
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: System Demonstrations,
pages 103–106, Osaka, Japan, December 11-17 2016.

Interactive Relation Extraction in Main Memory Database Systems

Rudolf Schneider Cordula Guder Torsten Kilias Alexander Löser
Jens Graupmann Oleksandr Kozachuk

Beuth University of Applied Sciences, Luxemburger Straße 10, 13353 Berlin, Germany
Exasol AG, Neumeyerstraße 22, 90411 Nürnberg, Germany

{ruschneider,s57515,tkilias,aloeser}@beuth-hochschule.de
{jens.graupmann, oleksandr.kozachuk}@exasol.com

Abstract

We present INDREX-MM, a main memory database system for interactively executing two inter-
woven tasks, declarative relation extraction from text and their exploitation with SQL. INDREX-
MM simplifies these tasks for the user with powerful SQL extensions for gathering statistical
semantics, for executing open information extraction and for integrating relation candidates with
domain specific data. We demonstrate these functions on 800k documents from Reuters RCV1
with more than a billion linguistic annotations and report execution times in the order of seconds.

1 Introduction

Relation Extraction (RE) is the task of extracting semantic relations between two or more entities from
text. Often these relations are loaded into a relational database system for further exploitation. One
line of approaches to RE is rule-based, where users manually define rule-sets consisting of extraction
patterns that if observed point to instances of a relation. These approaches are easy to debug, permit the
user a high level of direct control over the extraction process and can outperform machine-learning based
state-of-the-art models (Chiticariu et al., 2013). However, writing rules is a time consuming and iterative
process, in particular for extracting uncommon relationship types with high recall and precision.

Our task: Complement existing in-house relational data with insights from text. While browsing
news, a supply chain analyst performs research on suppliers of a car rental company, product recalls. She
desires to complement an existing table productrecall(supplier, product), with relations extracted from
news text. Currently, the user performs these task with two separate systems, a system for extracting a
relation productrecall(supplier, product), such as (Krishnamurthy et al., 2008), and a relational database
management system (RDBMS) for joining, grouping, aggregating and ordering. In a typical work flow,
the user ships existing tables from the RDBMS to bootstrap text and ships back extracted relations to the
RDBMS for analytical queries. This costly work flow is iterated until an analytical query shows desired
results. Moreover, the user must learn to manage both systems.

Contribution. Ideally, users could execute both, analytical and relation extraction tasks, in a single
database system and could leverage built-in query optimizations. Another crucial requirement is inter-
active query execution, in particular for extracting rare relation types with high recall and precision. We
demonstrate INDREX-MM1, a Main-Memory Relational Database System (MM-RDBMS) that permits
this functionality, either as fast back-end for interactive relation extraction applications, such as (Michael
and Akbik, 2015), or on command line. INDREX-MM provides a broad and powerful set of SQL-based
query operators for declarative relation extraction. These include query predicates for detecting span
proximity, predicates for testing overlapping spans or span containment, scalar functions for returning
the context of a span, or user defined table generating functions for consolidating spans. Further, the
system supports executing regular expressions and built-in operators from the RDBMS, such as joins,

This work is licenced under a Creative Commons Attribution 4.0 International License. License details: http :
//creativecommons.org/licenses/by/4.0/

1see our online demonstration at http://dbl43.beuth-hochschule.de/html/indrex-mm/

103

unions or aggregation functions. These additional operators permit the user basic operations for looking
up words in sentences describing entities or other potential relation arguments. The system also sup-
ports the user learning about potential open relation candidates where these words appear in, or about
distributions of potentials synonymous relation names. Finally, we support the user in investigating
new relations. Our work in (Kilias et al., 2015) shows details and extensive performance evaluations.
INDREX-MM bases on EXASOL, a parallel main-memory and column-oriented database. It permits
integration via standard interfaces, such as JDBC, or business intelligence tools, like Tableau.

2 Demonstration Outline

We demonstrate how INDREX-MM supports the user in three elementary steps during the declarative
relation extraction process, for which figure 1 gives a high-level overview. Each of these steps ’filters
out’ irrelevant sentences and only keeps sentences containing relations of the type productrecall(supplier,
product).

Figure 1: Relation Extraction process using Open Information Extraction in INDREX-MM.

Batch loading base annotations in a flat, sparse and cache affine data structure. Text mining work-
loads rarely require full scans of all table data, but do often require full scans of a small subset of the
columns. Our base table layout from (Kilias et al., 2015) supports such work flows. This schema par-
titions data per (document, span); we denote a span with its beginning and ending character. Many
operations on text are ’local’ on a single document. Hence, our partition scheme permits a MM-RDBMS
to ship data for a single document ’close’ to the CPU and in orders of magnitudes faster cache structures.
For each span we provide additional attributes denoting annotation types, such as tokenization, sentence
recognition, part-of-speech tagging, named entity recognition, user-defined types, dependency tagging,
or noun- and verb-phrase chunking.2 We add attributes for referencing spans to containment relations in
the same document. For example, a span for a sentence may contain additional spans denoting organisa-
tions. Such a flat and sparse table layout pre-joins data already at data loading time and avoids most joins
at query execution time. Because of the columnar layout in a MM-RDBMS, NULL values in attributes
do not harm query execution time.

(a) Extractor query and result example. (b) Dependency parse and phrase chunks used in extractor
query.

Figure 2: Query example of an Open Information Extraction pattern.

Step 1: Filtering relation candidates with Open Information Extraction. Open Information Ex-
traction (OIE) is the task of extracting relations from large corpora and without requiring a pre-specified
vocabulary. Relations are n-ary and arguments do not follow a pre-defined type set. From the perspective
of a database, we understand OIE as selective filters connecting arguments in sentences. Recent work in
clause-based OIE (Del Corro and Gemulla, 2013) shows effective filters for n-ary relations. INDREX-
MM supports OIE as black box or as customizable and debuggable database views: One approach is

2We use Stanford CoreNLP 3.6 for this task.

104

executing OIE outside a MM-RDBMS as a black box, load results into an OIE table and reference spans
to the annotation table. We noticed that such black boxes are difficult to debug, break with the program-
ming paradigm of the database, and if the code does not match the corpus requirements of the user, she
must wait for an update of the OIE system. Contrary, we provide the user in INDREX-MM a set of
’ready-to-use’ OIE filters in SQL as views as shown in figure 2. The user can add SQL-predicates from
additional OIE approaches, such as (Angeli et al., 2015), can debug directly on her corpus, while the
MM-RDBMS takes over on optimizing the execution.

(a) Join of the Union OIE table with in house data regarding
known product recalls of the company’s suppliers.

(b) Relation candidates grouped, counted and ordered by pat-
tern and verb. The most frequent combination is OIE-Pattern
4 and the verb “recall”.

Figure 3: Use of in-house data to spot patterns of product recall mentions in the OIE schema.

Step 2: Joining OIE relations with domain data into a universal schema and spotting patterns.
After step 1 relations connect two or more relation arguments. However, we need to filter out irrelevant
relations and only keep relations that belong to our desired relation type productrecall. For example, we
keep relations connecting a company with predicates, such as ’recalls’, ’withdraws’ and discard relations
with ’sold’ or ’has refused’. For executing this task and analogue to universal schemas (Riedel et al.,
2013), we join arguments of OIE-relations with in-house domain specific relations representing the same
semantic type, such as a table describing product recalls of the suppliers of a company. As a result,
our universal schema represents relations, mainly candidate patterns of our desired relation type, and
few patterns for other semantic types (see figure 3a). The fast execution performance of INDREX-MM
permits the user to filter out these irrelevant patterns manually. For example, she aggregates, groups
and counts patterns with standard SQL, orders patterns by frequency and marks unsuitable patterns (see
figure 3b). For spotting additional semantic patterns, we provide synonyms from Wordnet. INDREX-
MM also supports loading existing lexical patterns from the literature in a table, such as Hearst patterns
(Hearst, 1992) or patterns from ConceptNet 53. The user can execute a join and utilize these patterns as
additional filters for OIE candidates. Focus of our current research is applying in-database-analytics for
pattern generation, such as clustering techniques (see our work in (Akbik et al., 2012)).

Step 3: Applying selectional restriction and enhancing recall. For further enhancing recall, the
user keeps lexical patterns for predicates from the last step but applies various selectional restrictions to
arguments. INDREX-MM supports selectional restrictions to one or many argument types. For example,
the user may keep the company name of relations from step 2, but relaxes the second argument. As
a result, she may spot new relations of productrecall(supplier, product), in particular relations between
previously known companies and previously unknown products.

3 Discussion

Execution on one billion annotations in seconds. We measure the relation extraction process from
above in INDREX-MM on Reuters RCV1 with 800k documents and 1.2 billion annotations. For each
of the four steps mentioned above we measure the execution time and how selective each filtering step
prunes sentences. For evaluating precision, we asked two independent students to draw a sample of 100
sentences randomly after each step and to count the number of correct relations for our desired type.

3http : //conceptnet5.media.mit.edu

105

Step Time Relations RL100 Examples
BL 180 min 15.785.155 0 -
1 OIE 9,9s 13.695.006 10 All OIE pattern (Mitsubishi, raised its production plan, October)
2 PR 49ms 134 31 Product recall(GM, recalls, 1,400 1997 Corvettes)
3 PR 619ms 921 61 Product recall(Tensor, recalls, halogen bulbs)
2 AL 16.64s 662 35 Alliance(LUKoil, signed, a $2-billion deal, with SOCAR)
3 AL 2.505s 3.265 91 Alliance(Xillix, signed, an agreement, with Olympus)
2 AC 5.643s 112 41 Acquisition(Quaker, reviews, Snapple)
3 AC 7.031s 1654 73 Acquisition(Quaker, acquired, Snapple, for, $1.8 billion)

Table 1: Performance for each step. After phase BL, we loaded 15.7 Mio sentences and estimate one
relation per sentence. In step 1, we extract OIE relations from sentences using the 7 basic patterns from
ClausIE resulting in slightly fewer OIE relations than sentences. For phase 2 and 3 we show results for
productrecall(supplier, product), alliance(company, company) and acquisition(company, company). We
count correct relations on a randomly taken sample of 100 sentences (RL100).

Table 1 shows our measurements and example sentences. One-time batch loading (denoted with BL in
Table 1) takes roughly 180 minutes, because the MM-RDBMS executes compressions and builds index
structures before we can run queries. In a streaming scenario the MM-RDBMS uses delta indexing
techniques and permits hitting queries while new data is inserted.

INDREX-MM exploits data locality and leverages multi-core shared memory architectures.
Declarative relation extraction systems, such as SystemT (Krishnamurthy et al., 2008) or GATE4, need to
conduct expensive data shipping between different NLP components and databases. Such data shipping
is a major performance bottleneck. Contrary, INDREX-MM avoids data shipping, rather ships func-
tionality to data, and even leverages multiple built-in optimizations of main memory RDBMSs, such as
massive parallel execution with multi-cores, compression techniques and columnar based table layouts,
cache affine data structures, single instruction multiple data (SIMD) or result materializations.

Acknowledgements Our work is funded by the German Federal Ministry of Economic Affairs and En-
ergy (BMWi) under grant agreement 01MD16011E (Project: Medical Allround-Care Service Solutions).

References
Alan Akbik, Larysa Visengeriyeva, Priska Herger, Holmer Hemsen, and Alexander Löser. 2012. Unsupervised

discovery of relations and discriminative extraction patterns. In COLING, pages 17–32.

Gabor Angeli, Melvin Jose Johnson Premkumar, and Christopher D. Manning. 2015. Leveraging linguistic struc-
ture for open domain information extraction. In ACL, pages 344–354.

Laura Chiticariu, Yunyao Li, and Frederick R. Reiss. 2013. Rule-based information extraction is dead! long live
rule-based information extraction systems! In EMNLP 2013, pages 827–832.

Luciano Del Corro and Rainer Gemulla. 2013. Clausie: clause-based open information extraction. In World Wide
Web, pages 355–366.

Marti A. Hearst. 1992. Automatic acquisition of hyponyms from large text corpora. In COLING, pages 539–545.

Torsten Kilias, Alexander Löser, and Periklis Andritsos. 2015. INDREX: In-Database Relation Extraction. Infor-
mation Systems, 53:124–144.

Rajasekar Krishnamurthy, Yunyao Li, Sriram Raghavan, Frederick Reiss, Shivakumar Vaithyanathan, and Huaiyu
Zhu. 2008. Systemt: a system for declarative information extraction. SIGMOD Record, 37(4):7–13.

Thilo Michael and Alan Akbik. 2015. SCHNAPPER: A web toolkit for exploratory relation extraction. In ACL,
System Demonstrations, pages 67–72.

Sebastian Riedel, Limin Yao, Andrew McCallum, and Benjamin M. Marlin. 2013. Relation extraction with matrix
factorization and universal schemas. In HLT-NAACL, pages 74–84.

4https : //gate.ac.uk/ie/

106

