Second, we need
to collect the local predictions from the variational model and translate them back into a tree structure.

Error encoding We need to track labelling errors where a directed arc has been assigned the wrong
label (Figure 1 (center)), and attachment errors where the relation between two nodes has been predicted
incorrectly (Figure 1 (right)). We do this by training two separate variational models, one for the labelling
decisions and the other one for the attachment relations between nodes.2

2Combining both into one model would blow up the number of possible labels and thus make the model unnecessarily hard
to learn, and would also take too much time for training to be used in an active learning scenario.

109

Annotation matrices:
labels attachments

a1 a2 ... an

nsubj nsubj ... nsubj

root root ... root

dobj iobj ... dobj

...

a1 ... an

2 ... 2

0 ... 0

2 ... 4

...

EVAL:
parser LAS

Parser: a1, a2, ..., an

EVAL:
ED precision,

recall, #true pos

EVAL:
LAS for

final trees

MACE-AL-TREE

posterior entropy

Oracle

Select instances

get label

Output after
N iterations:

Dependency trees
VI Chu-Liu-

predictions Edmonds

update matrixretrain VI

MACE-AL-TREE

VI predictions

alabel

nsubj

root

dobj

...

aattach

2

0

2

...

Preprocessing

AL for N iterations

Output

Postprocessing

Figure 2: Error detection model with VI and AL (Error Detection (ED) precision: no. of True Positives /
total no. of instances selected for error correction; True Positives: no. of instances selected for correction
that are true errors; Recall: correctly identified errors / total no. of errors in the corpus).

Let’s assume we have a dependency tree forest where each tree consists of a set of nodes V , one for
each word in the sentence, and of a set of edge labelsR that hold between the nodes. LetL = l1, l2, ..., lm
be the set of all possible edge labels. A = a1, ..., an is the set of annotators, in our case the committee
of dependency parsers used for obtaining the predicted parse trees. We then train two variational models
where the first model aims at learning the reliability of each annotator with regard to the edge label
predictions, and the second model learns the reliability of the attachment decisions for each of the parsers.
The input to the labelling model for MACE-AL-TREE is a matrix with all labels predicted by the
annotators (parsers) A1−n, and the MACE-AL-TREE attachment model takes a matrix with the head
information for each token, extracted from the parser output of the different annotators A1−n.

After preprocessing the data to obtain the parser output trees, we transform the predicted trees as de-
scribed above and train the variational inference model of MACE-AL-TREE separately on the label and
attachment encodings (Figure 2). After training, each model outputs the posterior entropies for its re-
spective decisions about the preprocessed input. We then alternate in extracting the label and attachment
decisions with the highest posterior entropy, according to the variational model. The intuition behind this
is simple: The labels or attachments with the highest entropy are most likely incorrect.

We either present the selected instances to the human annotator and request the correct annotation
or, in a simulation, we extract the correct annotation from the gold tree. In the first setting, the human
annotator is shown the sentence with the token in question highlighted in blue while and all the nodes that
are predicted as potential heads of the token by any of the parsers are highlighted in red. The annotator

110

then enters the correct label and head for this token. The information is used to update both the label and
attachment matrices by randomly selecting one of the annotators and replacing the predictions of that
annotator for the instance in question with the new prediction.3 Note that the update does not necessarily
result in an increase in accuracy (or decrease in the number of errors) because the prediction may already
have been correct to start with. After updating the annotation matrices, we start over and retrain the
variational model on the updated annotations. To save time, we alternate in retraining the models so that
each model is retrained after every other iteration. We can repeat this process as many times as we like.

Generating trees Once we are done with error correction, we want to output the trees. However,
what we get from the variational model are local decisions for individual labels and edges, and it is not
straight-forward to generate connected trees based on these decisions. We test two different methods for
generating the output trees. In the first setting, MACE-AL-TREE, we simply use the final predictions of
the variational inference model to select the most trustworthy labels and edges and combine those in a
final tree. Please note that this does not necessarily result in a fully connected tree, a problem that also
affects the output of many local, greedy parsers. Our second approach uses the Chu-Liu-Edmonds (CLE)
algorithm (Chu and Liu, 1965; Edmonds, 1967) to select the highest scoring, well-formed tree from a
weight matrix, where the weights are based on the votes from the parser committee, weighted by the
competence estimates learned by the variational inference model (MACE-AL-TREE-CLE).

Overall workflow Figure 2 illustrates the workflow of our error detection model. During preprocess-
ing, we collect parse predictions from a committee ofN dependency parsers. Based on these predictions,
we create the two input matrices, one for dependency labels and one for attachments, that we use to train
the two variational inference models. Based on the posterior entropy from the variational inference
model, we select the next instances to be annotated during active learning. After the instances have
been corrected, we alternately retrain the variational inference model: in even iterations we retrain the
labeling model and in odd runs the attachment model. This saves time over retraining both models in
each iteration. We do, however, update both matrices in each iteration, based on the attachment and label
annotations we get from the human annotator (the oracle).

Once we are done with active learning, we collect the annotations for the labels and the attach-
ments and generate the output trees, either based on the predictions from the variational inference model
(MACE-AL-TREE) or on the output from the Chu-Liu-Edmonds algorithm (MACE-AL-TREE-CLE).

A key advantage of our model is that, while making use of the feedback from active learning, we do not
have to retrain the parsers after each iteration, which would be infeasible due to the time requirements.
Instead, we only train the parsers once, for offline preprocessing, before active learning starts.

3 Experiments
In our experiments, we use five different dependency parsers for preprocessing to predict the parse trees.
We employ the neural BiLSTM parser (BISTGraph) of Kiperwasser and Goldberg (2016) and the RBG
parser (Lei et al., 2014), both graph-based, as well as the transition-based IMSTrans parser (Björkelund
and Nivre, 2015) and the slightly outdated Malt parser (Nivre et al., 2006).4 As the fifth model, we
use our in-house implementation of the head-selection parser of Zhang et al. (2017) which also employs
bidirectional LSTMs (Hochreiter and Schmidhuber, 1997) for learning the feature representations. We
chose the parsers so that they cover a range of different parsing algorithms and approaches, as it has been
shown before that the parsers’ predictions, due to the inductive biases of the algorithms involved, can
complement each other (McDonald and Nivre, 2007). All parsers use default settings as reported in the
literature. For the BISTGraph parser, we selected the model with the highest LAS on the development
set after 10 training iterations.5 We run the Malt parser with the settings arc-eager, liblinear without
any further optimisation. For all experiments, we remove the language-specific extended labels and only
train the parsers on the universal dependency relations.

3Other update strategies such as always updating the predictions of the annotator with the lowest performance, or updating
the predictions of all annotators did not yield the same increase in results.

4It has been shown that the most important success criterion for ensemble parsing is the diversity of the base parsers rather
than model complexity or a high accuracy for the individual parsers (Surdeanu and Manning, 2010).

5We started with 30 iterations but noticed no further increase in LAS after the first 10 iterations.

111

genre # trees dev test train # unlabelled sent.
answers 3,488 1,000 2,488 13,134 27,274
email 4,900 1,000 3,900 11,722 1,194,173
newsgroups 2,391 1,000 1,391 14,231 1,000,000
rewiews 3,813 1,000 2,813 12,809 1,965,350
weblogs 2,030 1,000 1,030 14,592 524,834

Table 1: Distribution in the UD-En web treebank (training set does not include data from the respective
genre but contains all the remaining treebank sentences excluding the ones for this particular genre).

3.1 Error detection with active learning for manually annotated trees

The first experiment focusses on error detection in the German UD treebank which includes newswire,
reviews and text from Wikipedia. Our goal is to test our error detection method in a realistic setup where
we want to improve the quality of an existing dataset with minimal manual effort.

We run the task as an active learning experiment with a real human annotator in the loop who provides
the correct labels for the selected error candidates. The annotator is a trained linguist with experience
in linguistic annotation. The annotation task, however, is not easy due to the non-canonicity of the
web data which includes many ungrammatical structures and does not conform to standard spelling
conventions. Therefore, we asked a second trained linguist to adjudicate the disagreements between the
original treebank annotations and the modifications carried out by the first annotator, using MaltEval
(Nilsson and Nivre, 2008) to visualise the trees.

For preprocessing, we split the training part of the treebank into two sections and trained the five
parsers on each section. Then we used the parsing models to predict the trees for the test set. Splitting
the training data has the advantage that we now have 10 different versions of the test set (5 parsers x 2
training sets) that we can use to extract the input matrices for the active learning approach. A systematic
and principled evaluation of the impact of data size and the number of annotators for the error detection
approach is still outstanding.6 Here we start with a set of 7 annotators (parsing models) for preprocessing
as this setup yielded good results for POS tagging and NER (Rehbein and Ruppenhofer, 2017).7

Then we run 200 iterations of active learning where in each iteration the human judge had to assign
the correct dependency label and head for the next token selected for annotation. After 200 iterations, we
generated the parse trees for the corrected instances using the CLE algorithm weighted by the competence
scores from the VI model (see §2.2) and compared them to the original treebank annotations.

The evaluation shows that out of the 200 instances from the test set inspected by the first annotator,
the annotator did not agree with the original treebank annotation in 96 cases. Our second annotator
agreed with the first judge on 71 of the 96 instances. For 15 instances, the annotator prefered the original
annotations and for 8 instances, the second judge would have chosen a label or attachment different
from the original treebank and from the first judge. This corresponds to an error detection precision of
35.5% (71/200) which should be considered as a lower bound as the instances where the second judge
did neither agree with the first annotator nor with the original annotations might also be errors.

3.2 Error detection with AL on out-of-domain data

After validating our approach on the task of identifying errors in manually annotated trees, we now
present an AL simulation study where we try to detect errors in automatically predicted parse trees. For
this, we use the data from the English web treebank (Linguistic Data Consortium release LDC2012T13),
originally annotated with constituency trees (Bies, 2012) and automatically converted to universal depen-
dencies. The treebank includes data from five different web genres (reviews, weblogs, answers, emails,
newsgroups) and provides us with a good test bed for error detection in a domain adaptation scenario.
The simulation study also allows us to systematically evaluate different parameters in a controlled setting,
without the need to employ human annotators.

6Preliminary experiments on English showed the same results with a smaller number of annotators for some datasets while
for others a higher number of annotators was crucial to obtain a high error detection precision.

7To obtain a diverse parser committee, we selected the BIST and Dense models trained on the first section of the treebank,
the Malt parser (arc-eager, lib-linear) trained on the second section, and both models for the RBG and IMSTrans parsers.

112

line answer ED email ED newsgroup ED reviews ED weblog ED
no. LAS prec LAS prec LAS prec LAS prec LAS prec

parser LAS for individual parsers
1 BISTGraph 85.03 82.27 82.86 86.73 84.73
2 Dense 84.57 82.81 82.43 86.41 84.41
3 IMSTrans 84.99 82.21 81.94 86.19 84.75
4 Malt 81.38 78.61 79.18 83.24 79.23
5 RBG 85.01 82.23 83.53 86.41 84.93

iterations MACE-AL-TREE
6 0 86.82 – 84.07 – 85.72 – 87.28 – 86.98 –
7 100 87.04 85.0 84.26 89.0 86.07 92.0 87.40 49.0 87.33 78.0
8 200 87.27 86.0 84.45 86.5 86.34 80.5 87.48 42.0 87.65 75.5
9 300 87.46 83.0 84.61 83.3 86.64 78.7 87.45 24.3 87.96 73.7
10 400 87.64 80.5 84.77 80.7 86.91 76.7 87.56 29.0 88.27 72.5
11 500 87.84 79.8 84.96 81.8 87.14 73.4 87.68 33.8 88.56 71.2
12 600 88.04 79.0 85.11 80.2 87.31 68.3 87.84 39.2 88.84 69.7
13 700 88.20 76.7 85.28 79.7 87.60 69.1 88.02 44.0 89.13 69.3
14 800 88.37 75.5 85.45 79.7 87.90 70.1 88.17 46.6 89.46 69.7
15 900 88.51 73.4 85.63 79.7 88.13 68.9 88.36 49.7 89.71 67.3
16 1000 88.69 73.1 85.79 79.2 88.41 69.2 88.54 52.7 89.97 67.3

iterations MACE-AL-TREE-CLE
17 0 86.91 – 84.10 – 85.67 – 87.47 – 86.87 –
18 500 87.86 74.2 84.93 76.8 87.08 72.4 88.19 59.6 88.49 72.8
19 1000 88.67 68.8 85.75 76.4 88.33 68.4 88.74 53.0 89.93 68.8

iterations Majority vote baseline
20 0 86.72 – 84.06 – 85.52 – 88.05 – 86.83 –
21 500 87.07 27.0 84.38 29.8 86.01 25.0 88.47 35.0 87.49 30.0
22 1000 87.35 24.4 84.59 24.2 86.44 23.7 88.91 35.8 88.01 26.7

Table 2: Performance for individual parsers and parse combinations based on the predictions of the VI
model with AL (MACE-AL-TREE) and with CLE (MACE-AL-TREE-CLE) for generating the trees
(simulation study; Labelled attachment score (LAS) and error detection (ED) precision)

We preprocess the data as follows. First, we separate the data according to the five web genres and
put all the trees for each genre into a genre-specific test set, pretending that no annotated trees for this
genre are available for training. Instead, we use all remaining genres as training data. We further split
the available test data for each genre into a development set, using the first 1,000 trees of each genre, and
a test set including all the remaining trees (Table 1).

Table 2 (lines 1-5) shows the results for the individual baseline parsers on the different web genres.
Please note that we did not optimise the parsers on the data and thus the comparison should be taken
with a grain of salt. However, it is interesting to see that there is not one best parser but that the different
parsers (excluding the ’vintage’ Malt system) all yield results in the same range and the best performing
parser varies depending on the dataset.8

Then we run an AL simulation for 1,000 iterations, where in each iteration one instance is selected
according to our error detection model and the correct label and attachment decision is retrieved from
the gold standard. Table 2 (lines 6-16) shows the parsing accuracies after increasing iterations of error
correction (from 0-1000 where 0 is the output of MACE-AL-TREE with 0 iterations of active learning).

We first compare the results for MACE-AL-TREE with the ones for the best individual parser and ob-
serve an increase in LAS between 0.6% (for reviews) and more than 2% (for newsgroups and weblogs).
This increase was obtained without any manual error correction. Using MACE-AL-TREE in this par-
ticular setup can be seen as a form of ensemble parsing where we use the predictions of the variational
inference model to select the edges and labels of the parser output trees to be included in the final tree.

Now we want to evaluate the precision of the error detection method after increasing iterations of
error correction via active learning. We calculate error detection (ED) precision as the number of error
candidates that are real errors, divided by the number of instances selected for error detection.

Table 2 (lines 6-16) shows the LAS and ED precision for the different web genres. In the beginning,
ED precision is quite high (between 78-92%) for nearly all genres, with the exception of the reviews.

8The results are not directly comparable to the ones from the SANCL shared task where the parsers were trained on the
PTB while we use the data from the other web genres as training data.

113

line no. # iterations ED prec LAS line no. # iterations ED prec LAS
1 0 – 88.8
2 100 74.0 89.7 7 600 57.8 92.8
3 200 66.0 90.3 8 700 55.3 93.3
4 300 64.3 91.1 9 800 54.4 93.9
5 400 62.7 91.7 10 900 52.7 94.3
6 500 60.0 92.3 11 1000 50.1 94.6

Table 3: Results for error detection on data from the German TiGer treebank for increasing iterations of
AL; trees generated with MACE-AL-TREE-CLE (simulation study; ED prec: error detection precision).

Here we start with an ED precision of 49% after 100 iterations. While for the other genres it becomes
slightly harder with increasing numbers of iterations to detect new errors and ED precision slowly de-
creases, for the reviews the picture is rather mixed. After inspecting 1,000 instances we have a higher
precision than in the beginning. We can only suspect that this might be an artefact of either idiosyncracies
in the data or inconsistencies in the gold annotations.

While precision for error detection is high for all genres, the increase in LAS seems to vary across
individual genres. This is because the number of tokens in the test sets also varies. The inspected 1,000
tokens correspond to 2,6% of the answers data, 2.2% for emails, 3,9% for newsgroups, 2,4% for reviews
and 4.4% for the weblogs data. This means that we examined between 2.2 to 4.4% of the tokens in the
data which resulted in an increase in labelled accuracy (LAS) in the range of 2 to 5%, which seems like
a very good trade-off between time investment and reward in terms of data quality.9

Next, we compare the two different methods for generating the final parse trees. The first meth-
ods simply uses the predictions of the variational inference model (MACE-AL-TREE) and combines
the highest-ranked labels and attachments into a tree. Our second method uses the Chu-Liu-Edmonds
algorithm to generate well-formed trees (MACE-AL-TREE-CLE) that also allow for non-projectivity.
Interestingly, as shown in Table 2 (lines 17-19), we notice only very small differences between the two
methods and it is hard to say which method is superior as the differences in results might also be an effect
of different initialisations of the variational inference model.10 This observation is in line with the results
from Zhang et al. (2017) who compared the output of their greedy local bi-LSTM parser with the same
trees that had undergone additional postprocessing with the CLE algorithm. The authors also report only
insignificant improvements for postprocessing German and Czech parser output.

Finally, we want to evaluate the importance of the generative unsupervised model as a component in
our error detection model. Surdeanu and Manning (2010) emphasize that the most important success
criterion for ensemble parsing is not the complexity of the model but the diversity of the baseline parsers.
Therefore it is conceivable that we could get similar results using a simpler model, based merely on the
predictions of the parsers without the variational inference model. To test this, we run 1,000 iterations of
AL but select the next instance based on the entropy in the predictions of the baseline parsers instead of
using the posterior entropy from the VI model (Table 2, lines 20-22) and generate the final trees running
the CLE algorithm on the unweighted votes of the parser ensemble.

Table 2 shows that for 4 out of 5 genres we get substantially higher results using MACE-AL-TREE.
After 1,000 iterations our model shows an increase in LAS that is between 1-2% higher than the one for
the simpler model (lines 16, 19 and 22). The only outlier is the reviews subcorpus which also seemed to
behave differently from the other genres with regard to error detection precision.11

9Improvements in LAS over the best individual parser after correcting 1,000 instances: answers 3.6%, emails 2.9%, news-
group 4.8%, reviews 2.0%, weblogs 5.0%.

10As we use the model in an active learning setup where we need to keep the time requirements for training as small as
possible, we only initialise the model once. The original model of Hovy et al. (2013) (MACE) allows for a higher number of
restarts with random initialisation and then selects the best model.

11The lower error detection precision for the reviews in combination with higher LAS (line 22: ED: 35.8%, LAS: 88.91%
after 1,000 iterations) is due to the fact that the initial predictions for the reviews based on the majority vote of the baseline
parsers yielded a higher accuracy, which means that we start with a smaller amount of errors in the data. As ED precision is
based on the overall number of errors in the set, we obtain a lower precision even though the model was able to detect more
errors than MACE-AL-TREE.

114

core args coord & modifiers clause structure other
SB 42 CJ 28 RC 12 CM, CC,
OA 23 CD 2 PAR 12 DM,
PD 11 APP 8 OC 10 NK, 28
DA 8 MO 58 RE 6 NMC
AG 2 MNR 23 RS 2 PNC
PG 2 OP 11 ROOT 11 SVP

head type # head type #
modifiers 128 clauses 43
punctuation 77 core args 43
coordination 39 apposition 10
noun kernel 19 other 26

Table 4: Distribution of labelling errors (left table) and attachment errors (right table) in the German
TiGer data found in 1000 iterations of AL error correction.

3.3 Error detection with AL on in-domain data
We showed that our approach yields high error detection precision in out-of-domain scenarios. We now
want to test whether our method is also suited for in-domain settings where we start with a higher parser
output quality, which means that errors in the data might be harder to find.

Again, we run a simulation study, but this time on German newspaper text from the TiGer treebank
(Brants et al., 2002). We use the version from the SPRML 2014 shared task (Seddah et al., 2014) with
40,472 sentences in the training set and 5000 sentences for testing. We train five parsers12 on the training
portion of the data and predict parse trees for the automatically tagged test file provided by the shared
task organisers. Parsing accuracies for the individual parsers on our testset with automatically predicted
POS and morphological tags are in the range of 84.2-90.3% UAS and of 81.1-87.6% LAS.

We then run an AL simulation on the first 500 sentences in the testset, with 1000 iterations of active
learning. In each iteration we select one instance and replace its head and label with the gold information.
Again, it is not guaranteed that each modification will improve results as we might select instances which,
according to the VI model, are already predicted correctly. Table 3 shows results for increasing iterations
of error correction with AL, and error detection (ED) precision and LAS.

We can observe the same trend on the German in-domain data as we saw for the English out-of-domain
data. LAS for the generated output trees based on the predictions of the parser ensemble with CLE (Table
3, line 1), weighted by the competence score from the VI model, is significantly higher with 88.9% than
the score for the best individual parser (87.6% LAS). Looking at increasing numbers of AL iterations
(lines 2-11), we also see a high error detection (ED) precision, starting with 70% and slowly decreasing
as it gets harder to find new errors. After 1000 iterations, we still have an error detection precision of
> 50%, meaning that every second instance that we inspect is a real error. In terms of accuracy, running
1000 iterations of error correction on the TiGer subcorpus translates into an increase in LAS from 88.8%
to 94.6% while keeping the number of instances for manual correction reasonably low.

3.4 Error analysis
Having established that our model is able to detect errors in manually and automatically annotated parse
trees on in-domain and out-of-domain data, we would now like to learn more about the types of errors
our model is able to detect. We thus evaluate the output trees generated from the German newspaper
corpus (Section 3.3) before and after running 1000 iterations of AL for error correction.

Overall, our error correction resulted in 385 changed attachment decisions and in 298 modified de-
pendency labels. In 167 cases, both label and attachment have been changed. Looking only at the label
errors, we can see that the errors are distributed over 25 different dependency labels. The most frequent
ones concern labels for core arguments (subject (SB), direct and indirect object (OA/DA), predicate (PD)
and genitive attributes (AG/PG)) that are, due to the semi-free German word order and ambiguity arising
through case syncretism, one of the major sources for parsing errors.

Other frequent labelling errors include the distinction between verb and noun attachment for PPs
(modifier (MO)/noun modifier to the right (MNR)). The distinction between modifying (MO) and oblig-
atory PPs (OP) is another frequent error that the model was able to detect. Our model also finds errors
concerning coordination (CJ, CD) and clause structure, such as relative clauses (RC), parenthesis (PAR),
clausal objects (OC), repeated element (RE) and reported speech (RS).

12For German, we used the IMSTrans parser, the head-selection parser and the BISTGraph parser that we also used in the
previous set of experiments. In addition, we also use the transition-based biLSTM parser of (Kiperwasser and Goldberg, 2016)
(BISTTrans) and the RBG parser (Lei et al., 2014).

115

unlabelled LAS LAS LAS LAS LAS
sentences answer email newsgroup reviews weblog

Results without self-training (best individual parser)
85.03 82.81 83.53 86.73 84.93

Baseline 1: self-training (best individual parser)
5,000 85.11 83.40 83.23 87.19 85.14

10,000 85.33 83.25 84.06 87.06 85.32
15,000 85.43 83.37 83.62 87.38 84.82
20,000 85.26 83.25 82.52 87.01 85.27
25,000 – 83.46 82.56 87.50 85.79

Baseline 2: self-training (agreement betw. 2 parsers)
5,000 85.36 82.58 83.38 87.33 85.80

10,000 – 82.65 82.56 87.28 86.22
15,000 – 82.53 83.34 87.31 85.57
20,000 – 83.16 83.64 87.62 85.26
25,000 – 83.09 82.82 87.74 85.04

MACE-AL-TREE (with self-training)
5,000 85.77 83.07 83.93 87.39 86.27

10,000 85.89 83.71 84.25 87.82 86.28
15,000 85.74 83.85 83.83 87.54 86.08
20,000 86.09 83.51 84.41 87.93 86.26
25,000 – 84.11 85.09 88.04 86.16

MACE-AL-TREE (without self-training)
86.82 84.07 85.72 87.28 86.98

Table 5: Baselines and results for self-training on the different web genres.

Looking at the attachment errors that have been detected by our model (Table 4, right), we find that the
most frequent head types that have been re-attached are modifiers (MO, MNR). This not only includes
PPs but also adverbal and adjectival modification. The next frequent error type are incorrectly attached
punctuations. This, however, is not an error type we are concerned with and it might make sense to
exclude punctuation from the error correction.13 More interesting attachment errors include coordination
(CJ, CD), parenthesis (PAR), apposition (APP) and again the core arguments (OA, AG, DA, SB, PD).

This shows that our model is not biased toward a small set of specific error types but is able to detect
frequent parsing errors that are well-known from the literature (Kummerfeld et al., 2012).

3.5 Domain adaptation with self-training
In the final set of experiments we want to test whether we can use our method to automatically correct
parser output for self-training, to improve parsing accuracy for out-of-domain data. As before, we use the
English web treebank, split into different genres as described above. Again, we pretend that no annotated
training data for the different genres are available. This time, however, we make use of the supplementary
raw text data for the five web genres (Table 1) that were provided for the SANCL shared task (Petrov and
McDonald, 2012). The data is segmented into sentences and pre-tokenised. For preprocessing, we use
UDPipe (Straka and Straková, 2017) with the pretrained models from the CoNLL-2017 shared task.14

We also remove unlabelled sentences with a length > 60 tokens.15

We parse the additional data using the following settings. As our first baseline, we use the parser that
achieved the best LAS on this particular genre for preprocessing. For our second baseline, we apply the
best two parsers for each genre to parse the raw text and then select only those trees for self-training
where the two parsers agree (excluding punctuation). In the last setting, we use MACE-AL-TREE (but
without active learning) to generate the parse trees for each bin of automatically parsed text, based on
the predictions of the parser ensemble.

We then use the output of each setting and combine the bins with the original training data for each
genre, resulting in new training sets of increasing sizes. Then we train the BISTGraph parser on the new
data and select the best model, based on the results on the development set after 10 iterations of training.

13In the original constituency-based TiGer treebank, all punctuation marks are attached to a virtual root node and have been
reattached during the conversion to dependencies. This results in many arbitrary attachment decisions which makes it hard for
the parser to learn these attachments.

14The models are available from https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-1990.
15For the answers where we only have 27,274 raw sentences, this results in only 4 samples after removing long sentences,

and only one sample for the agreement-based self-training (baseline 2).

116

Table 5 reports results for the three different settings. Looking at the self-training results where we
retrain the BISTGraph parser on the predictions of the best individual parser, we can see mostly small
improvements but sometimes also a decrease in LAS. The results for baseline 2 are also a bit mixed.
When adding only 5,000 additional sentences, we obtain slightly higher results as compared to baseline
1. When adding more data, however, it shows that this improvement is not stable and sometimes results
are lower than for the first baseline. A possible explanation is that the agreement-based selection strategy
favors shorter sentences (as those are the ones where the two parsers tend to agree more often), and that
we thus only add less complex structures that are not very informative for the parser. In addition, we
introduce a bias in the training set that also might have a negative effect on results.

The third setting, however, clearly outperforms our baselines and shows a significant increase in pars-
ing accuracy. Nonetheless, when comparing the results for MACE-AL-TREE with self-training to the
results without self-training we see that our self-training approach fails to beat the results obtained on the
original data on three web genres. We only observe improved results on the emails and on the reviews.
These two genres are also the ones that have the largest amount of unknown words which might explain
why self-training is more promising for emails and reviews than for the other three genres, as Reichart
and Rappoport (2007) have shown that the number of unknown words can be a good indicator for the
potential benefit from self-training.

4 Related work
Most studies on error detection in treebanks have focussed on finding errors in manual annotations
(Dickinson and Meurers, 2003; Ule and Simov, 2004; van Noord, 2004; Dickinson and Meurers, 2005;
Agrawal et al., 2013). Dickinson and Meurers (2003; 2005) proposed the use of variation n-grams to
detect inconsistencies in manually annotated constituency treebanks and Boyd et al. (2008) extend this
line of work to dependency trees. This approach, however, only works for manually annotated treebanks
while for automatic parses where the errors are consistent and systematic, looking for variation in the
predictions will not be very helpful. Volokh and Neumann (2011) address the latter problem and use two
different parsing models to reproduce the annotations in the training data. They consider an instance
to be erroneous if the two parsers agree in their predictions for the attachment of the token but disagree
with the gold standard. The authors report a high precision for automatic error correction. However,
their method only addresses attachment errors but does not handle label errors.

Work on predicting automatic parser errors includes Dickinson and Smith (2011) who develop a
grammar-based method for error detection. They use ngrams extracted from automatic parses and weigh
them by comparing them to the rules in a small gold grammar. Follow-up work (Dickinson and Smith,
2017) builds on this approach and uses parse simulations to extend the training grammar.

Relevant for our work are also studies on parse accuracy prediction. Ravi et al. (2008) predict parser
performance for data from new domains. Our error detection method can be applied to automatic parses
in a domain adaptation setting and can not only predict the accuracy of the parses but also improve
the accuracy of the parser output. Our work can be seen as a combination of semi-supervised and
ensemble-based methods and is thus similar in spirit to Søgaard and Rishøj (2010) who use tri-training
in combination with self-training for dependency parsing and report an increase in labelled attachment
score (LAS) for different languages in the range of 1.4 to 2.6%. Their self-training experiments, however,
were based on a much larger amount of additional data (100,000 sentences vs. up to 25,000 sentences in
our self-training experiments). It would be interesting to see whether more unlabelled data can further
improve results, as suggested by the results for MACE-AL-TREE with self-training.

5 Conclusions
We presented a method for error detection in treebanks, based on the combination of (i) ensemble parsing,
(ii) an unsupervised generative inference model, and (iii) human guidance from active learning. We
validated our model on the task of error detection in manual and automatic annotations using active
learning and showed that we can identify parse errors with precisions in the range of 35% to over 90%.
Our approach can also be used to improve the quality of automatic annotations on out-of-domain data,
without any human feedback, where we obtained gains in accuracy of up to 2% and more.

117

References
Bhasha Agrawal, Rahul Agarwal, Samar Husain, and Dipti M. Sharma. 2013. An automatic approach to treebank

error detection using a dependency parser. In Proceedings of the 14th International Conference on Computa-
tional Linguistics and Intelligent Text Processing - Volume Part I, CICLing’13, pages 294–303.

Ann et al. Bies. 2012. English Web Treebank LDC2012T13.

Anders Björkelund and Joakim Nivre. 2015. Non-deterministic oracles for unrestricted non-projective transition-
based dependency parsing. In Proceedings of the 14th International Conference on Parsing Technologies, pages
76–86, Bilbao, Spain, July. Association for Computational Linguistics.

Adriane Boyd, Markus Dickinson, and Detmar Meurers. 2008. On detecting errors in dependency treebanks.
Research on Language and Computation, 6:113–137.

Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolfgang Lezius, and George Smith. 2002. The TIGER treebank.
In Proceedings of the Workshop on Treebanks and Linguistic Theories, TLT’02, pages 24–41.

Yoeng-Jin Chu and Tseng-Hong Liu. 1965. On shortest arborescence of a directed graph. Scientia Sinica,
14(10):1396–1400.

Markus Dickinson and Detmar Meurers. 2003. Detecting inconsistencies in treebanks. In The Second Workshop
on Treebanks and Linguistic Theories, TLT.

Markus Dickinson and W. Detmar Meurers. 2005. Prune Diseased Branches to Get Healthy Trees! How to Find
Erroneous Local Trees in a Treebank and Why It Matters. In Proceedings of the Fourth Workshop on Treebanks
and Linguistic Theories, TLT 2005, pages 41–52, Barcelona, Spain.

Markus Dickinson and Amber Smith. 2011. Detecting dependency parse errors with minimal resources. In
Proceedings of the 12th International Conference on Parsing Technologies, IWPT, pages 241–252.

Markus Dickinson and Amber Smith. 2017. Simulating dependencies to improve parse error detection. In Pro-
ceedings of the 15th International Workshop on Treebanks and Linguistic Theories, TLT15, pages 76–88.

Jack Edmonds. 1967. Optimum branchings. Journal of Research of the National Bureau of Standards B,
71(4):233–240.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural Computing, 9(8):1735–1780,
November.

Dirk Hovy, Taylor Berg-Kirkpatrick, Ashish Vaswani, and Eduard Hovy. 2013. Learning whom to trust with
MACE. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, NAACL-HLT’13, pages 1120–1130, Atlanta, Georgia,
USA.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Simple and accurate dependency parsing using bidirectional
LSTM feature representations. Transactions of the Association for Computational Linguistics (TACL), 4:313–
327.

Jonathan K. Kummerfeld, David Hall, James R. Curran, and Dan Klein. 2012. Parser showdown at the Wall Street
Corral: An empirical investigation of error types in parser output. In The 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language Learning, EMNLP-CoNLL
’12, pages 1048–1059.

Tao Lei, Yu Xin, Yuan Zhang, Regina Barzilay, and Tommi S. Jaakkola. 2014. Low-rank tensors for scoring
dependency structures. In Proceedings of the 52nd Annual Meeting of the Association for Computational Lin-
guistics, ACL 2014, June 22-27, 2014, Baltimore, MD, USA, Volume 1: Long Papers, pages 1381–1391.

Ryan McDonald and Joakim Nivre. 2007. Characterizing the errors of data-driven dependency parsing models. In
Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language
Learning, EMNLP-CoNLL’2007, pages 122–131.

Jens Nilsson and Joakim Nivre. 2008. MaltEval: An evaluation and visualization tool for dependency parsing.
In Proceedings of the Sixth International Conference on Language Resources and Evaluation, LREC’08, Mar-
rakech, Morocco, may. European Language Resources Association (ELRA).

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006. MaltParser: A data-driven parser-generator for dependency
parsing. In Linguistic Resources and Evaluation, LREC’2006, pages 2216–2219.

118

Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Yoav Goldberg, Jan Hajic, Christopher D. Manning,
Ryan McDonald, Slav Petrov, Sampo Pyysalo, Natalia Silveira, Reut Tsarfaty, and Daniel Zeman. 2016. Uni-
versal dependencies v1: A multilingual treebank collection. In Nicoletta Calzolari (Conference Chair), Khalid
Choukri, Thierry Declerck, Sara Goggi, Marko Grobelnik, Bente Maegaard, Joseph Mariani, Helene Mazo,
Asuncion Moreno, Jan Odijk, and Stelios Piperidis, editors, Proceedings of the Tenth International Confer-
ence on Language Resources and Evaluation (LREC 2016), Paris, France, may. European Language Resources
Association (ELRA).

Slav Petrov and Ryan McDonald. 2012. Overview of the 2012 shared task on parsing the web. Notes of the First
Workshop on Syntactic Analysis of Non-Canonical Language (SANCL).

Sujith Ravi, Kevin Knight, and Radu Soricut. 2008. Automatic prediction of parser accuracy. In Empirical
Methods in Natural Language Processing, EMNLP’08, pages 887–1575.

Ines Rehbein and Josef Ruppenhofer. 2017. Detecting annotation noise in automatically labelled data. In Pro-
ceedings of the 55th annual meeting of the Association for Computational Linguistics, ACL’17, Vancouver,
Canada.

Roi Reichart and Ari Rappoport. 2007. Self-training for enhancement and domain adaptation of statistical parsers
trained on small datasets. In The 45th Annual Meeting of the Association of Computational Linguistics, pages
616–623.

Djamé Seddah, Sandra Kübler, and Reut Tsarfaty. 2014. Introducing the SPMRL 2014 shared task on parsing
morphologically-rich languages. In Proceedings of the First Joint Workshop on Statistical Parsing of Morpho-
logically Rich Languages and Syntactic Analysis of Non-Canonical Languages, pages 103–109, Dublin, Ireland,
August. Dublin City University.

Burr Settles. 2009. Active learning literature survey. Computer sciences technical report, University of
Wisconsin–Madison.

Anders Søgaard and Christian Rishøj. 2010. Semi-supervised dependency parsing using generalized tri-training.
In Proceedings of the 23rd International Conference on Computational Linguistics, COLING ’10, pages 1065–
1073.

Milan Straka and Jana Straková. 2017. Tokenizing, POS Tagging, Lemmatizing and Parsing UD 2.0 with UDPipe.
In Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependen-
cies, pages 88–99, Stroudsburg, PA, USA. Association for Computational Linguistics.

Mihai Surdeanu and Christopher D. Manning. 2010. Ensemble models for dependency parsing: Cheap and good?
In Proceedings of the North American Chapter of the Association for Computational Linguistics Conference
(NAACL-2010), Los Angeles, CA, June.

Tylman Ule and Kiril Simov. 2004. Unexpected productions may well be errors. In The Fourth International
Conference on Language Resources and Evaluation, LREC’04.

Gertjan van Noord. 2004. Error mining for wide-coverage grammar engineering. In The 42nd Annual Meeting of
the Association for Computational Linguistics, pages 446–453.

Alexander Volokh and Günter Neumann. 2011. Automatic detection and correction of errors in dependency
treebanks. In The 49th Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies, pages 346–350.

Xingxing Zhang, Jianpeng Cheng, and Mirella Lapata. 2017. Dependency parsing as head selection. In Pro-
ceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics,
EACL’17, pages 665–676.

