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Abstract

Temporal relation classification is a challenging task, especially when there are no explicit
markers to characterise the relation between temporal entities. This occurs frequently in inter-
sentential relations, whose entities are not connected via direct syntactic relations making clas-
sification even more difficult. In these cases, resorting to features that focus on the semantic
content of the event words may be very beneficial for inferring implicit relations. Specifically,
while morpho-syntactic and context features are considered sufficient for classifying event-timex
pairs, we believe that exploiting distributional semantic information about event words can ben-
efit supervised classification of other types of pairs. In this work, we assess the impact of using
word embeddings as features for event words in classifying temporal relations of event-event
pairs and event-DCT (document creation time) pairs.

1 Introduction

The classification of temporal relations between events in text has been long studied and attacked from
different perspectives in the NLP community. However, existing approaches heavily rely on information
overtly expressed in text, such as explicit temporal markers (e.g. before, during), the tense, aspect and
modality of event words, as well as specific syntactic constructions. In case overt indicators are missing,
the task becomes significantly more challenging, as is often the case when two events take place in
different sentences, or in anchoring an event to the document creation time (DCT). See for example the
sentences in (i), where the label for the event pair (e1, e2) is BEFORE, and the sentence in (ii), where e
INCLUDES the DCT.

(i) When Wong Kwan spent e1 seventy million dollars for this house, he thought it was a great deal. He
sold e2 the property to five buyers and said he’d double his money.

(ii) The U.N. Security Council on Aug. 6 ordered a global embargo e on trade with Iraq as punishment
for seizing Kuwait.

Inter-sentential event relations are quite frequent, covering for example 32.76% of the event pairs in
the TempEval-3 evaluation corpus (UzZaman et al., 2013). Around 42.37% of pairs of an event and a
time expression in the same corpus are actually pairs of an event and the DCT. Moreover, the TimeBank
corpus contains 718 temporal relations which are co-ordinated by temporal signals, i.e., only 11.2% of all
temporal links (Derczynski and Gaizauskas, 2013). These make research on implicit temporal ordering
very relevant.

One common approach, first proposed in Marcu and Echihabi (2002), incorporates word-based infor-
mation in the form of word pair feature vectors. Conventionally, a word is converted into a symbolic ID,
which is then transformed into a feature vector using a one-hot representation: the feature vector has the
same length as the size of the vocabulary, and only one dimension is on. From a machine learning point
of view, this type of sparse representation makes parameter estimation extremely difficult and prone to
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over-fitting. It is also very challenging to achieve any interesting semantic generalization with this repre-
sentation. Consider for instance, (attack, injured) that would be at equal distance from a synonymic pair
(raid, hurt) and an antonymic pair (died, shooting).

Other approaches make use of semantic features extracted from external knowledge bases such as
WordNet synsets (Fellbaum, 1998) and VerbOcean semantic relations between verbs (Chklovski and
Pantel, 2004), capturing for instance that marriage happens-before divorce. Mirza and Tonelli (2014)
exploit the list of event duration distribution from Gusev et al. (2011) for temporal relation classification,
showing that it gives no benefit to classifier performance. The problem with such knowledge bases is that
they have limited coverage, while approaches based on distributional semantics require no supervision
and have a much better coverage.

The main goal of this work is to assess the contribution of dense vector representations of words and
word pairs to temporal relation type classification, as detailed in Section 3. Specifically, we want to
establish (i) which vector combination schemes are more suitable for classifying pairs of events, (ii)
how well word embeddings can be used for this particular task compared to traditional features (Section
4.2), and finally, (iii) whether the combination of traditional features and word embeddings yields a
better performance than using the two components in isolation. To the latter purpose, we compare vector
concatenation and stacked learning (Section 4.3).

Experiments and evaluations are performed on the TimeBank-Dense corpus (Chambers et al., 2014),
which was designed to address the sparsity issue in existing corpora with temporal annotation. We also
compare our approach with CAEVO, a CAscading EVent Ordering system evaluated on the same corpus
(Section 5).

2 Related Work

Many natural language processing applications such as information extraction (IE), question answering
(QA), topic detection and tracking require understanding about temporally located events, i.e., to anchor
events in time and order them. This temporal information is often modelled as a graph, with times
and events/states as the nodes and temporal relations holding between them as the arcs. The details
of how these three primitives are expressed in English, as well as their conceptual background (Allen,
1984; Moens and Steedman, 1987) have been discussed in Setzer (2001), and formalized in the TimeML
annotation standard (Pustejovsky et al., 2003). In this work we focus on the task of ordering temporal
entities, i.e., the classification of temporal relation types.

Current state-of the-art systems for temporal ordering resort to data-driven approaches (Bethard, 2013;
Laokulrat et al., 2013; Mirza and Tonelli, 2014) or hybrid approaches combining rules and supervised
classifiers (D’Souza and Ng, 2013; Chambers et al., 2014; Mirza and Tonelli, 2016). In building the
classification models, most approaches rely primarily on morpho-syntactic features as well as lexical
semantic information derived from WordNet synsets (Chambers et al., 2007; Laokulrat et al., 2013;
Chambers et al., 2014) and VerbOcean semantic relations between verbs (Mani et al., 2006; D’Souza
and Ng, 2013).

Other approaches exploit sentence-level semantic information, i.e. predicate-argument structure, as
features for the classifiers (Llorens et al., 2010; Laokulrat et al., 2013; D’Souza and Ng, 2013). How-
ever, the evaluation results of TempEval-3 (UzZaman et al., 2013) show that a system with basic morpho-
syntactic and lexical semantic features, such as ClearTK (Bethard, 2013), is hard to beat even if using
more sophisticated semantic features. Indeed, ClearTK indirectly uses distributed lexical semantic fea-
tures in the form of context (tokens appearing) between events.

As far as we know, there is no work on the task of ordering/anchoring temporal entities which specifi-
cally addresses the issue of implicit relations often recurring when two events are in different sentences,
or when an event is related to the DCT. Such implicit relations are probably covered by hand-crafted
rules or features based on the tense, aspect and modality of event words (Chambers et al., 2014), but
sometimes such an overt indicator is lacking, as exemplified in previous examples (Section 1).

Most works on implicit discourse relations focused on the Penn Discourse Treebank (PDTB) (Prasad
et al., 2008), in which relations are annotated at the discourse level and organized into a three-level hier-
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archy. The top level relations, for example, include Temporal, Contingency, Comparison and Expansion.
Braud and Denis (2015) presented a detailed comparative studies for assessing the benefit of unsuper-
vised word representations, i.e. one-hot word pair representations against low-dimensional ones based
on Brown cluster (Brown et al., 1992) and word embeddings, for identifying implicit discourse rela-
tions in PDTB. However, only the top level relations are considered, for instance, whether there exists a
Temporal relation without investigating further into the more fine-grained temporal ordering.

3 Classifying Temporal Relations

Temporal relations, or temporal links, are annotations that connect markables bearing temporal informa-
tion in a text, and express their temporal order. TimeML (Pustejovsky et al., 2003) is the widely known
annotation framework for creating such representation that was used in the TempEval series, i.e., eval-
uation exercises focusing on temporal information processing. One of the main tasks in TempEval is
temporal relation (TLINK) classification: given a pair of temporal entities (te1 , te2), namely events and
time expressions (timex), determine their ordering relations (e.g. BEFORE, AFTER, INCLUDES, etc.).

Our goal is to compare classification performance on temporal relations using traditional features and
word embeddings, which have recently shown to achieve good generalisation capabilities in several NLP
tasks. Specifically, we want to evaluate whether, and in which configurations, they can contribute to
advance state-of-the-art performance on temporal relation classification. To this purpose, we build and
evaluate two different classifiers.

3.1 Temporal Relation Classification with Traditional Features

The first system is inspired by state-of-the-art approaches presented at TempEval-3 (UzZaman et al.,
2013). Following UTTime (Laokulrat et al., 2013), we build three LIBLINEAR (Fan et al., 2008) clas-
sifiers (L2-regularized logistic regression): one for event-document creation time (E-D), one for event-
timex (E-T) and one for event-event (E-E) edges. For timex-timex (T-T) relations, we implement a simple
set of rules based on the values of time expressions, which proved to be effective for most T-T edges.

E-D, E-T and E-E Classifiers A set of features, listed in Table 1, is used for each type of edge,
largely inspired by the best performing systems in TempEval-2 (Verhagen et al., 2010) and TempEval-3
(UzZaman et al., 2013) campaigns. We assume that pairs of temporal entities are given, and we rely on
EVENT and TIMEX3 attributes in annotated TimeML documents, morphosyntactic information generated
by MorphoPro (Pianta et al., 2008) and dependency information from the Mate tools (Bjorkelund et al.,
2010).

Derczynski and Gaizauskas (2013) show the importance of temporal signals in temporal relation la-
belling, hence, we include also a similar set of features. However, we take the list of temporal signals
from the TimeBank corpus, further expand it using the Paraphrase Database (Ganitkevitch et al., 2013),
and manually cluster synonymous signals together, e.g. {before, prior to, in advance of}. The cluster ID
is then included in the feature set instead of the signal text.

Note that the only lexical semantic information we include in the feature set is the Wordnet semantic
similarity/relatedness (Lin, 1998) between event words. In order to have a feature vector of reasonable
size, we simplify the possible values of some features during the one-hot encoding:
• dependencyPath. We only consider the existence of a dependency path between an E-E pair when

it describes coordination, subordination, subject or object relation. For E-T pairs, we only consider
the dependency path expressing temporal modification.
• tempSignalCluster. Given a temporal signal, we include the clusterID of the cluster containing

synonymous signals, e.g. {before, prior to, in advance of} instead of the signal text.
• wnSim. The value of WordNet similarity measure is discretized as follows: sim ≤ 0.0, 0.0 < sim ≤

0.5, 0.5 < sim ≤ 1.0 and sim > 1.0.

T-T Rules Only temporal expressions of types DATE and TIME are considered in the hand-crafted set
of rules, based on their normalized values. For example, 7 PM tonight with 2015-12-12T19:00 as
value IS INCLUDED in today with 2015-12-12 as value.
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Feature TLINK Rep. DescriptionE-D E-T E-E
EVENT attributes

class x x x one-hot

EVENT attributes as specified in TimeML.tense x x x one-hot
aspect x x x one-hot
polarity x x x one-hot
sameClass x binary

Whether e1 and e2 have the same EVENT attributes.sameTenseAspect x binary
samePolarity x binary

TIMEX3 attributes
type x x one-hot TIMEX3 attributes as specified in TimeML.

Morphosyntactic information
PoS x x x one-hot Part-of-speech tags of e1 and e2.
phraseChunk x x x one-hot Shallow phrase chunk of e1 and e2.
samePoS x x binary Whether e1 and e2 have the same PoS.

Textual context
entityOrder x binary Appearance order of e1 and e2 in the text.1

sentenceDistance x x binary 0 if e1 and e2 are in the same sentence, 1 otherwise.
entityDistance x x binary 0 if e1 and e2 are adjacent, 1 otherwise.

Dependency information
dependencyPath x one-hot Dependency path between e1 and e2.
isMainVerb x x x binary Whether e1/e2 is the main verb of the sentence.
hasModalVerb x x x binary Whether e1/e2 is governed by a modal verb.

Temporal signals
tempSignalCluster x x one-hot Cluster ID of temporal signal existing around e1 and e2.
tempSignalPosition x x one-hot Temporal signal position w.r.t e1/e2 (BETWEEN, BEFORE, BEGIN, etc.)
tempSignalDependency x x one-hot Temporal signal dependency path between signal tokens and e1/e2.

lexical semantic information
wnSim x one-hot WordNet similarity computed between the lemmas of e1 and e2.

Table 1: Feature set for TLINK classification model for event-document creation time (E-D), event-timex
(E-T) and event-event (E-E) pairs, along with representation type (Rep.) and brief description.

3.2 Temporal Relation Classification with Word Embeddings

Recently there has been an increasing interest in using word embeddings as an alternative source of
information to traditional hand-crafted features. Word embeddings represent (embed) the semantics of a
word in a continuous vector space, where semantically similar words are mapped to nearby points. The
underlying principle is the Distributional Hypothesis (Harris, 1954), which states that words which are
similar in meaning occur in similar contexts.

Baroni et al. (2014) divide approaches based on this principle into two categories: (i) count-based
models and (ii) predictive models. They also provide a systematic comparison of word vectors from the
two models, on a wide range of lexical semantic tasks, including semantic relatedness, synonym detec-
tion, concept categorization, selectional preferences and analogy. The main takeaway is that predictive
models, such as Word2Vec (Mikolov et al., 2013), are shown to perform better than count-based ones.

Levy et al. (2015) reveal that much of the performance gains of word embeddings are due to hy-
perparameter optimizations rather than the embedding algorithms themselves, thus refuting the claim
that prediction-based methods are superior to count-based approaches. However, they also state that the
Skip-Gram model with Negative Sampling (SGNS), which is used to build Word2Vec pre-trained word
vectors, can be a robust baseline since it does not significantly underperform in any scenario.

In this work, we explore how well word embeddings can be used—as lexical semantic features—
to capture the temporal order of events (e.g. attack often happens BEFORE injured) and the temporal
anchoring of an event to the document creation time (e.g. embargo usually spans longer than a day, hence,
INCLUDES the DCT). Again, we build LIBLINEAR (Fan et al., 2008) classifiers (L2-regularized logistic
regression), one for E-D and another for E-E pairs. Instead of the traditional feature sets explained in
Section 3.1, word embeddings are used as feature vectors.

1The order of e1 and e2 in E-E pairs is always according to the appearance order in the text, while in E-T pairs, e2 is always
a timex regardless of the appearance order.
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Pre-trained word vectors We take pre-trained word vectors from Word2Vec2, which are 300-
dimensional vectors for 3 million words and phrases trained on part of Google News dataset (about
100 billion words). Given an E-E pair (e1, e2), we retrieve the pair of word vectors (~w1, ~w2) based on
vector look-up for the head words of e1 and e2 in the pre-trained word vectors. Meanwhile, for an E-D
pair (e, t) we retrieve word vectors ~w according to the head word of e.

Vector combinations For E-E pairs, we test three different strategies in combining the word vectors of
a pair of events: we consider (i) concatenation (~w1 ⊕ ~w2), (ii) addition (~w1 + ~w2) and (iii) subtraction
(~w2 − ~w1), as vector combination schemes. Note that in (i) the word ordering information is retained,
which is not the case in (ii) and (iii).

We only consider word embeddings for events, specifically their head words, because the embeddings
for all events annotated in the dataset, which are mostly verbs and nouns, are readily obtainable from
the pre-trained word vectors. Meanwhile, representing time expressions with single word vectors is non-
trivial, since most of them express dates (e.g. Friday the 13th) and times (e.g. half past ten), which are
usually multi-word expressions.

4 Experimental Setup and Evaluation

We present two sets of experiments: first, we investigate how well word embeddings can be used for
temporal relation classification compared with traditional features, and then we analyse whether the
combination of these two types of features is beneficial.

4.1 Dataset: TimeBank-Dense

We evaluate the temporal classifiers using the TimeBank-Dense corpus (Chambers et al., 2014), which
was created to address the sparsity issue in existing TimeML corpora. Using a specialized annotation
tool, annotators were prompted to label all pairs of events and time expressions in the same sentence, all
pairs of events and time expressions in two adjacent sentences, and all pairs of events and document cre-
ation time. This solution was introduced to solve the problem of sparse annotation of temporal relations
in the TempEval-3 evaluation corpus, which made it difficult to evaluate and compare different systems.

The VAGUE relation introduced at the first TempEval task (Verhagen et al., 2007) was also adopted
in TimeBank-Dense to cope with ambiguous temporal relations, or to indicate pairs for which no clear
temporal relation exists. The resulting corpus contains 12,715 temporal relations under 6 labels, i.e.
BEFORE, AFTER, INCLUDES, IS INCLUDED, SIMULTANEOUS and VAGUE, over 36 documents taken
from TimeBank. Annotation here is much denser than in the TimeBank corpus, which contains 6,418
temporal relations under 14 labels over 183 documents.

We follow the experimental setup in Chambers et al. (2014), in which the TimeBank-Dense corpus is
split into a 22 document training set, a 5 document development set and a 9 document test set.3 All the
classification models are trained using the training set, as well as the rule set development for T-T edges.
We evaluate our classification performances on (i) stratified 10-fold cross validation over the training set
and (ii) on the test set.

4.2 Experiment 1: Comparing Traditional Features vs. Word Embeddings

In Table 2 we report the performances (micro-averaged F1-scores) of each classifier using word vectors ~w
as features, compared with the classifier performance using traditional features ~f , evaluated on stratified
10-fold cross-validation. For E-E pairs, we also report the F1-scores for each vector combination scheme.
Since we classify all possible event pairs in the dataset, precision and recall are the same.

From the different vector combinations, concatenation (~w1 ⊕ ~w2) is shown to be the best combina-
tion. Using the concatenated Word2Vec embeddings (~w1 ⊕ ~w2) as features results in .605 F1-score,
significantly better than using only traditional features (.529 F1-score). The fact that this representa-
tion retain the word order information may be the reason why it beats the other vector combinations.

2http://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/
3Available at http://www.usna.edu/Users/cs/nchamber/caevo/.
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TLINK type E-D E-E
~f ~w ~f (~w1 ⊕ ~w2) (~w1 + ~w2) (~w2 − ~w1)

BEFORE .551 .547 .338 .521 .281 .508
AFTER .171 .326 .330 .544 .325 .504
SIMULTANEOUS - - .094 - .032 .080
INCLUDES .245 .428 .140 .363 .065 .326
IS INCLUDED .478 .503 .144 .385 .145 .364
VAGUE .445 .463 .664 .693 .676 .426
Overall .449 .476 .529 .605** .516 .443

Table 2: Micro-averaged F1-scores per TLINK type with different feature vectors, evaluated on stratified
10-fold cross-validation over the training set. ** denotes p < .01.

TLINK type E-D E-E
~f ~w ~f (~w1 ⊕ ~w2) (~w1 + ~w2) (~w2 − ~w1)

BEFORE .587 .627 .388 .443 .264 .408
AFTER .265 .444 .267 .412 .246 .467
SIMULTANEOUS - - - - - -
INCLUDES .067 .217 .066 .068 - .156
IS INCLUDED .559 .524 .111 .435 .154 .155
VAGUE .474 .424 .612 .592 .611 .313
Overall .476 .479 .493 .496 .444 .338

Table 3: F1-scores per TLINK type with different feature vectors, evaluated on the test set.

With the exception of SIMULTANEOUS and VAGUE, all of the other TLINK types are asymmetric, e.g.
BEFORE/AFTER, INCLUDES/IS INCLUDED.

Note that the classifier with subtracted word vectors (~w2 − ~w1) as features is able to capture event
pairs labelled as SIMULTANEOUS, which are failed to be detected by the classifier with concatenated
word embeddings. In some cases, the SIMULTANEOUS event pairs are co-referring events that have sim-
ilar meanings, e.g. (attack, strike). By subtracting the word vectors of such event headwords, we could
get a feature vector close to the origin (0, 0, ..., 0), which can be used by the classifier to capture the
SIMULTANEOUS relation. This kind of information is not available if we use concatenated word vec-
tors as features. However, the traditional feature set containing Wordnet semantic similarity/relatedness
information still yields a better performance than subtracted word embeddings.

For E-D pairs, using word vectors ~w as features (.476 F1-score) is better than using traditional features
~f (.449 F1-score), in particular for INCLUDES and AFTER labels. Given that in a news text, the document
creation time is usually of TIME or DATE types, this means that word embeddings are able to predict when
events last longer than a day, hence the appropriate label, i.e. INCLUDES, is chosen.

The same phenomena are also observed in the evaluation on test data, shown in Table 3: (i) concate-
nation (~w1 ⊕ ~w2) is the best vector combination scheme for E-E edges and (ii) using word embeddings
increases the performance on INCLUDES and AFTER labelling of E-D pairs. Pairs labelled as SIMULTA-
NEOUS are highly under-represented in the dataset for all types of edges, composing only around 1.1%
of the training data and 1.3% of the test data. This explains the failure of the classification models in
capturing this particular relation in the test data.

Overall, using word vectors is better than using carefully crafted traditional features, particularly on the
10-fold cross-validation evaluation over the training data. However, on the evaluation over the test set, the
improvements on the overall F1-scores are not significant (p > .05), even though we observe statistically
significant improvements on specific TLINK types (e.g., INCLUDES for E-D pairs and IS INCLUDED for
E-E pairs).
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TLINK type
E-D E-E

S1 S2 S1 S2
~w (~w ⊕ ~f) (~p⊕ ~f) ( ~w1 ⊕ ~w2) (( ~w1 ⊕ ~w2)⊕ ~f) (~p⊕ ~f)

BEFORE .627 .667 .671 .443 .501 .471
AFTER .444 .518 .466 .412 .435 .430
SIMULTANEOUS - - - - .154 -
INCLUDES .217 .333 .250 .068 .085 .049
IS INCLUDED .524 .554 .600 .435 .288 .250
VAGUE .424 .449 .502 .592 .596 .613
Overall .479 .524* .534* .496 .512* .519**

Table 4: F1-scores on both experimental settings S1 (concatenating word vectors and traditional features)
and S2 (stacking), evaluated on the test set. * denotes significance at p < .05, ** denotes p < .01.

4.3 Experiment 2: Combining Traditional Features and Word Embeddings
To assess whether traditional features are still relevant in the presence of word vectors, two experimental
settings are considered:

S1 We simply concatenate word vectors and traditional feature vectors together as the feature sets for
the classifiers: (~w ⊕ ~f) is taken as the feature set for E-D and ((~w1 ⊕ ~w2)⊕ ~f) for E-E pairs.

S2 We employ an ensemble learning technique, namely stacking, to combine both sets of features.
First, the classifiers with word vectors as features, i.e., ~w for E-D and (~w1⊕ ~w2) for E-E, are trained
on the training data in a 10-fold cross-validation scheme, producing prediction vectors ~p, i.e., one-
hot representation of predicted labels, for the whole training data. Then, a combined classifier is
trained to make a final prediction using (~p⊕ ~f) as the feature set.

Again, LIBLINEAR (L2-regularized logistic regression) is used to build all the classifiers, which are
then evaluated on the test data. Table 4 gives an overview of system performances on both settings, along
with F1-scores when using the best feature vectors according to previous experiments, i.e., ~w for E-D
and ( ~w1 ⊕ ~w2) for E-E pairs.

For both E-D and E-E pairs, a super classifier trained using ~p⊕ ~f as the feature vector performs better
than a classifier trained with concatenated word vectors and traditional features. Furthermore, the super
classifiers significantly outperform classifiers trained with the best single feature sets (word embeddings
for E-D and E-E pairs), i.e., .534 vs. .479 F1-scores for E-D (p < .05) and .519 vs. .496 F1-scores for
E-E pairs (p < .01).

5 Discussion

Our final system is composed of a rule set for T-T pairs, and three LIBLINEAR (L2-regularized logistic
regression) classifiers for E-D, E-T and E-E pairs. Following the results from our experiments detailed
in Section 4, we consider the best feature set for E-D and E-E pairs, i.e., the combination of word
embeddings and traditional features via stacked learning (~p⊕ ~f). Meanwhile, for E-T edges, we use the
traditional feature vector ~f as the feature set.

Comparison of system performances We compare our system performance with two baseline sys-
tems. The first baseline labels all edges as VAGUE, which is the baseline system reported in Chambers
et al. (2014). The second baseline system chooses the majority labels (non-VAGUE) for each type of
edges, i.e., BEFORE for T-T, E-D and E-E, and AFTER for E-T pairs. As reported in Table 5, our system
outperforms both baselines.

We also report in Table 5 our system performance in comparison with CAEVO (Chambers et al.,
2014), the only existing temporal ordering system evaluated on the TimeBank-Dense corpus. Note that
CAEVO is a hybrid system combining several rule-based and machine-learned classifiers in a sieve-
based architecture, which includes transitive reasoning after each classifier labels the entity pairs. Our
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System T-T E-D E-T E-E Overall
Baseline: All VAGUE .203 .277 .388 .447 .409
Baseline: Majority (non-VAGUE) .508 .241 .305 .269 .278
Our system .780 .534 .468 .519 .518
CAEVO .712 .553 .494 .494 .507

Table 5: The comparison of system performances (F1-scores) for each edge type and the overall entity
pairs.

Our system CAEVO
Relation P R F1 P R F1
BEFORE .58 .46 .51 .52 .45 .49
AFTER .59 .35 .44 .55 .38 .45
SIMULTANEOUS .92 .28 .43 .71 .31 .43
INCLUDES .15 .09 .11 .44 .21 .28
IS INCLUDED .51 .44 .47 .57 .43 .49
VAGUE .49 .71 .58 .48 .66 .56

Table 6: The comparison of system performances on individual relation types.

system, composed of only one rule-set and three supervised-classifiers, is marginally better than CAEVO,
particularly for T-T and E-E pairs, with the overall F1-scores of .518 vs. .507 (CAEVO).

CAEVO includes hand-crafted rules for E-D and E-T pairs, for instance rules to label edges between
reporting events and DCTs (as IS INCLUDED) and rules for edges between one verbal event and one
timex based on temporal prepositions connecting the two (e.g. prepositions for, at and throughout signal
a SIMULTANEOUS relation). It is very likely that our system based on general-purpose features cannot
beat these very specific and carefully designed rules.

Finally, we present our system performance (in terms of precision, recall and F1-score) per-relation in
Table 6, which is again compared to CAEVO. Overall, the two systems have comparable performances
for all relation types, with the exception of the INCLUDES relation, in which CAEVO clearly outperforms
our system.

Intra- vs. inter-sentential entity pairs Since we argue that embedding-based features may be partic-
ularly beneficial when no overt clues to express the temporal relation are present, as is often the case
in inter-sentential relations, we compare the performance of the different feature vectors on inter- and
intra-sentential relations in the test set. Results are reported in Table 7.

Feature vector E-D E-E
same diff same diff

~f - .476 .466 .507
~w or ( ~w1 ⊕ ~w2) - .479 .488 .501
S1: (~w ⊕ ~f) or (( ~w1 ⊕ ~w1)⊕ ~f) - .524 .516 .509
S2: (~p⊕ ~f) - .534 .492 .533

Table 7: F1-scores for different feature vectors, evaluated on pairs in the test set belonging to the same
sentence (same) and different sentences (diff).

Combining word embeddings and traditional features in stacking setting (S2) is shown to be beneficial
for entity pairs occurring in different sentences. Interestingly, the combination of word embeddings and
traditional features in the concatenated setting (S1) is quite beneficial to the classification of E-E pairs in
the same sentence.
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6 Conclusions

We have analysed the contribution of word embeddings to temporal relation type classification, specif-
ically for E-D and E-E edges. The evaluation results shed some light on how word embeddings can
potentially improve a classifier performance for this particular task, i.e., in combination with traditional
features in the stacked learning scheme. These results confirm that word embeddings can become effec-
tive features when there are no overt markers of temporal relations.

Compared with the state-of-the-art system evaluated on the same corpus, CAEVO, our system achieves
quite similar performances, even though it is based on a much simpler architecture. We believe that,
integrating our rule set (for T-T pairs) and classifiers (for E-D, E-T and E-E pairs) in CAEVO’s sieve-
based architecture completed with transitive reasoning, may result in an improvement of the state-of-the-
art on the task, which we plan to evaluate soon.

Several works have recently presented methods for building task-specific word embeddings
(Hashimoto et al., 2015; Boros et al., 2014; Nguyen and Grishman, 2014; Tang et al., 2014). We believe
that this may be beneficial also for temporal ordering, and we plan to build this kind of embeddings in
the future, instead of using general-purpose vectors.
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