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Abstract

Sentiment classification becomes more and more important with the rapid growth of user-
generated content. However, sentiment classification task usually comes with two challenges:
first, sentiment classification is highly domain-dependent and training sentiment classifier for
every domain is inefficient and often impractical; second, since the quantity of labeled data is
important for assessing the quality of classifier, it is hard to evaluate classifiers when labeled
data is limited for certain domains. To address the challenges mentioned above, we focus on
learning high-level features that are able to generalize across domains, so a global classifier can
benefit with a simple combination of documents from multiple domains. In this paper, the pro-
posed model incorporates both labeled and unlabeled data from multiple domains and learns new
feature representations. Our model doesn’t require labels from every domain, which means the
learned feature representation can be generalized for sentiment domain adaptation. In addition,
the learned feature representation can be used as classifier since our model defines the mean-
ing of feature value and arranges high-level features in a prefixed order, so it is not necessary
to train another classifier on top of the new features. Empirical evaluations demonstrate our
model outperforms baselines and yields competitive results to other state-of-the-art works on the
benchmark dataset.

1 Introduction

With the rapid growth of user-generated content, such as product reviews and microblogs, sentiment
analysis and opinion mining have become more and more important as they address the problem of
analyzing user’s opinions, emotions, sentiments and attitudes. The applications of sentiment analysis
have been found in almost every business and social domain (Liu, 2012; Bollen et al., 2011; Ku et al.,
2006). Document-level sentiment classification predicts sentiment polarities for a given document or
review. The large number of reviews not only help customers make better decisions but also make it
possible yet challenge for product manufacturers to keep track opinions of the products (Hu and Liu,
2004).

While machine learning techniques provide interesting methods for analyzing sentiments (Turney,
2002; Go et al., 2009; Pang et al., 2002), challenges also arise certain limitations for the development
of sentiment classification. For example, sentiment expression is highly domain-dependent (Pang and
Lee, 2008), but training sentiment classifier for every domain is inefficient and often impractical. Simply
combining data from different domains may not contribute to a generalized classifier for every domain,
as users express the same sentiment in different domains using different words, or even express different
sentiment using same words. For example, a user would prefer computer or car to “run fast” but not
wish to use battery “die fast” or to see watch “move fast”. A book or a movie can attract people by
“unpredictable” endings but “unpredictable” economic trends scare away investors. In addition, certain
domains don’t have enough labeled data for building the classifier, which makes it indispensable to
transfer knowledge between different domains.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

2978



A common observation is, even though sentiment expression is domain-dependent and various words
are isolated by domain categories, there are always domain-independent words expressing general sen-
timent polarities. In traditional sentiment domain adaptation that focuses on one domain to another
domain (Daumé III et al., 2010; Ben-David et al., 2007; Ben-David et al., 2010), such words are usually
defined as pivot features (Blitzer et al., 2006; Blitzer et al., 2007; Pan et al., 2010). Existing works have
focused on generating new feature representations for pivot features (Glorot et al., 2011; Chen et al.,
2012; Yang and Eisenstein, 2015; Bollegala et al., 2015) so that classifiers trained on new features can
generalize well across domains.

In this paper, we follow the motivation of using new feature representations (Bengio et al., 2012) to
bridge domain divergence and transfer knowledge among domains. The idea of proposed work is to learn
a high-level feature space where three constraints are enforced: the model can incorporate multiple do-
mains with both labeled and unlabeled data; the high-level feature space maximizes the margin between
sentiment polarities; the high-level feature can represent original features well so that two feature space
can be transformed to each other through a shared parametric matrix. Some of the key characters of the
proposed model are:

1. Given multiple domains, our model can leverage sentiment similarity between instances across
different domains regardless of the dissimilarity between domains. This is achieved by maximizing
the distance between sentiments and minimizing the distance between domains in the high-level
feature space.

2. Compared with one domain(source) to another domain(target) schema, our model collaborates all
possible domains with both labeled and unlabeled data, which is a more generic framework and
caters for better transfer across domains.

3. Our model directly maximizes the margin of sentiment polarities in the learned feature space. This
is achieved by exploiting non-linear transformation with sigmoid function and aligning instances to
pseudo-sentiment centroids.

4. Unlike traditional representation learning method which involves two stages: learning representa-
tion and building classifier, the new feature space learned by our model can be taken as classifier
by itself. This is achieved through setting the order of learned high-level features and defining the
meaning of feature values. As a result, it is not necessary to train another classifier on top of the
new features.

5. We extend autoencoder (Vincent et al., 2010) by incorporating sentiment polarities. Unlike existing
semi-supervised autoencoder (Liu et al., 2015; Socher et al., 2011) that needs another layer for la-
bels, our model introduces pseudo-sentiment centroids, which can be prefixed and selected without
fine-tuning.

2 Related Work

In this section, we review related works on sentiment analysis and transfer learning.

2.1 In-Domain Sentiment Analysis
For sentiment analysis of user generated content, traditional works have focused on textual content and
dictionaries based approaches (Taboada et al., 2011; Hu and Liu, 2004; Pang and Lee, 2008). Pang et
al. (2002) built sentiment classifier to predict sentiment polarities of movie reviews. Hu et al. (2013)
exploited contextual emotional signals for effective sentiment analysis in an unsupervised manner. Tu-
masjan et al. (2010) evaluated and analyzed Twitter messages with the political sentiment to predict the
popularity of parties. Bollen et al. (2011) explored how Twitter mood patterns can identify economic
events. Other trends of sentiment analysis are based on visual content (Siersdorfer et al., 2010; Borth et
al., 2013) and multi-modalities (Socher et al., 2011). All these works consider training and testing data
are within the same domain or following similar distributions.
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Even though our work only focuses on textual content, we omit explicit word to word analysis but
project word features into high-level feature space, where visual content or multi-modalities can also
be transformed. In addition, we examine the limitation of domain-dependent sentiment expression and
investigate efforts on building a generalized representation for all domains.

2.2 Knowledge Transfer and Leveraging Multiple Domains

Knowledge-based sentiment analysis have been explored in (Mukherjee and Liu, 2012; Liu, 2014; Chen
et al., 2013a; Chen et al., 2013b; Chen et al., 2013c). However, they have focused on aspect term ex-
traction as opposed to sentiment polarity extraction which is the focus of this work. Another thread is to
transfer sentiment knowledge across domains. It is usually defined as domain adaptation (Daume III and
Marcu, 2006; Ben-David et al., 2010; Ben-David et al., 2007). It utilizes the knowledge learned from
one domain, referred as the source domain, to solve tasks in another domain, referred as the target do-
main. Studies have focused on re-weighting features that cross domains (Jiang and Zhai, 2007; Xia et al.,
2013), using feature embeddings to convert word feature to vector feature (Yang and Eisenstein, 2015;
Bollegala et al., 2015) or generating new feature representations that align domain-specified features
onto a generalized feature space which can bridge domain divergence (Blitzer et al., 2006; Cheng and
Pan, 2014). Blitzer et al. (2007) proposed Structural Correspondence Learning by selecting pivot feature
and creating correlations between the pivot and non-pivot features. Pan et al. (2010) introduced a bipar-
tite graph based approach to connect domain-independent features and domain-specific features. Xiao
et al. (2013) proposed supervised word clustering, which assumed that a document was composed of
latent (topical) clusters and used expectation-maximization algorithm to find those clusters to transform
documents from bag-of-words representation to clusters representation.

Besides transferring knowledge from one domain to another domain, researchers have also explored
the area of leveraging multiple domains (Mansour et al., 2009; Duan et al., 2009; Daumé III et al., 2010).
In addition, Gong et al. (2012) introduced a kernel metric identifying the optimal adaptability among dif-
ferent domains. Li and Zong (2008) leveraged domains by combining sentiment classifiers of different
domains to make the final prediction. Wu and Huang (2015) collaborated multiple domains by exploring
textual content relations and sentiment word relations via labeled data. Glorot et al. (2011) utilized unla-
beled data through unsupervised deep learning approach with rectifier. Chen et al. (2012) extended linear
autoencoder by learning with marginalized corrupted features. Liu et al. (2015) incorporated domain and
sentiment supervision for sentiment classification cross domains.

While the above works have made important progress, there are some major differences from this
proposed work. First, instead of considering the transfer from “source” to “target”, our model leverages
multiple domains and at the time is capable of learning from both labeled and unlabeled data across mul-
tiple domains. This is closer to the reality because the amount of labels are various among domains and
we want the model to leverage all possible knowledge. Second, our model exploits non-linear transfor-
mation with the sigmoid function. The sigmoid function shrinks feature value within (0, 1), which enable
us to directly maximize the margin of sentiment polarities by supervised instances alignment. Moreover,
we fix the order of high-level features and define the meaning of feature values, so classification can
be acquired by the learned representation. This is more efficient in terms of performance as it does not
require retraining another classifier as other methods do.

3 The Proposed Model

The general idea of the proposed work is to learn a high-level feature space for multi-domain senti-
ment classification with three constraints. First, the collaboration constraint, which allows the model
to collaborate multiple domains with both labeled and unlabeled data. Second, the max-min constraint,
that employs high-level feature space to maximize the margin between sentiment polarities of instances
across different domains and minimize the distance between domain clusters. Third, the transformation
constraint where the high-level feature space and original feature space are transformed to each other
through a shared weight matrix, which reduces overfitting.
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3.1 Notations

Given a binary sentiment classification problem with positive and negative labels, we have access to P
domains. There are total N documents, M of which are labeled. So for each domain j, documents
and labels are denoted as {Xj ∈ RNj×D,yj ∈ RMj×1}, where D is the dimensions of the original
feature space. We assume the original feature space is shared across different domains. xj

i ∈ R1×D is
the ith document in domain j and represented as a Boolean vector of bag-of-words. If the ith document
is labeled, then yj

i ∈ {+1,−1}. The shared weight matrix is denoted as W. The bias vectors for
transformation between original space and high-level feature space are denoted as b1,b2, separately.

3.2 The Model with Three Constraints

3.2.1 The Collaboration Constraint
The collaboration constraint enforces the model to collaborate multiple domains with all possible data.
We adopt one layer denoising autoencoder (Vincent et al., 2010) to encourage this constraint and treat all
data as unlabeled at this point. A denoising autoencoder learns high-level feature space h(x). It corrupts
input x and feeds the corrupted version x̄ into the encoding layer. The decoder undoes the corruption
by generating results back to uncorrupted x. The parameters of denoising autoencoder are learned by
minimizing the reconstruction loss Lr

(
x, g(x̄)

)
, where

g(x̄) = s2(w2h(x̄) + b2) and h(x̄) = s1(w1x̄ + b1) (1)

We utilize masking noise for the corruption and implement component wise logistic sigmoid as the
non-linear function for both s1(x) and s2(x). It is important to have the value of each high-level feature
of h(x) between

(
0, 1
)
, as it paves the way for the following steps and makes the learned representation

advisable for different classifiers. Note that the focus of this work is sentiment classification and we only
utilize a single layer autoencoder, so the stack version of our implementation and the issue of handling
the vanishing gradient are not discussed.

3.2.2 The Max-Min Constraint
The max-min constraint utilizes labeled data and supports the new representation h(x) to maximize
the margin of sentiment polarities. Sentiment classification is highly domain-dependent, which implies
domain clusters are easier separated than sentiment clusters in the original feature space. While in
h(x), instances are aligned to prefixed sentiment pseudo-centroids if they have same sentiment polarities.
Since the value of each high-level feature is between

(
0, 1
)
, we prefix [1, · · · , 1, 0, · · · , 0]T for positive

pseudo-centroid c+ and [0, · · · , 0, 1, · · · , 1]T for negative pseudo-centroid c−, so the pseudo-centroids
are maximized by cosine distance. This prefix also allows the learned representation to be used as
classifier. The dimension of pseudo-centroid |C| is same as the dimension of learned feature space
|h(x)|. After the alignment, the true sentiment centroids of labeled data would also be maximized. The
alignment is achieved by minimizing the alignment loss La

(
C, h(x)

)
, where

C =

{
c+, if the label of x is positive
c−, if the label of x is negative

(2)

When maximizing sentiment polarities between instances, the distance between domains is also mini-
mized as positive instances across domains are moving towards c+ and negative instances are moving
towards c−. This alignment can suppress domain-specific features because domains would be hardly
partitioned.

3.2.3 The Transformation Constraint
We share the weight matrix between encoding layer and decoding layer in equation 1, so the equations
are updated to:

g(x̄) = sigmoid(WTh(x̄) + b2) and h(x̄) = sigmoid(Wx̄ + b1) (3)
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By sharing the weight matrix, the transformation would be more robust and provide a better feature
representation as it reduces overfitting. The shared weights can also be interpreted as a trade-off be-
tween suppressing and preserving domain-specific features. We cannot fully eliminate those features, as
domain-specific features give the ability to reconstruct to the original feature space.

3.3 Loss Function and Optimization
We use sum of Bernoulli Cross Entropy for reconstruction loss Lr

(
x, g(x̄)

)
and alignment loss

La

(
C, h(x)

)
. Combined with equation 2 and 3, the final loss function L is

L =Lr

(
x, g(x̄)

)
+ αLs

(
C, h(x)

)
(4)

=− 1
N

N∑
i

|x|∑
k

xi,k log g(x̄i)k +
(
1− xi,k

)
log
(
1− g(x̄i)k

)
− α 1

M

M∑
j

|C|∑
l

Cl log h(xj)l +
(
1−Cl

)
log
(
1− h(xj)l

)
We use α = 1 in the model1. The equation 4 is non-convex but can be optimized with gradient

descend. The partial derivatives of L with respect to b1,b2 and W is

∂L
∂W

=
1
N

N∑
i

(h(x̄i) + h(x̄i)(1− h(x̄i))TWx̄i

)× (g(x̄i)− xi

)T +
α

M

M∑
j

(h(xj)−C)xT
j (5)

∂L
∂b1

=
1
N

N∑
i

h(x̄i)(1− h(x̄i))TW
(
g(x̄i)− xi

)
+

α

M

M∑
j

(h(xj)−C) (6)

∂L
∂b2

=
1
N

N∑
i

(
g(x̄i)− xi

)
(7)

The output of our model is the learned feature representation h(x). This representation can be used as
features for another classifier or can be used as a classifier by itself.

3.4 Using the Representation as Classifier
To use h(x) as a classifier, we calculate the distance from data points to the prefixed pseudo-centroids C.
Data points closer to c+ should have first half of h(x) closer to 1 and the second half closer to 0, while
data points closer to c− should have first half of h(x) closer to 0 and second half closer to 1. Therefore,
the predicted label of a data point is:

sgn
( |C|/2−1∑

i=0

h(x)i −
|C|/2−1∑

j=0

h(x)
j+

|C|
2

)
(8)

The classifier can also be interpreted as using the decision of multiple logistic regression models. For
the first half of h(x), we define values greater than 0.5 represent positive and smaller than 0.5 represent
negative, while for the second half, we define values greater than 0.5 represent negative and smaller than
0.5 represent positive.

4 Experimental Evaluations

We first report results of multi-domain sentiment classification, comparing different methods with in-
domain classifier and multi-domain classifier. Then, we extend our model to domain adaptation problem
with multiple source domains and one target domain. Finally, we evaluate the model with different
metrics for a better understanding. All SVM classifiers are implemented through linear LibSVM (Chang
and Lin, 2011) without tuning other parameters.

1We have tested the impact of different values of α from 0.2 to 10 and found the value of α does not significantly affect the
performance of our model. A larger α generally gives a slightly better result.
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4.1 Dataset

We use the Amazon product reviews (Blitzer et al., 2007) as our experimental dataset. The dataset has
been widely used in multi-domain sentiment classification and domain adaptation for sentiment classi-
fication. There are 22 domains and more than 300,000 reviews in this dataset. We conduct experiments
on reviews of 4 domains: Books, Dvd, Electronics and Kitchen. Each of selected domain has 1000 pos-
itive and 1000 negative labeled reviews and roughly 5000 unlabeled reviews. The top 5000 of frequent
1-gram and 2-gram features are selected, as low frequent features are usually related to domains. The
experiments are conducted based on 5-folder cross-validation by randomly splitting the labeled data into
5 partitions with equal size and we report the average result2.

4.2 Performance Evaluation

We report results of multi-domain sentiment classification. The compared methods are listed below:
SVM-ID, SVM-MD: SVM classifier used for in-domain(ID) sentiment classification, and multi-

domain(MD) sentiment classification with document-level combination.
ClassifierFusion (Li and Zong, 2008): Multi-domain sentiment classification with classifier-level

combination. For each domain, a classifier is trained and used for all domains. The final prediction is the
combination of the predictions of each individual classifier.

T-SVM (Sindhwani and Keerthi, 2006): Transductive SVM with document-level combination. All
unlabeled data are used during learning. This method explicitly shows the performance of introducing
unlabeled data to an SVM classifier, so it can be interpreted as SVM-MD with both labeled and unlabeled
data.

SDA (Glorot et al., 2011): Unsupervised denoising autoencoder for representation learning. The
feature space for the final SVM classifier is the concatenation of the original feature space and the learned
representation feature space.

SDA-DSS (Liu et al., 2015): Representation learning with domain and sentiment supervision. The
original implementation only incorporated sentiment labels of one domain, so we extend the model to
incorporate labeled data of 4 domains. Same as SDA, the feature space for the SVM classifier is the
concatenation of the original feature space and the learned representation feature space.

Proposed-R: Using representation learned from the proposed model. The feature space of the final
SVM classifier is only the learned representation feature space. The hyper-parameter are explored as
follow and selected by cross-validation: a masking noise probability in {0,0.5,0.6,0.7,0.8} for corrupted
x̄; dimension of learned feature space h(x) in {100,250,500}; L2 regularization penalty on shared weight
matrix W in {0, 10−4, 10−3, 10−1, 1}; learning rate for gradient descent in {0.01, 0.03, 0.1, 0.3}. The
implementation is through Theano (Bastien et al., 2012).

Proposed-C: The learned representation is used as classifier with Equation 8. Because we only focus
on the learned representation without tuning the parameter of SVM, the result of Proposed-C is only
presented for a reference, not to demonstrate it is better than other classifiers.

All models, except SVM-ID, utilize the training set of 4 domains together and then make prediction
on the test data of each domain. All models, except SVM-ID, SVM-MD, and ClassifierFusion, are
implemented through transductive inference to better leverage the unlabeled data. However, it could be
easily extended to inductive inference as all models return the feature transformation matrix.

SVM-ID (%) SVM-MD (%) ClassifierFusion (%) T-SVM (%) SDA (%) SDA-DSS (%) Proposed-R (%) Proposed-C (%)
Ac F1 Ac F1 Ac F1 Ac F1 Ac F1 Ac F1 Ac F1 Ac F1

B 77.81 78.25 78.03 78.26 79.16 79.28 77.50 76.67 80.49 80.70 79.60 79.84 81.57 81.84 84.14 84.56
D 77.61 78.05 79.14 79.13 81.37 81.45 79.67 79.53 80.73 80.93 80.23 80.25 83.41 83.69 84.91 85.44
E 82.54 82.68 83.52 83.55 84.77 84.03 86.17 86.05 84.65 84.64 84.21 84.16 87.01 87.00 88.17 88.18
K 84.78 84.56 84.39 84.26 86.42 86.05 86.17 85.33 86.18 85.97 85.53 85.16 88.07 88.07 89.30 89.40

Ave. 80.68 80.89 81.27 81.33 82.96 82.70 82.38 81.90 83.01 83.06 82.39 82.35 85.02 85.15 86.63 86.90

Table 1: Performance on Accuracy and F1 for Multi-Domain Sentiment Classification Tasks

2Micro average F1 on positive class is reported in this paper
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According to Table 1, we find that our method consistently outperforms all other competitors showing
that leveraging multiple domains can provide better results for sentiment classification if dissimilarities
between domains are taken care of. It also shows that arbitrarily combining data together with bag-
of-word representation cannot guarantee better results compared to in-domain sentiment classification.
Compared to ClassifierFusion, the results validate that unlabeled instances and transductive inference
can improve sentiment classification. Compared to T-SVM, it can be concluded that learning a new
representation would benefit a generalized sentiment classifier across domains. Compared to SDA and
SDA-DSS, the improvements can be explained as credit of transforming with sigmoid function, maxi-
mizing margin of sentiment polarities in learned feature space and suppressing domain-specific features
during representation learning.

4.3 Unsupervised Knowledge Transfer

When incorporating multi-domains with both labeled and unlabeled data, a possible scenario is certain
domains have very limited or even zero labels. In the literature of domain adaptation, unsupervised
knowledge transfer or unsupervised domain adaptation usually refers to the situation where certain do-
mains have no labeled instance at all, so the unlabeled domain, usually denoted as target domain, has
to borrow labels from other domains denoted as source domain (Daume III and Marcu, 2006). In this
experiment, we check the ability of our model for unsupervised domain adaptation. We consider 3 source
domains and 1 target domain, and remove labels of each target domain separately. Table 2 presents the
results of training on 3 domains and testing on the other. More specifically, SVM-ID remains the same
as in Table 1 and the result is interpreted as an upper-bound for unsupervised knowledge transfer, while
all other models are adjusted to access the training set of 3 source domains and test on the test set of the
target domain.

SVM-ID (%) SVM-MD (%) ClassifierFusion (%) T-SVM (%) SDA (%) SDA-DSS (%) Proposed-R (%) Proposed-C (%)
Ac F1 Ac F1 Ac F1 Ac F1 Ac F1 Ac F1 Ac F1 Ac F1

B 77.81 78.25 74.22 74.42 75.00 75.08 75.33 75.37 76.54 76.75 76.86 76.33 78.07 78.15 81.00 81.41
D 77.61 78.05 76.41 77.76 77.00 76.53 78.00 77.86 79.64 79.86 78.78 79.83 78.11 79.03 83.35 83.74
E 82.54 82.68 80.90 80.27 82.16 81.86 82.17 82.48 81.95 81.42 82.40 81.73 82.29 81.30 85.09 84.20
K 84.78 84.56 81.90 82.14 83.83 83.90 83.67 83.11 84.04 84.00 83.92 84.23 84.37 84.79 87.25 87.31

Ave. 80.68 80.89 78.36 78.65 79.50 79.34 79.79 79.71 80.54 80.26 80.49 80.53 80.71 80.82 84.17 84.16

Table 2: Performance on Accuracy and F1 for Unsupervised Domain Adaptation with Multiple Sources

Comparing with transfer from one source to one target (Glorot et al., 2011; Liu et al., 2015), we ob-
server from Table 2 that arbitrarily combining data together decreases the best transfer performances of
SDA and SDA-DSS, which suggests domain-specific features are hurting unsupervised transfer. More-
over, our model yields limited improvements this time. One reason could be SDA and SDA-DSS separate
domain-dependent and domain-independent features and keep all features in the learned representation,
while our model suppresses domain-dependent feature. However, in general, “domain-dependent” is a
relative definition. A word “story” could be a domain-independent feature for Books and DVD but also
could be a domain-dependent feature for Books and Kitchen. Therefore, suppressing domain-dependent
features for multiple domains which works better in the previous task could be the reason that limits our
model on this unsupervised domain adaptation task.

4.4 Performance on Additional Metrics

We assess our model with additional metrics for multi-domain sentiment classification: sensitivity of
labeled instances, proxy-A-distance, performance on different classifiers and suppressed features.

Sensitivity of Labeled Instances In this experiment, we explore how the proportion of labels affects
the model as the model collaborates both labeled and unlabeled data from multiple domains. We limit
the accessible labels in {0, 100, 300, 500, 1000, 1500} for each domain to learn the representation
and repeat the experiment of multi-domain sentiment classification with Proposed-R. With 0 labels, the
model would be similar to a fully unsupervised SDA (Glorot et al., 2011) implementation, except with
sigmoid activation and a lower feature dimension. According to Figure 1, limiting labels decreases the
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Figure 1: Sensitivity of Labeled Instances Figure 2: Proxy-A-Distance

performance, but this issue is generally solved as the proportion of labels is further increased and we see
that at about 1000 labels performance starts to stabilize.

Proxy-A-Distance (PAD) We use PAD as an indirect metric to measure the ability to minimize dis-
similarities between domains. The intuition is that removing domain-dependent features would weaken
the discrimination among domains. The PAD metric (Ben-David et al., 2007) is defined as 2(1 − 2ε),
where ε is the generalization error and obtained by measuring how distinguishable are the two domains.
In other words, we use the learned representation to accomplish domain recognition task. We randomly
choose 1000 instances for training and 1000 for testing from each domain. Then we set up the recog-
nition task as a binary classification problem with 6 combinations, for example, recognition between B
and D. After applied our model, the PAD value of every recognition pair has decreased, which indicates
the new feature representation learned from our model suppresses domain-dependent features.

According to Figure 2, recognizing Kitchen and Electronics are more difficult than Books and DVD.
One reason is the reviews in Kitchen and Electronics are expressed using more domain-independent
words. This observation also explains the sentiment classification results in Table 1 that classifying
sentiment in Kitchen and Electronics generally have a better performance across different methods.

Performance of Different Classifiers We argue that a good representation should be able to benefit
classification task without explicitly choosing or fine-tuning classifiers. Therefore, We repeat the ex-
periment of multi-domain sentiment classification by comparing our Proposed-R(P-R) and SDA with
another three state-of-art classifiers: K-Neighbors Classifier(KNC), Gaussian Naive Bayes(GNB) and
RandomForest Classifier(RFC). According to Table 3, our model can still yield good results.

KNC(%) GNB(%) RFC(%)
P-R SDA P-R SDA P-R SDA

B 83.96 64.17 84.30 74.68 82.35 68.01
D 85.03 63.58 85.22 75.28 83.69 68.32
E 87.50 70.04 88.33 80.89 86.39 71.78
K 89.12 67.86 89.54 81.19 87.87 76.37

Table 3: Accuracy of Different Classifiers

Reconstructed Original Suppressed
not, poor, great, was, my, so, num, since, way, all
dont, was, after, you, all, one, if, about, other, your

bad, no, excellent, very, great, good, time, them, when
well, easy, best just, not now, so, this book

Table 4: Top Frequent Reconstruct Features, Original
Features and Suppressed Features

Suppressed Features Our model has reconstructed 3785 features on average, compared to the original
5000, that means 1215 features are suppressed during the learning. We report some of the top frequent
features in 3 ways: reconstructed by our model, in original space and suppressed by our model. From
Table 4, the reconstructed feature are carrying more sentiment meaning than the original features, and
the suppressed features involve domain-specific feature, such as “this book”, and non-sentiment features,
such as “all”, “so” and “your”. This is what we expect by maximizing distance between sentiments in
the learned representation feature space and sharing the transformation matrix between decoding and
encoding layer.
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5 Conclusion

This work proposed to leverage multiple domains with both labeled and unlabeled instances. The model
learns high-level feature space with 3 constraints and achieves improved performance on multi-domain
sentiment classification as attested by results on the benchmark dataset.

As our future work, we plan to explore multi-modality (e.g., mapping visual, video and sentiment
content on the same space from multiple domains), and develop a recursive system where labeling work
can be performed recursively with high confidence.
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