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Abstract

We present Kyoto-NMT, an open-source implementation of the Neural Machine Translation
paradigm. This implementation is done in Python and Chainer, an easy-to-use Deep Learning
Framework.

1 Introduction

1.1 Neural Machine Translation

Neural Machine Translation (NMT) is a new approach to Machine Translation (MT) that, although re-
cently proposed, has quickly achieved state-of-the-art results (Bojar et al., 2016). It is now growingly
popular and might become the main focus of MT research in the next few years. Kyoto-NMT imple-
ments the Sequence-to-Sequence model with Attention mechanism first proposed in (Bahdanau et al.,
2015) as well as some more recent improvements. It is intended to evolve incrementally to include new
improvements as they are found.

1.2 The RNN-Search model

We describe here briefly the (Bahdanau et al., 2015) model that forms the basis of Kyoto-NMT, but for
details one should check the original paper. As shown in figure 1, an input sentence is first converted
into a sequence of vector through an embedding layer; these vectors are then fed to two LSTM layers
(one going forward, the other going backward) to give a new sequence of vectors that encode the input
sentence. On the decoding part of the model, a target-side sentence is generated with what is conceptu-
ally a Recurrent Neural Network Language Model: an LSTM is sequentially fed the embedding of the
previously generated word, and its output is sent through a deep softmax layer to produce the probability
of the next word. This decoding LSTM is also fed a context vector, which is a weighted sum of the
vectors encoding the input sentence, provided by the attention mechanism.

2 Kyoto-NMT workflow

There are essentially three steps in the use of Kyoto-NMT: data preparation (make data.py), training
(train.py), evaluation (eval.py).

2.1 Data Preparation

The required training data is a sentence-aligned parallel corpus that is expected to be in two utf-8 text
files: one for source language sentences and the other target language sentences. One sentence per line,
words separated by whitespaces1. Additionally, some validation data should be provided in a similar
form (a source and a target file). This validation data will be used for early-stopping, as well as to

This work is licenced under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

∗†Work done during a project taking place in Kyoto University.
1One is here free to choose any concept of ”word”. For Japanese, they could correspond to individual characters, or units

obtained from automatic segmentation.
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Figure 1: The structure of a NMT system with Attention, as described in (Bahdanau et al., 2015) (but
with LSTMs instead of GRUs). The notation ”<1000>” means a vector of size 1000. The vector sizes
shown here are the ones suggested in the original paper.

visualize the progress of the training. One should also specify the maximum size of vocabulary for
source and target sentences.

./make_data.py train.src train.tgt data_prefix
--dev_src valid.src --dev_tgt valid.tgt
--src_voc_size 100000 --tgt_voc_size 30000

As a result of this call, two dictionaries indexing the n and m most common source and target words
are created (with a special index for out-of-vocabulary words). The training and validation data are then
converted to integer sequences according to these dictionaries and saved in a gzipped JSON file2 prefixed
with data prefix.

2.2 Training
Training is done by invoking the train.py script, passing as argument the data prefix used in the data
preparation part.

./train.py data_prefix train_prefix

This simple call will train a network with size and features similar to those used in the original (Bahdanau
et al., 2015) paper (except that LSTMs are used in place of GRUs). However, there are many options
to specify different aspects of the network: embedding layer size, hidden states size, number of lstm
stacks, etc. The training settings can also be specified at this point: weight decay, learning rate, training
algorithm, dropout values, minibatch size, etc.
train.py will create several files prefixed by train prefix. A JSON file

train prefix.config is created, containing all the parameters given to train.py
(used for restarting an interrupted training session, or using a model for evaluation). A file
train prefix.result.sqlite is also created, containing a SQLite database that will keep
track of the training progress. Furthermore, model files containing optimized network parameters
will be saved regularly. Every n minibatches (by default n = 200), an evaluation is performed
on the validation set. Both perplexity and BLEU scores are computed. The BLEU score is com-
puted by translating the validation set with a greedy search3. The models that have given the best

2As a design principle, all files generated are in JSON format, except for the trained parameters which are saved in numpy’s
npz format

3Greedy search translation will take a few seconds for a validation set of 1000 sentences. On the other hand, beam search
can take several dozens of minutes depending on the parameters, and thus cannot be used for frequent evaluation
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Figure 2: Left: Visualisation of the training evolution with plotly. blue dots represent validation BLEU,
blue line represents validation loss and green line represents training loss over last 200 minibatches.
Right: Visualization of the attention in a translation.

BLEU and best perplexity so far are saved in files train prefix.model.best.npz and
train prefix.model.best loss.npz respectively. This allows to have early stopping based
on two different criterions: validation BLEU and validation perplexity.

The SQLite database keep track of many information items during the training: validation BLEU and
perplexity, training perplexity, time to process each minibatch, etc. An additional script can use this
database to generate a plotly4 graph showing the evolution of BLEU, perplexity and training loss, as
shown in figure 2. This graph can be generated while training is still in progress and is very useful for
monitoring ongoing experiments.

2.3 Evaluation
Evaluation is done by running the script eval.py. It allows, among other things, to translate sentences
by doing a beam search with a trained model. The following command will translate input.txt into
translations.txt using the parameters that gave the best validation BLEU during training:

./eval.py train_prefix.config train_prefix.model.best.npz input.txt
translations.txt--mode beam_search --beam_width 30

We usually find that it is better to use the parameters that gave the best validation BLEU rather than the
ones that gave the best validation loss. Although it can be even better to do an ensemble translation with
the two. The eval.py script has many options for tuning the beam search, ensembling several trained
models, displaying the attention for each translation (as in figure 2), etc.

When an Out-of-Vocabulary index is generated by the decoder, it is tagged with the source position on
which attention is the most focused. This allows the replacement of the OOV item with the translation
of the corresponding source word using an external dictionary. This type of approach was first proposed
by (Luong et al., 2015). They were actually using a specific annotation to retrieve the source position
instead of relying on the attention, but we found that their annotation is not very suitable for language
pairs with very different word orders such as Japanese and English.

3 Implementation and Performances

3.1 Chainer
Chainer5 is a Deep Learning framework based on Python. Its approach is somehow opposite to Theano6

and Tensorflow7, who use Python instructions to define a computation graph that will then be compiled
4https://github.com/plotly
5http://chainer.org/
6http://deeplearning.net/software/theano/
7https://www.tensorflow.org/
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and executed. On the other hand, in Chainer, the definition of the computation and its execution happens
concurrently. The “precompiled computation graph” paradigm has advantages in term of performances,
but make it more difficult to follow the control flow of a program. In particular, in Theano, applying
a recurrent network to a variable-length input can require the use of complex ad-hoc instructions like
Theano’s scan. On the other hand, in Chainer, it can be done with a simple Python for-loop:

for x in input:
cell, state = lstm(cell, state, x)

We thus believe that our implementation is easier to understand and modify than those based on Theano
or Tensorflow.

3.2 Other NMT implementations
The authors of (Bahdanau et al., 2015) have made their implementation available, based on the Theano
Deep Learning framework. Since then, we are aware of several re-implementation/improvements that
have been made available8: The Deep Learning for MT Tutorial’s code, Tensorflow’s NMT implemen-
tation, the Lamtram toolkit (Neubig, 2015), chainn, chainer nmt and the implementation of the authors
of (Luong and Manning, 2016). We are however not familiar with all of these implementations, and
a systematic comparison of features and performances between all of them would go well beyond the
scope of this paper.

3.3 Performances
This implementation was used as a basis for a participation to the MT shared tasks of the Workshop
on Asian Translation9 (WAT). This let us confirm we could obtain state-of-the-art results. For example,
on the ASPEC Japanese-to-English task, a simple, carefully trained, single-layer LSTM could already
obtain a BLEU score of 22.86, while the official Moses Baseline score for WAT2015 was only 20.36
(Nakazawa et al., 2015). Using ensembling and training more complex models, we could obtain a score
of 26.22, higher than the best score reported for WAT2015 (which was 25.41). We could obtain similarly
good results for the three other language directions (involving Japanese-English and Japanese-Chinese).
A fuller description of these experiments can be found in (Cromières et al., 2016).

In terms of computation time, the training speed is about one minibatch per seconds on a Geforce
Titan X (Maxwell) for a network with one LSTM layer. The Theano-Groundhog implementation with
similar network size (yet with GRUs instead of LSTMs) can on the other hand process roughly two
minibatches per seconds. The relative performance gap can be reduced as network size increase, but is
still important, even considering LSTMs can be slower than GRUs for the same output size. Theano’s
use of precompiled computation graphs will necessarily have a performance advantage over a library like
Chainer (at the price of the intuitivity of the control flow), but we have identified some bottleneck and
are hopeful that training time can be brought to within 20% difference with that of Theano or Tensorflow
implementations.

4 Conclusion and Future Work

We have developped an implementation of Neural-MT that obtained competitive results in the translation
shared-tasks to which we participated. The focus of this implementation is to make it straightforward,
with just one or two command line instructions, to use the most relevant best practices and advances for
MT (early-stopping, unknown word replacement, ensembling, etc.). We are releasing10 the code under
a GPL License11 in the hope it will be useful for comparison of implementations and results, and as a
potential basis for extensions. Future work will include speed and memory optimizations and addition
of more state-of-the-art features as research on NMT progresses.

8respectively: github.com/lisa-groundhog/GroundHog, github.com/nyu-dl/dl4mt-tutorial, www.tensorflow.org/,
github.com/neubig/lamtram, github.com/philip30/chainn, github.com/odashi/chainer nmt, github.com/lmthang/nmt.hybrid

9http://lotus.kuee.kyoto-u.ac.jp/WAT/
10https://github.com/fabiencro/knmt
11We are considering releasing it under a more permitive license (MIT or LGPL)
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