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Abstract

Measuring the information content of news text is useful for decision makers in their investments
since news information can influence the intrinsic values of companies. We propose a model
to automatically measure the information content given news text, trained using news and corre-
sponding cumulative abnormal returns of listed companies. Existing methods in finance literature
exploit sentiment signal features, which are limited by not considering factors such as events. We
address this issue by leveraging deep neural models to extract rich semantic features from news
text. In particular, a novel tree-structured LSTM is used to find target-specific representations of
news text given syntax structures. Empirical results show that the neural models can outperform
sentiment-based models, demonstrating the effectiveness of recent NLP technology advances for
computational finance.

1 Introduction

Information has economic value because it allows individuals to make choices that yield higher expected
payoffs than they would obtain from choices made in the absence of information. A major source of
information is text from the Internet, which embodies news events, analyst reports and public sentiments,
and can serve as a basis for investment decisions. Measuring the information content of text is hence
a highly important task in computational finance. For investors such as venture capitals, information
content should reflect a firm’s intrinsic value, or potential of future growth. However, measuring the
information content of text can be challenging due to uncertainties and subjectivity. Fortunately, for
public companies, the stock price can be used as a metric. Our goal is thus to leverage such data on
public companies to train a model for measuring the information content of news on arbitrary companies.

Finance theory suggests that stock prices reflect all available information and expectations about the
future prospects of firms (Fama, 1970). Based on this, empirical studies in economics and finance litera-
ture have exploited statistical methods to investigate how stock returns react to a particular news or event,
which is called event studies or information content effect (Ball and Brown, 1968). A standard analysis
is to measure the cumulative abnormal return (CAR) of a firm’s price over a period of time centered
around the event date (termed the event window) (MacKinlay, 1997). Conceptually, a daily abnormal
return represents the performance of a stock that varies from the expectation, normally triggered by an
event, and can be positive or negative depending on whether the stock outperforms or underperforms the
expected return. A CAR is the sum of all abnormal returns in an event window, formally described in
Section 2.

We study how news affects a public firm’s CAR for training a model to measure the information
content of arbitrary financial news. It is worth noting that this is different from predicting a firm’s
stock price movements, which aims at maximizing trading profits. Rather, we investigate whether NLP

techniques can assist the understanding of an event’s economic value. In finance literature sentiment
signals have been used as a standard linguistic feature for representing information content (Tetlock,
2007). We build a baseline using frequency-based features derived from sentiment words to represent
news text. However, sentiment polarities are subjective and may not fully represent the message conveyed
in news text. For example, event information is also influential in determining a firm’s stock price.
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To address this, we propose a deep neural model to better present news. A typical way of modeling a
sentence is to treat it as a sequence and input the sequence to a long short-term memory (LSTM; (Hochre-
iter and Schmidhuber, 1997) model, which is capable of learning semantic features automatically. How-
ever, information may present different impact to individual firms and therefore, we need a way to rep-
resent information conveyed in a news sentence depending on a specific firm. We propose a novel Tree-
LSTM which incorporates contextual information with target-dependent grammatical relations to embed
a sentence. Because of the target-dependent feature of the proposed embedding model, the representation
of a sentence varies from firm to firm.

We train our information content measurement model with news text collected from Reuters Business
& Financial News1. Results show that the proposed model yields significant improvements over a base-
line sentiment-based model. Different from existing event studies which focus on predefined events or
firms (Davis et al., 2012), our model is general to various news and firms; and one can measure the effect
of information content of news on any companies, including private companies.

The contribution of this paper is two-fold:
• First, we show that the information content of news text can be measured automatically. Our re-

sults demonstrate the effectiveness of state-of-the-art NLP techniques in computational finance, and
introduce information content effect in finance to the ACL community. Given the ubiquitous and in-
stantaneous nature of electronic text, text analytics is an obvious approach for information content
analysis.
• Second, we design a novel target-dependent Tree-LSTM-based model for representing news sen-

tences. To our knowledge, this is the first open-domain information content effect prediction system
using machine learning and NLP technologies.

2 Cumulative Abnormal Return

Formally, the abnormal return of a firm j on date t is the difference between the actual return Rjt and
the expected return R̂jt. R̂jt can be an estimated return based on an asset pricing model, using a long run
historical average, or it can be the return on an index, such as the Dow Jones or the S&P 500 during the
same period. For example, suppose that a firm’s stock price rose by 3%, and the market index increased
by 5% over the same period. If the stock is expected to perform equally to what the market does, namely
5%, the stock yielded an abnormal return of -2% even though the firm’s actual return is positive.

The cumulative abnormal return (CAR) of a firm j in an n-day event window is defined as the sum of
abnormal returns of each day:

CARjn =

n∑
t=1

(Rjt − R̂jt) (1)

The event window is normally centered at the event date and only trading days are considered in a win-
dow. The CARs before and after the event date mimic possible information leaks and delayed response
to the information, respectively. Depending on the span of an event window, CARs provide analysts
with short- and long-term information about the impact of an event on a stock’s price. The most com-
mon event window found in research is a three-day window (-1, 1) where an event is centered at day
0 (Tetlock, 2007; Davis et al., 2012), and the corresponding CAR is denoted as CAR3.

In this paper we model the effect of a news release on a firm’s CAR3. If a news release occurs during
trading hours, day 0 is the news release date; otherwise, day 0 is the next trading period. As prior research
demonstrates that there is no significant difference between a modeled expected return and the market
return for a short-term event window (Kothari and Warner, 2004), we compute the expected return R̂jt by
the return of the equally-weighted market index including all the stocks on NYSE, Amex and NASDAQ.

3 Information Content Prediction

Our goal is to estimate the polarity of information content y ∈ {0: negative effect, 1: positive effect}
given a sentence s in which a target firm is mentioned. Assume that there is an embedding model that

1http://www.reuters.com/finance
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maps a sentence to a feature vector g ∈ Rdg . The probability of positive information content effect is
defined as:

p(y = 1|s) = softmax(Wpg + bp) (2)
Wp and bp are parameters. We build two methods to obtain g from text, one being a traditional method
in the finance literature (Section 4) and the other being a novel neural network (Section 5).

It is possible that there is more than one sentence, 〈s1, s2, . . . , sm〉, mentioning a firm of interest in
the same event window. In this case, a neural attention mechanism adapted from Bahdanau et al. (2014)
is utilized to synthesize the corresponding information embeddings 〈g1, g2, . . . , gm〉. To compute the
attention vector, we define:

u(i) = vT tanh(Wugi) a(i) = softmax(u(i)) g′ =
m∑

i=1

a(i)gi (3)

where v and Wu are learnable parameters. u(i) is the score of how much attention should be put on gi,
and a(i) is the normalized score. The final synthetic feature vector g′ substitutes for g in Equation 2 to
predict the effect.

4 Sentiment-based Representation

A growing body of finance research literature examines the correlation between financial variables, such
as stock returns and earning surprises, and the sentiment of corporate reports, press releases, and investor
message boards (Li, 2010; Davis et al., 2012), most of which are based on purpose-built sentiment
lexicon. A commonly used source is the list compiled by Loughran and McDonald (2011),2 which
consists of 353 positive words and 2,337 negative words. As a baseline we follow prior literature (Mayew
and Venkatachalam, 2012) and represent the information content of a sentence based on counts derived
from the lexicon of Loughran and McDonald. The feature vector consists of raw frequency counts and
sentence length-normalized values of positive words, negative words, and the difference of positives and
negatives. In addition, the sentence length is also considered.

5 Deep Neural Representation

As mentioned in the introduction, it is useful to model news information content beyond their sentiment
signals. Deep learning has shown being effective in automatically inducing features that capture semantic
information over nature language sentences. To verify the relative effectiveness of deep neural models,
we first build a baseline neural network model using a popular LSTM structure (Section 5.1) and then
develop a novel syntactic tree-structured LSTM that is sensitive to specific target entities (Section 5.2).

5.1 Bidirectional LSTM

A popular way of modeling a sentence s is to represent each word by a vector x ∈ Rdx (Mikolov
et al., 2013), and sequentially input its word vectors 〈x1, x2, . . . , x|s|〉 to a long short-term memory
(LSTM; Hochreiter and Schmidhuber (1997)) model, which is a form of recurrent neural network
(RNN; Pearlmutter (1989)). We take a variation of LSTM with peephole connections (Gers and Schmid-
huber, 2000), which uses a input gate it, a forget gate ft and a output gate ot in the same memory block
to learn from the current cell state. In addition, to simplify model complexity, we adopt coupled it and
ft (Cho et al., 2014). The following equations show how the LSTM cell state ct and the output of the
memory block ht are updated given input xt at time step t:

it = σ(W1xt +W2ht−1 +W3ct−1 + b1) ct = ft ⊗ ct−1 + it ⊗ tanh(W7xt +W8ht−1 + b3)

ft = 1− it ht = ot ⊗ tanh(ct)
ot = σ(W4xt +W5ht−1 +W6ct + b2)

(4)

The W terms are the weight matrices (W3 and W6 are diagonal weight matrices for peephole connec-
tions); the b terms denote bias vectors; σ is the logistic sigmoid function; and ⊗ computes element-wise
multiplication of two vectors.

2http://www.nd.edu/˜mcdonald/Word Lists.html
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A deep LSTM is built by stacking multiple LSTM layers, with the output memory block sequence of
one layer forming the input sequence for the next. At each time step the input goes through multiple
non-linear layers, which progressively build up higher level representations from the current level. In our
information embedding models, we embody a deep LSTM architecture with 2 layers.

One of our baseline information embedding models is a bidirectional LSTM model (Graves et al.,
2013), called BI-LSTM, consisting of two 2-layer LSTMs running on the input sequence in both for-
ward and backward directions yielding vectors 〈−→h1,

−→
h2, . . . ,

−→
h|s|〉 and 〈←−h|s|,

←−−−
h|s|−1, . . . ,

←−
h1〉, respectively.

We exclude stopwords and punctuations from each sentence. The final model outputs the information
embedding g by concatenating the final outputs of the two LSTMs, namely

−→
h|s| and

←−
h|s|.

5.2 Dependency Tree-LSTM
A syntactic approach for modeling a sentence s is to use a tree-structured LSTM (Tree-LSTM), em-
bedding the parse tree of a sentence (Le and Zuidema, 2015; Tai et al., 2015; Zhu et al., 2015; Miwa
and Bansal, 2016). Our hypothesis is that dependency relations between words convey a certain level of
information content. For example, a dependency parser can tell Facebook is the subject which did the ac-
tion acquired to the object Whatsapp in the sentence Facebook acquired Whatsapp. We parse sentences
with ZPar (Zhang and Clark, 2011)3 and adopt the N-ary Tree-LSTM of Tai et al. (2015) with peephole
connections to run on a binarized dependency-based parse tree.

For the specific task, we leverage the structure of a binary Tree-LSTM, and develop a novel way to
represent a dependency relation between two words using this structure (Section 5.2.1). We propose an
algorithm to transform a dependency parse tree to a binary tree, where leaf nodes are words and internal
nodes are dependency relations, so that the transformed tree can be embedded using binary Tree-LSTM
(Section 5.2.2). Finally we explain how the task of information content effect measurement can benefit
from the target-dependent feature of the proposed binarization algorithm (Section 5.2.3).

5.2.1 Binary Tree-LSTM for Dependency Arcs
Similar to the LSTM memory block described in Section 5.1, a binary Tree-LSTM unit (Tai et al., 2015)
takes input xt at time step t and updates its cell state ct and the output of the memory block ht controlled
by input gate it, forget gate ft and output gate ot. However, instead of depending on only one previous
memory block as in a sequential LSTM model, a binary Tree-LSTM unit takes two children units, namely
left (l) and right (r), into consideration. In this case, there are two forget gates f l

t and f r
t for the left and

right children, respectively, so that information from each child can be selectively incorporated. The unit
activations are defined by the following set of equations:

it = σ(W9xt +
∑

D∈{l,r}
(WD

10h
D
t−1 +WD

11c
D
t−1) + b4) ct =

∑
D∈{l,r}

fD
t ⊗ cDt−1

f l
t = σ(W12xt +

∑
D∈{l,r}

(WD
13h

D
t−1 +WD

14c
D
t−1) + b5) + it ⊗ tanh(W21xt +

∑
D∈{l,r}

WD
22h

D
t−1 + b8)

fr
t = σ(W15xt +

∑
D∈{l,r}

(WD
16h

D
t−1 +WD

17c
D
t−1) + b6) ht = ot ⊗ tanh(ct)

ot = σ(W18xt +
∑

D∈{l,r}
WD

19h
D
t−1 +W20ct + b7)

(5)

The above binary Tree-LSTM model was proposed to represent binary-branching constituents (Tai
et al., 2015). In this paper, however, we show that it can be used to represent dependency arcs. For
example, given the subject dependency arc sub between acquired (head) and Facebook (dependent),
Figure 1a illustrates the bottom-up information propagation in a binary Tree-LSTM model, where xsub,
xacquired and xFacebook are vector representations of sub, acquired and Facebook, respectively. The
output of the last unit hsub(Facebook,acquired) is the dependency embedding of sub(acquired, Facebook).
We call this model LEX-TLSTM.

Miwa and Bansal (2016) incorporate bidirectional LSTMs into the input of a Tree-LSTM unit by
concatenating xi,

−→
hi and

←−
hi so that contextual information of individual words can be considered. Instead

3We use the default English dependency parser model available at https://github.com/frcchang/zpar/releases/tag/v0.7.5
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(a) Lexical input.

(b) Contextual input.

Figure 1: Binary Tree-LSTM models.

Input: target node n, dependency parse tree Td

Output: binarized dependency tree Tb

Tb ← NewBinaryTree
Tb.root← Binarize(n, Td)
Function Binarize(n, Td)

if Td.HasNoDep(n) then
return n

end
if Td.HasParent(n) then

p← Td.GetParent(n)
btn← NewBinaryTreeNode
btn.dep← Td.RemoveDep(p, n)
btn.LChild← Binarize(n, Td)
btn.RChild← Binarize(p, Td)
return btn

end
if Td.HasChild(n) then

c← Td.GetOneChild(n)
btn← NewBinaryTreeNode
btn.dep← Td.RemoveDep(n, c)
btn.LChild← Binarize(c, Td)
btn.RChild← Binarize(n, Td)
return btn

end
Algorithm 1: Dependency tree Binarization

(a) Dependency parse
tree.

(b) Binarized dependency
tree using the root word
acquired as the target.

(c) Target dependent
tree using Whatsapp
as the target.

(d) Remove stopwords
and punctuations from
tree (c).

Figure 2: A dependency parse tree and its binarized versions given different targets.

of inputting the three vectors as a whole into a Tree-LSTM unit, we treat forward and backward 2-
layer LSTM units as the left and right children, respectively, while inputting a word vector as shown in
Figure 1b, which we refer as CTX-TLSTM.

5.2.2 Binarized Dependency Tree
Figure 2a shows the dependency parse tree of the tokenized sentence Facebook acquired Whatsapp for
$ 19 billion, where the root word is at acquired and head words are at the upper ends of dependency
branches. To adapt a dependency parse tree to a binary Tree-LSTM model, Algorithm 1 presents a
recursive algorithm to binarize a dependency parse tree given a target word.

The algorithm starts from a given target word and creates a binary tree node to represent a dependency
relation between the target word and another word, with the dependent and head placed at the left and
right children, respectively. The rule for selecting the dependency relation is that the dependency with
the target’s head is considered first followed by that of the target’s dependents. In addition, we sort the
dependents of a target word in a way that left context words are always in front of right context words,
and both of the left and rigth context words are ordered by the distance to the target word in descending
order. For instance, the sorted dependent list of acquired in the example is 〈Facebook, for, Whatsapp〉.
After deciding a dependency relation to binarize, the head and dependent words become targets of the al-
gorithm to expand the binary tree recursively until all the dependency relations are transformed. After the
transformation, a binarized tree has words at leaf nodes, and each internal node represents a dependency
relation as shown in Figure 2b.
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5.2.3 Target Dependent Tree-LSTM
Recall that our objective is to model the information content effect on a target firm mentioned in a
sentence. In the previous example, a bidirectional model would output only one representation for the
sentence no matter what the target firm is. In contrast, the proposed tree transformation algorithm outputs
different binarized trees when different targets are given. Figure 2b and Figure 2c show the binarized
trees using Facebook4 and Whatsapp as targets, respectively. As in BI-LSTM, we remove stopwords and
punctuations from a tree. Figure 2d demonstrates the result after removing for and $ from Figure 2c.
When one child is ignored, the current node is replaced by the other child.

When applying a binary Tree-LSTM model on a binarized dependency tree, information is propagated
from the bottommost leaf nodes to the topmost dependency node (e.g. sub in Figure 2b), and the final
output h is treated as the information embedding g. As the proposed binarization algorithm tends to
leave the target at the top of the binary tree, information effectively flows from context to the target firm.
For a binary Tree-LSTM model running on a target-dependent tree, we add the prefix TGT- to the model
identification; otherwise the target is the root word defined by the parser, and RT- is prefixed to the model
identification.

5.3 Training
We pre-train skip-gram embeddings (Mikolov et al., 2013) of size 100 on a collection of Bloomberg
financial news from October 2006 to November 2013, and the size of the trained vocabulary is 320,618.
In addition, firm names and an UNK token for representing any words out of the vocabulary are added
to the vocabulary, having an initial embedding as the average of the pre-trained word vectors. The
word embeddings are fine-tuned during model training, with dropout (Srivastava et al., 2014) using a
probability of 0.5 to avoid overfitting. The other hyperparameters for our models along with dependency
type representations are initialized according to the method of Glorot et al. (2010)

For sequential LSTMs we use a 2-layer structure with inputs of size 100 and outputs of size 200. For
Tree-LSTM models, only one layer is exploited, and the input and output dimensions are the same as
that of sequential LSTMs.

Training is done by maximizing the conditional log-likelihood of the target effect category for 15
iterations. The parameters are optimized by stochastic gradient descent with momentum (Rumelhart et
al., 1988) using an initial learning rate of 0.005, with L2 regularization at strength 10−6. Every 1,000
training examples the parameters are evaluated on the development set by the macro-averaged F-score,
and those achieving the highest value are kept.

6 Experiments Settings

Data: We collect publicly available financial news from Reuters from October 2006 to December 2015.
Instead of taking a whole news article or simply a news title into consideration, we target the section of
text which appears in the HTML ‘class’ attribute of ‘focus paragraph’ of Reuters news articles. This is
invariably the first paragraph of such articles, which provide additional detail to the information contained
in the article’s title. For example, the focus paragraph of the news titled Exclusive: Target gets tough
with vendors to speed up supply chain (4 May 2016, 12:22pm EDT) is:

Discount retailer Target Corp (TGT.N) is cracking down on suppliers as part of a multi-billion dollar
overhaul to speed up its supply chain and better compete with rivals including Wal-Mart Stores Inc
(WMT.N) and Amazon.com Inc (AMZN.O).5

As Target Corp, Wal-Mart Stores Inc and Amazon.com Inc are mentioned in the paragraph, we assume
that the information content of the paragraph affects CAR3 of these three firms. We ignore focus para-
graphs that do not contain any names of U.S.-based, publicly listed firms. Finally, text are grouped per
firm per event date, and for each group a CAR3 is computed accordingly. This yields 22,317 instances,
5,848 of which have information gathered from more than one news. A total of 1,330 firms are covered

4Targeting at acquired and Facebook happen to have the same binarized tree.
5http://www.reuters.com/article/us-target-suppliers-exclusive-idUSKCN0XV096
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+CAR3 -CAR3

Train 9,674 9,643
Dev 493 507
Test 995 1,005

Table 1: Numbers of
CAR3 in the datasets.

+CAR3 -CAR3

Sentiment-based 0.53 0.55
BI-LSTM 0.61 0.62

RT-LEX-TLSTM 0.62 0.63
RT-CTX-TLSTM 0.62 0.63

TGT-LEX-TLSTM 0.63 0.63
TGT-CTX-TLSTM 0.64 0.66

Table 2: AUCs of different em-
bedding methods.

+CAR3 -CAR3 +CAR3 -CAR3
>+2% <-2%

Sentiment-based 0.53 0.55 0.59 0.58
BI-LSTM 0.58 0.58 0.66 0.63

TGT-CTX-TLSTM 0.63 0.62 0.70 0.68

Table 3: Final AUCs.

in our data. We randomly select 1,000 and 2,000 instances as development and test sets, respectively,
and the rest are used for training. The numbers of positive and negative CAR3 examples in the training,
development and test sets are fairly balanced, as shown in Table 1.

Evaluation Metric: Although the task of information content effect prediction is a binary classifica-
tion problem, we do not evaluate our models using the accuracy metric because the data are automatically
aligned and some CAR3 values may not reflect the information correctly. Instead, we evaluate the perfor-
mance of the models by the area under the precision-recall curve (AUC), where precision is the fraction
of retrieved positive/negative effect instances that really have positive/negative impact, and recall is the
fraction of positive/negative effect instances that are retrieved.

6.1 Development Experiments

Table 2 summarizes AUCs of both positive and negative effect predictions on the development set for
models using different embedding methods. First, the deep neural embedding approaches outperform
the conventional sentiment-based representation widely exploited in finance research. This shows that
deep neural models are stronger in capturing news information on and beyond sentiment signals. Second,
compared with the sequential embedding strategy, namely BI-LSTM, those Tree-LSTM based (TLSTM)
dependency embeddings perform better, demonstrating the benefit of syntactic information. Finally, the
information content prediction can benefit from the target-dependent tree transformation (TGT) com-
pared with that using the root word (RT). In addition, the performance of target-dependent models can
be improved by incorporating an input word embedding (LEX) with its contextual information (CTX).
It is worth noting that the main improvement comes from using the neural feature representation instead
of the sentiment word statistics.

6.2 Final Results

Table 3 gives the AUCs for the baseline sentiment-based representation, the sequential embedding BI-
LSTM, and the targeted dependency tree method TGT-CTX-TLSTM evaluated on the test set. TGT-
CTX-TLSTM outperforms the other baselines, and the improvements between models are statistically
significant (p ≤ 0.05).

One possible application of the proposed model is the use as a security recommender in the financial
domain. Thus we apply the model to instances with |CAR3| > 2%, namely information with high
impact. A total of 1,021 instances in the test set pass this threshold. As shown in Table 3 the proposed
model achieves AUCs of 0.7 and 0.68 on +CAR3 and -CAR3, respectively. The results not only show
the robustness of our model compared to the baselines but also demonstrate its applicability.

To demonstrate the attention mechanism for weighing individual news, Table 4 shows three sets of
news, each of which consists news from the same event window and mentioning a specific firm. Both the
CAR3 and the predicted effect probability for each event window are given, and the modeled weight is
shown in front of each news, which meets human expectations. For example, one would expect that the
news of Wal-Mart Stores Inc missing its profit expectation is more influential than that of being capable
of paying shopping using smartphones at Wal-Mart, as shown in the first news group.

3222



• Target: Wal-Mart Stores Inc; CAR3: -4.7%; TGT-CTX-TLSTM: 0.21
0.95 Wal-Mart Stores Inc’s (WMT.N) full-year profit may miss analysts’ expectations as growth slows in its international

markets, pressuring the company even as its U.S. discount stores continue to prosper.
0.05 A group of big retailers that includes Wal-Mart Stores Inc, Target Corp and Japan’s 7-Eleven is developing a mobile

payment network, adding to the proliferation of options that let consumers pay with smartphones.
• Target: Oshkosh Corp; CAR3: 9.8%; TGT-CTX-TLSTM: 0.81

0.66 Activist investor Carl Icahn offered to buy all the outstanding shares of Oshkosh Corp (OSK.N) Thursday for a 21-
percent premium to the U.S. truckmaker’s closing price on Wednesday, sending its shares to their highest in more than
a year.

0.34 Truck maker Oshkosh Corp (OSK.N) advised its shareholders on Thursday to take no action related to activist investor
Carl Icahn’s offer to buy all outstanding shares in the company for $32.50 each.

• Target: Sony Corp; CAR3: -2.3%; TGT-CTX-TLSTM: 0.27
0.86 Sony Corp stuck with its full-year profit forecast after slashing its outlook for TV sales, confident that other units will

perform better than earlier anticipated to offset additional losses in the unit.
0.14 Japan’s biggest technology conglomerates reported quarterly results, with weak TV demand a common theme at both

Sony Corp and Sharp Corp.

Table 4: Learned weights for different news.

7 Related Work

Our work is related to research that applies NLP techniques on financial text to predict stock prices and
market activities. In terms of corpora, financial news (Leinweber and Sisk, 2011; Xie et al., 2013;
Luss and d’Aspremont, 2015; Ding et al., 2015), firm reports (Kogan et al., 2009; Li, 2010; Lee et al.,
2014; Qiu et al., 2014) and web content, such as tweets (Bollen et al., 2011; Vu et al., 2012) and forum
posts (Das and Chen, 2007; Gilbert and Karahalios, 2010) have been studied. In terms of linguistic
features, existing work can be classified into tree major categories: bag-of-words (Kogan et al., 2009;
Lee et al., 2014; Qiu et al., 2014), sentiment-based (Das and Chen, 2007; Li, 2010; Bollen et al., 2011; Vu
et al., 2012; Luss and d’Aspremont, 2015), and information-retrieval-based (Schumaker and Chen, 2009;
Xie et al., 2013; Ding et al., 2015) methods. Our work falls into the category of information retrieval-
based features by exploiting syntax information derived from a dependency parser. However, different
from the aforementioned work, our goal is not to predict stock prices but to measure the economic value
of news information content.

The proposed Tree-LSTM based model for automatically representing syntactic dependencies is in
line with recent research that extends the standard sequential LSTM in order to support more complex
structures, such as Grid LSTM (Kalchbrenner et al., 2015), Spatial LSTM (Dyer et al., 2015), and Tree-
LSTM (Le and Zuidema, 2015; Tai et al., 2015; Zhu et al., 2015; Miwa and Bansal, 2016). We consider
the information content prediction as a semantic-heavy task and demonstrate that it can benefit signifi-
cantly from a novel target-specific dependency Tree-LSTM model.

8 Conclusion

We showed that the impact of information in news release can be predicted using a firm’s CAR, and
that a proposed target-depend Tree-LSTM model, incorporating contextual information with syntax de-
pendencies, is more effective in representing information content in news text compared to the classic
bidirectional LSTM model and a baseline sentiment-based representation. The proposed model can serve
as a security assessment tool for financial analysts, and benefit more comprehensive financial models and
studies.
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