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Abstract

We propose a structured generative latent variable model that integrates information from mul-
tiple contextual representations for Word Sense Induction. Our approach jointly models global
lexical, local lexical and dependency syntactic context. Each context type is associated with a
latent variable and the three types of variables share a hierarchical structure. We use skip-gram
based word and dependency context embeddings to construct all three types of representations,
reducing the total number of parameters to be estimated and enabling better generalization. We
describe an EM algorithm to efficiently estimate model parameters and use the Integrated Com-
plete Likelihood criterion to automatically estimate the number of senses. Our model achieves
state-of-the-art results on the SemEval-2010 and SemEval-2013 Word Sense Induction datasets.

1 Introduction

Word Sense Induction (WSI) aims to automatically discover the different senses of polysemous words by
unsupervised processing of text corpora. The related task of Word Sense Disambiguation (WSD) seeks
to map the senses of word instances in a specific context to a predefined sense inventory. WSI overcomes
the problem of having to define sense inventories, which may not have the appropriate granularity for all
applications, and the effort of updating them for new domains or novel senses (Klapaftis and Manandhar,
2013). WSI is a challenging task that remains largely unsolved, but has important applications to a large
number of tasks that require semantic processing of natural language (Navigli, 2009).

WSI is typically modelled as a clustering task, where the aim is to cluster samples of context represen-
tations of ambiguous words. Since context is the only available information to a WSI model, the choice
of informative representations is a very important modelling aspect. Broad context related to topic or
domain can restrict the possible senses that are applicable to an ambiguous word, but in order to make
fine grained distinctions, context on the phrasal or syntactic level is usually needed. Ideally, a WSI sys-
tem should incorporate different types of contexts to increase the confidence of its decisions. Combining
the information present in different context representations can pose many difficulties in an unsupervised
setting. Previous work has combined lexical with syntactic context (Brody and Lapata, 2009; Lau et al.,
2012), and topical with local lexical context (Wang et al., 2015).

Another challenge for WSI systems is the need to apply clustering methods in high dimensional spaces
of sparse features. Probabilistic latent variable models have been very successful in WSI by inducing
latent representations of features that help improve generalization. While the latent variable approach
has been very successful for word features, it has not provided considerable advantages when used with
syntactic features (Brody and Lapata, 2009; Lau et al., 2012). A possible reason for this is that syntactic
features, such as dependency contexts, exhibit much more sparsity than words.

A promising method to overcome the sparsity problem inherent in high dimensional discrete feature
spaces is learning a low dimensional representation of the features. Word embeddings are an example
of low dimensional vector representations for words learned in an unsupervised manner. The skip-gram
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model (Mikolov et al., 2013) is a very popular technique for learning embeddings that scales to huge
corpora and can capture important semantic and syntactic properties of words. Skip-gram embeddings
exhibit compositional properties under addition, making them useful for constructing representations of
phrases and larger units of text. Recently, the skip-gram model has been extended to learn embeddings of
dependency context features (Levy and Goldberg, 2014; Komninos and Manandhar, 2016) that capture
additional syntactic information. While word embeddings have been successfully used in many super-
vised NLP problems to overcome the problem of sparsity and improve generalization (Turian et al., 2010;
Collobert et al., 2011), their application in WSI has been so far very limited.

In this paper, we propose a WSI model to address both the issue of multiple context representations
and feature sparsity. Our model is a structured generative model that jointly models topical, phrasal
and syntactic context in a hierarchical way. The probabilistic framework allows us to integrate different
types of information in a principled way and also allows the application of model selection criteria to
automatically determine the optimal number of senses. We address the issue of high dimensional feature
spaces when dealing with syntactic features, by using word and dependency feature embeddings. In
particular, we use the same skip-gram based model to create representations of all three context types.

We evaluate our model in two competitive benchmarks: SemEval-2010 Task 14: Word Sense Induc-
tion and Disambiguation (Manandhar et al., 2010), and SemEval-2013 Task 11: Word Sense Induction
for graded and non-graded senses (Jurgens and Klapaftis, 2013). The two tasks provide different WSI
evaluation frameworks and metrics. The proposed model achieves the state-of-the-art results in both
datasets. Code is available at https://cs.york.ac.uk/nlp/extvec

2 Related Work

Among the most successful WSI systems are probabilistic latent variable models. Brody and Lapata
(2009) extend the Latent Dirichlet Allocation (LDA) model (Blei et al., 2003) to combine evidence from
different types of contexts. A limitation of this model is that the number of senses needs to be determined
manually. Lau et al. (2012) propose using the non-parametric extension of LDA with a hierarchical
dirichlet process (Teh et al., 2012) prior (HDP-LDA) to automatically estimate the appropriate number
of senses from the data. They showed that HDP-LDA performs significantly better than LDA even when
the number of senses is set to the same value. They also experimented with combined syntactic and word
features. Syntactic features did not provide any advantage to either of these two LDA type models, but
this could be attributed to sparsity. In addition, none of these models associate different context types
with different stages of the generating process.

LDA type models assume that the topic distribution of context words correspond to different senses
of the target word. Chang et al. (2014) proposed a model similar to LDA, but specifically tailored to
WSI by estimating different latent variable distributions for context words and senses. In their setting,
the latent topics for context words provide a method to overcome the sparsity problem related with the
high dimensionality of the discrete feature space.

The sense-topic model (Wang et al., 2015) is another type of structured latent variable model related to
our work. It makes a distinction between local and global context as we do, and jointly infers latent rep-
resentations for both. The authors also make use of word embeddings as a method of feature weighting
and for extracting additional context for ambiguous word instances. Contrary to our work, their features
are discrete and syntax is ignored.

While several word embeddings models apply WSI in their training stage to create sense embeddings
(Neelakantan et al., 2015; Iacobacci et al., 2015), there has been limited application of word embeddings
as input representations to WSI models. The model of Huang et al. (2016) uses a recursive autoencoder to
compose word embeddings to a context representation according to the structure provided by a syntactic
parser. The final context representation captures both semantic and syntactic information and is used as
the input to a rival penalization competitive learning clustering algorithm. While this approach uses both
continuous word embeddings and syntactic information, it is fundamentally different from our work since
their framework is not probabilistic. This makes difficult to incorporate additional contextual information
like global context, and to define structural dependencies between context types.
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A large variety of other clustering methods have been applied to WSI. A notable class of approaches
is those using co-occurrence graphs and applying graph-based algorithms to identify hubs which are
indicative of word senses (Klapaftis and Manandhar, 2010; Di Marco and Navigli, 2013).

3 Model Description

Target Word: operate
Global Context: ... while profits are volatile , many industries with volatile profits
ranging from oil exploration to computer software operate without substantial
government regulation . moreover , free markets generally work well for industries
with large fluctuations , because ...
Local (win5) Context: from oil exploration to computer software without substantial
government regulation
Syntactic Dependencies: advcl volatile punct , nsubj industries nmod:without regulation
punct .

Table 1: Global, local and syntactic context extracted for a target word.

We propose a generative model of continuous feature vectors that captures interactions between differ-
ent types of contexts for a target ambiguous word. We separate context into three distinct types: global
lexical, local lexical and syntactic context.

Global lexical context is indicative of the text’s topic or domain, which can restrict coarse grained
senses of a word. It can range between a few sentences around the target word or consider the whole
document. In this work, we define global context as the words observed in the same sentence as the target
word and one sentence before and after, as this is the typical context size provided by WSI evaluation
datasets.

Local lexical context captures the semantics of phrases and is the most typically used context used by
WSI systems. We define it as the words within a five word window before and after the target word.

Finally, we define the syntactic context of a target word as the typed dependencies with its
neighbours in a dependency graph. This allows extraction of dependency context features such as
compound programming, compound−1 language, where directionality is encoded by using an in-
verse dependency relation. Syntactic dependencies are a traditional word sense disambiguation feature
as they capture the selectional preferences of a word.

An example of context selection can be seen in Table 1.

3.1 Continuous Context Feature Vectors

While our probabilistic model allows using the output of different models for each context type represen-
tation, e.g. a topic model for global context and a neural network for local, we use the publicly available
Extended Dependency Skip-gram embeddings (Komninos and Manandhar, 2016) to construct represen-
tations for all three types. This skip-gram variant provides embeddings for both words and dependency
context features trained jointly on Wikipedia text. Embeddings of dependency contexts have been used
to incorporate syntactic information for sentence classification, and can be composed additively to model
longer dependency relations.

Given the discrete features of the three context types, we create three continuous feature vectors by
aggregating their corresponding embeddings. The operation to construct continuous context vectors is
a weighted addition. We use the self information of discrete features to weight the contribution of each
embedding to the overall feature vector:

I(x) = −log(P (x)) (1)
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Figure 1: Graphical Representation of the model.

The three types of context feature vectors are formally defined by:

xg =
∑
w∈G

I(w)vw (2)

xl =
∑
w∈L

I(w)vw (3)

xs =
∑
d∈S

I(d)vd (4)

G,L and S are bags of discrete features corresponding to global, local and syntactic context as defined
above, w and d are discrete word and dependency context features, vw and vd are embeddings of words
and dependency contexts. We also apply L2-normalization to all feature vectors. The weighting by
self-information reflects the intuition that rare words are more important for distinguishing senses than
common words, and provides an automatic way of filtering the contribution of words without semantic
content such as stop-words.

3.2 Probabilistic Generative Model of Context Feature Vectors
We infer the senses of an ambiguous word by combining information provided by the three context
feature vectors within a structured generative model. The model assumes that there are three discrete
latent variables for each target word zg, zl and zs, each one generating one of the context feature vectors.
The three latent variables form a hierarchical structure, where variables responsible for broader context
generate a more context specific latent variable and their corresponding observed feature vector. The
density of the context vectors is modelled by Mixtures of Gaussians. The full model is a structured
generalization of Gaussian Mixture Models. Sampling context feature vectors follows the generative
story:
For each target ambiguous word n:

select zng v Discrete(θg)
sample xng v N (µg=zng ,Σg=zng)
select znl v Discrete(θl|g=zng

)
sample xnl v N (µl=znl ,Σl=znl)
select zns v Discrete(θs|l=znl

)
sample xns v N (µs=zns ,Σs=zns)
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The corresponding graphical model can be seen in Figure 1. The parameters of the model are:

Θ = {θg,θl|g,θs|l,µg,Σg,µl,Σl,µs,Σs} (5)

We constrain the covariance matrices to be diagonal, hence having a smaller number of parameters
compared to discrete mixture models for WSI.

3.3 Parameter Estimation
We estimate the parameters of the model by maximum likelihood estimation using the EM algorithm.
The equations of E-step and M-step are the following:
E-step

For each sample n ∈ {1, .., N} we compute:

γ(Z) = p(Z|X) =
p(Z,X)∑
Z p(Z,X)

(6)

Since there are only three dependant latent variables per sample, we can easily compute this step by exact
inference.
M-step

We estimate parameters that maximise:

Θnew = Ez|x[arg max
Θnew

log p(X,Z|Θold)] (7)

Given the factorization implied by the graphical model, each parameter can be estimated independently.
The update equations are:

θnew
g =

1
N

∑
n,l,s

γ(zngls) (8)

θnew
l|g =

∑
n,s γ(zngls)∑
n,l,s γ(zngls)

(9)

θnew
s|l =

∑
n,l γ(zngls)∑

n,g,s γ(zngls)
(10)

Updates for means and covariances for the g context type are given by:

µnew
g =

∑
n,l,s γ(zngls)xng∑

n,l,s γ(zngls)
(11)

Σnew
g =

∑
n,l,s γ(zngls)(xng − µg)(xng − µg)T∑

n,l,s γ(zngls)
(12)

and similarly for the l and s types.
We initialize means with the centroids of k-means run independently for each context type, and co-

variance matrices with the sample covariance.

3.4 Model Selection
One of the most challenging parts of WSI is estimating the number of senses for each ambiguous word
type. Since we are working with a probabilistic model we can apply model selection criteria. We use
the Integrated Complete Likelihood (ICL) criterion (Biernacki et al., 2000). ICL is a model selection
criterion similar to the Bayesian Information Criterion (BIC) (Schwarz, 1978) that seeks a model that
provides large evidence for the observed data with a small number of parameters. Following (McLachlan
and Peel, 2004) we use the approximation:

ICL(m,X) = log p(X|Θ)− mk

2
log(N) +

∑
n,g,l,s

γ(zngls) log γ(zngls) (13)
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where mk is the total number of parameters to be estimated.
This ICL approximation is exactly equal to BIC additionally penalized by the last term, which is the

mean entropy of the distribution of latent variables. The extra penalty term favours models that result
in more confident assignments since the entropy of the latent variable distribution will become lower in
such cases. This behaviour favours well separated clusters and avoids strongly overlapping components
which may be favoured in model selection by BIC. In our experiments, we set |zg| = |zl| = |zs| = K
and train models with K in the range of [2, 50]. We observe that given enough training instances, ICL
picks models with a large numbers of components corresponding to more fine-grained senses. This
is reasonable since with more data the model becomes more confident into making such fine-grained
distinctions, and is also likely to encounter unusual word usages.

4 Evaluation

We evaluate our model in two SemEval WSI datasets. For both datasets we parse the data using the
Stanford Neural Network dependency parser (Chen and Manning, 2014) using Universal Dependencies
(De Marneffe et al., 2014), which is the same format used by the dependency based embeddings. We
train a different model for every word type.

4.1 SemEval-2010 Task 14: Word Sense Induction and Disambiguation

The SemEval-2010 WSI dataset consists of 50 verbs and 50 nouns. The task organizers provide a fixed
training set with 879,807 instances of the target words. The distribution of instances for each word is
highly imbalanced. The test set consists of 8,915 instances. Two types of evaluation are performed:
supervised and unsupervised.

The supervised evaluation is performed in two steps. In the first step, a part of the data is used to
map the induced sense clusters to a fixed inventory of word senses. In the second step, the fixed sense
inventory is used to evaluate the clustering of the rest of the data as a Word Sense Disambiguation system.
The reported metric is F-score. Following the task procedures we report two results, one using an 80-20
split of the data for mapping and scoring, and one using a 60-40 split. For both cases, reported results
are an average over a 5-fold split.

Unsupervised evaluation for the SemEval task was performed by two clustering quality metrics, V-
measure and paired F-score. A problem with clustering evaluation metrics is that they are sensitive to
the number of senses (Klapaftis and Manandhar, 2013), with V-measure favouring a high number of
senses and F-score the opposite. This behaviour results into ranking two uninformative baselines, 1-
cluster-per-instance and most-frequent-sense (or all-in-one), as the best solutions. Li and Titov (2014)
argue that for the V-measure, this behaviour can be explained by biases in the estimation of entropy when
there is a large number of clusters compared to the number of samples, as is the case in WSI evaluation.
They propose the usage of the Best-Upper-Bound (BUB) Entropy Estimator (Paninski, 2003) instead of
maximum likelihood estimation that was used by the organizers. They show that the V-measure with
the BUB estimator successfully evaluates both uninformative baselines as worse solutions than actual
WSI systems. Following this recommendation, we report the V-measure estimated with BUB as the
unsupervised evaluation metric.

Our default approach for assigning a sense to a word instance is taking the value of p(zs|x) as the
probability of a sense being applicable, since it is the variable most directly associated with the am-
biguous word. It is possible however, to assign senses to joint configurations of two or all three of the
latent variables, in order to better use the information provided by our model. Since the number of pos-
sible configurations grows exponentially with the number of latent variables, this approach can lead to
very fine-grained partitions of the data. In practice, we observe that only a small number of all these
configurations are given a high probability mass. Evaluation results for our model MultiContextContin-
uous (MCC) and state-of-the-art systems are reported in Table 2. We report results with both the single
variable approach (MCC-S) and joint variable assignments (MCC-L,S and MCC-G,L,S).

We see that our model achieves the highest score in both metrics, however, by utilizing different infor-
mation. The combined evidence provided by the three latent variables helps induce an accurate mapping
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Model 80-20 60-40 VM (BUB)
MCC-G,L,S 70.6 69.0 8.1
MCC-L,S 69.3 68.1 12.4
MCC-S 68.9 67.5 17.1
Hidden Concept (Chang et al., 2014) 69.7 68.9 -
HDP-LDA (Lau et al., 2012) 68.0 - -
UoY (Korkontzelos and Manandhar, 2010) 62.4 62.0 11.4

Table 2: Results on the Semeval-2010 WSI dataset. Dashes indicate that this result was not reported by
the authors of the corresponding model. UoY is the best performing model participating in the SemEval-
2010 WSI evaluation.

of the sense clusters to the fixed sense inventory and results in the best F-score for the supervised eval-
uation. The supervised evaluation benefits from this fine-grained sense distribution since splitting the
senses into smaller clusters does not affect the mapping operation, as long as the induced senses are
consistent subsets of the gold standard senses. The 60-40 split results into a more difficult mapping
problem and can indicate how reliable is the mapping between the sense distribution and the gold stan-
dard (Klapaftis and Manandhar, 2013). We see that using the joint configuration of the latent variables
again results in the highest F-score, providing evidence of the consistency of the mapping. Contrary to
the supervised evaluation, the V-measure favours the clustering provided by the zs variable alone, since
it penalizes the mismatch between the more fine-grained clustering and the gold standard.

4.2 SemEval-2013 Task 13: WSI for graded and non-graded senses.

The SemEval-2013 WSI evaluation dataset consists of 50 word types: 20 verbs, 20 nouns and 10 adjec-
tives. There are several differences compared to the SemEval-2010 setting. There are less restriction on
the training set, which can be any part or all of the UkWac corpus (Ferraresi et al., 2008). In addition,
the test data include instances with multiple applicable senses. There are 4664 instances in the test set,
88.5% of which are labelled with a single sense, 11% labelled with two senses and 0.5% with three.
Systems are asked to provide an estimate of the applicability of each sense.

The evaluation metrics also differ from those of SemEval-2010, in order to cope with the multiple
sense labelling. Clustering evaluation is performed with the Fuzzy B-cubed and Fuzzy normalized Mu-
tual Information (NMI) criteria. Fuzzy NMI favours solutions with many clusters giving a high score to
the 1-cluster-per-instance baseline, while Fuzzy B-cubed favours few clusters and favours the all-in-one
baseline. Following (Wang et al., 2015), we use those two metrics but also report the geometric mean
of the two, which provides a more balanced metric and also assigns a score of zero to both the uninfor-
mative baselines. We use the top 3 most probable assignments of the zs variable with the corresponding
probability as the applicability weight. Results can be seen in Table 3.

We distinguish results for the standard test data provided by the SemEval task organizers and the aug-
mented test data used in the evaluation of the sense-topic model. The first data augmentation result,
indicated as “add-actual-context”, uses an extra two sentences before and after the provided test data
sentences, extracted by finding the test instances in their original corpus. The second data augmentation
result “add-UkWac-context”, uses context extracted from UkWac by finding word instances in a simi-
lar context as the test instances. Similarities are calculated by averaging word embeddings in the test
instance and calculating cosine similarities. These context augmentation techniques improve the per-
formance of the sense-topic model since the test data provided usually consist of a single sentence as
the context of the target word. Since our model also considers global context, we expect that such data
augmentation techniques would also increase its performance. However, we did not apply this approach
in our evaluation setting and only used the provided context found in the SemEval test data. When using
the actual SemEval test data, our model achieves the highest score in all three metrics.
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Model Fuzzy-NMI Fuzzy B-cubed Geom. Mean
MCC-S 7.62 55.6 20.58
Sense-Topic (Wang et al., 2015) 6.96 53.5 19.30
Sense-Topic (sim. weighted) 7.14 55.4 19.89
AI-KU (Baskaya et al., 2013) 6.5 39.0 15.92
unimelb (Lau et al., 2013) 6.0 48.3 17.02
Sense-Topic (add-actual-context) 9.39 59.1 23.56
Sense-Topic (add-UkWac-context) 9.74 54.5 23.04
1cl-per-inst 7.09 0 0
all-in-one 0 62.3 0

Table 3: Results on the SemEval-2013: Task 13 dataset. All Sense-Topic model variants are reported
from (Wang et al., 2015). Results with extra context (add-actual-context, add-UkWac-context) do not use
the same evaluation setting and are not directly comparable to the rest. AI-KU and unimelb are systems
participating in the SemEval-2013 evaluation.

5 Discussion

We attribute the good performance of the proposed model to its capacity to handle data sparsity. Both
the multiple context representations and the usage of low dimensional feature embeddings contribute
towards that goal. The importance of dealing with sparse inputs can be seen from the generally good
performance of Bayesian latent variable models for WSI (Wang et al., 2015; Chang et al., 2014) . While
these models manage to deal with the sparsity of words, they still do not manage to effectively utilize
syntactic features as we do with dependency feature embeddings. By using pretrained embeddings our
model has access to a very large feature set (about 220k words and 1.3m dependency context features),
while having to estimate a relatively small number of parameters. In Table 4, we show some examples
where clusters are formed by different but semantically related words, and the importance of syntactic
features.

A weakness of the proposed model is that context representations corresponding to senses are assumed
to follow Gaussian distributions. We cannot expect this assumption to hold in general, but our evaluation
suggests that it is a reasonable approximation. It is possible to extend the model by using a separate
Mixture of Gaussians to model each individual sense. While this extension would provide additional
capacity to the model for modelling sense specific contextual representations with complex probability
densities, it can lead to parametric explosion and severe overfitting.

In Figure 2, we use t-SNE (Maaten and Hinton, 2008) to visualize the syntactic context vectors of
the word “operate” from the SemEval-2010 training data and their sense assignments. We see that
clustered points generally form compact groups, though they are not clearly separated. In order to model
senses with contexts that do not follow a Gaussian distribution, the model favours additional clusters.
In practice, we observe that this behaviour does not pose a significant problem as long as these finer-
grained clusters are consistent with the underlying sense distribution, which was shown by the supervised
evaluation of SemEval-2010. If a coarse grained distribution is desired, methods that merge Gaussian
components as a postprocessing step could be considered (Hennig, 2010).

6 Conclusion

We propose a probabilistic latent variable model for Word Sense Induction. Our model integrates infor-
mation from three different context types: global lexical, local lexical and dependency syntactic context.
A different latent variable is inferred for each context type and dependencies are modelled in a structured
top-to-bottom way, where broader context representations directly influence only more specific repre-
sentations. Our context representations are constructed by weighted addition of word and dependency
context embeddings that provide a way to overcome sparsity and reduce the number of parameters needed
to be estimated. The number of senses is automatically determined by applying the Integrated Likelihood
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Figure 2: 2-d t-SNE of the syntactic context vectors of the word “operate”. Different colours correspond
to different cluster assignments. Best viewed in colour.

Cluster 6
... energy-efficient appliances and how to operate them efficiently ...
... temperature rises enough for the heat pump to operate more efficiently than your old furnace ...
... software to enable users to operate their computers remotely ...
Cluster 5
... 44 of these stores operate as monro muffler brake & service ...
... many industries with volatile profits ranging from oil exploration to computer
software operate without substantial government regulation ...
... bfx hospitality group , inc. owns and operates food services ...

Table 4: Instances of “operate” belonging into two different clusters. The contexts do not share many
common words, but they are semantically related. The second instance of cluster 5 shares words with
the third instance of cluster 6 (“software”, “computer”), but is assigned the correct sense because the
syntactic features indicate the long range subject dependency with “industries”.

Criterion. We evaluate our model in two competitive WSI benchmarks, achieving state-of-the-art results.
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