
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers,
pages 2762–2773, Osaka, Japan, December 11-17 2016.

An Empirical Evaluation of various Deep Learning Architectures for
Bi-Sequence Classification Tasks

Anirban Laha
IBM Research India

anirlaha@in.ibm.com

Vikas Raykar
IBM Research India

viraykar@in.ibm.com

Abstract

Several tasks in argumentation mining and debating, question-answering, and natural language
inference involve classifying a sequence in the context of another sequence (referred as bi-
sequence classification). For several single sequence classification tasks, the current state-of-
the-art approaches are based on recurrent and convolutional neural networks. On the other hand,
for bi-sequence classification problems, there is not much understanding as to the best deep learn-
ing architecture. In this paper, we attempt to get an understanding of this category of problems
by extensive empirical evaluation of 19 different deep learning architectures (specifically on dif-
ferent ways of handling context) for various problems originating in natural language processing
like debating, textual entailment and question-answering. Following the empirical evaluation,
we offer our insights and conclusions regarding the architectures we have considered. We also
establish the first deep learning baselines for three argumentation mining tasks.

1 Introduction

Argumentation mining is a relatively new challenge in corpus-based discourse analysis that involves
automatically identifying argumentative structures within a corpus. Many tasks in argumentation min-
ing (Lippi and Torroni, 2015a) and debating technologies (Slonim et al., 2014) involve categorizing a
sequence in the context of another sequence. For example, in context dependent claim detection (Levy
et al., 2014), given a sentence, one task is to identify whether the sentence contains a claim relevant to
a particular debatable topic (generally given as a context sentence). Similarly in context dependent evi-
dence detection (Rinott et al., 2015), given a sequence (possibly multiple sentences), one task is to detect
if the sequence contains an evidence relevant to a particular topic. We refer to such class of problems in
computational argumentation as bi-sequence classification problems—given two sequences s and c we
want to predict the label for the target sequence s in the context of another sequence c1. Apart from the
debating tasks, several other natural language inference tasks fall under the same paradigm of having a
pair of sequences. For example, recognizing textual entailment (Bowman et al., 2015), where the task is
to predict if the meaning of a sentence can be inferred from the meaning of another sentence. Another
class of problems originated from question-answering systems also known as answer selection, where
given a question, a candidate answer needs to be classified as an answer to the question at hand or not.

Recently, deep learning approaches have obtained very high performance across many different natural
language processing tasks. These models can often be trained in an end-to-end fashion and do not require
traditional, task-specific feature engineering. For many single sequence classification tasks, the state-of-
the-art approaches are based on recurrent neural networks (RNN variants like Long Short-Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997) and Gated Recurrent Unit (GRU) (Cho et al., 2014)) and
convolution neural network based models (CNN) (Kim, 2014). Whereas for bi-sequence classification,
the context sentence c has to be explicitly taken into account when performing the classification for the

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

1In this paper, we shall ignore the subtle distinction between sentence and sequence and both will mean just a text segment
composed of words.

2762

target sentence s. The context can be incorporated into the RNN and CNN based models in various ways.
However there is not much understanding in current literature as to the best way to handle context in these
deep learning based models. In this paper, we empirically evaluate(see Section 4) the performance of
five different ways of handling context in conjunction with target sentence(see Section 3) for multiple
bi-sequence classification tasks(see Section 2) using architectures composed of RNNs and(/or) CNNs.

In a nutshell, this paper makes the two major novel contributions:

1. We establish the first deep learning based baselines for three bi-sequence classification tasks relevant
to argumentation mining with zero feature engineering.

2. We empirically compare the performance of several ways handling context for bi-sequence classifi-
cation problems in RNN and CNN based models. While some of these variants are used in various
other tasks, there has been no formal comparison of different variants and this is the first attempt to
actually list all the variants and compare them on several publicly available benchmark datasets.

2 Bi-Sequence classification tasks

In this section, we will briefly mention the various bi-sequence tasks of interest in the literature of argu-
mentation mining and in the broader natural language inference domain.

2.1 Argumentation Mining
We mainly consider two prominent tasks in argumentation mining, namely, detecting the claims (Levy et
al., 2014) and evidences (Rinott et al., 2015), within a given corpus, which are related to a prespecified
topic. These two tasks together helps to automatically construct persuasive arguments out of a given
corpora. We will define the following four concepts:
Motion - The topic under debate, typically a short phrase that frames the discussion.
Claim - A general, typically concise statement that directly supports or contests the motion.
Motion text - A document/article/discourse that contain claims with high probability.
Evidence - A set of statements that directly supports the claim for a given motion.

2.1.1 Context Dependent Claim Detection (CDCD)
Given a sentence in a motion text the task is to identify whether the sentence contains a claim relevant to
the motion or not. This is the claim sentence task introduced by Levy et al. (2014). For example, each
of the following sentences includes a claim, marked in italic, for the motion topic in brackets.

1. (the sale of violent video games to minors) Recent research has suggested that some violent video games may actually
have a pro-social effect in some contexts, for example, team play.

2. (the right to bear arms) Some gun control organizations say that increased gun ownership leads to higher levels of
crime, suicide and other negative outcomes.

2.1.2 Context Dependent Evidence Detection (CDED)
Given a segment in a motion text the task is to identify whether the segment contains an evidence relevant
to the motion or not (Rinott et al., 2015). We consider evidences of two types in this paper, Study and
Expert. Evidences of type study are generally results of a quantitative analysis of data given as numbers,
or as conclusions. The following are two examples for study evidence relevant to the motion topic in
brackets.

• (the sale of violent video games to minors) A 2001 study found that exposure to violent video games causes at least a
temporary increase in aggression and that this exposure correlates with aggression in the real world.

• (the right to bear arms) In the South region where there is the highest number of legal guns per citizen only 59% of all
murders were caused by firearms in contrast to 70% in the Northeast where there is the lowest number of legal firearms
per citizen.

Evidence of type expert is a testimony by a person/group/commitee/organization with some known ex-
pertise/authority on the topic. The following are two examples for expert evidence relevant to the motion
topic in brackets.

2763

1. (the sale of violent video games to minors) This was also the conclusion of a meta-analysis by psychologist Jonathan
Freedman, who reviewed over 200 published studies and found that the majority did not find a causal link.

2. (the right to bear arms) University of Chicago economist Steven Levitt argues that available data indicate that neither
stricter gun control laws nor more liberal concealed carry laws have had any significant effect on the decline in crime in
the 1990s.

2.2 Textual Entailment (TE)

This task (Bowman et al., 2015) corresponds to a multiclass setting, where given a pair of sentences
(premise and hypothesis), the task is to identify whether one of them (premise) entails, contradicts or is
neutral with respect to the other sentence (hypothesis). Unlike the other debating tasks seen previously,
we cannot call these pair of sentences as context and target as these are more symmetric in nature. Typical
examples2 are the following (premise followed by hypothesis):

• Entailment: A soccer game with multiple males playing - Some men are playing a sport.

• Contradiction: A black race car starts up in front of a crowd of people - A man is driving down a lonely road.

• Neutral: A smiling costumed woman is holding an umbrella - A happy woman in a fairy costume holds an umbrella.

2.3 Answer Selection for Questions

Question Answering (QA) System is a natural extension to the traditional commercial search engines as it
is concerned with fetching answers to natural language queries and returning the information accurately
in natural human language. A QA system can be either closed-domain or open-domain, the former being
restricted to a particular domain while the latter is not. Answer sentence selection is a crucial subtask
of the open-domain question answering problem, with the goal of extracting answers from a set of pre-
selected sentences (Yang et al., 2015). This is again bi-sequence classification task where the pair of
sequences being a question and a candidate answer to be selected.

3 Deep Learning models for sequence pairs

All the tasks described in the previous section can be formulated as bi-sequence classification problems
where we have to predict the label for the given pair of sequences. For simpler single sequence text
classification tasks, RNN or CNN based architectures have become standard baselines. In this section, we
will briefly introduce RNN and CNN and then subsequently describe RNN and CNN based architectures
for bi-sequence classification tasks. Specifically, we talk about five different ways of handling context
along with the target sentence.

3.1 Continuous Bag of Words (CBOW)

One of the simplest forms of sequence representation is the CBOW model, where every word in the
sequence produces some word embedding (say, based on word2vec (Mikolov et al., 2013)) and the
average of the word embedding vectors over the words produces the representation of the sequence. As
is evident, this form of representation totally disregards the word order of the sequence.

3.2 Recurrent neural networks (RNNs)

The RNN model provides a framework for conditioning on the entire history of the sequence without
resorting to the Markov assumption traditionally used for modelling sequences. Unlike CBOW, RNNs
encode arbitrary length sequences as fixed size vectors without disregarding the word order.

Given an ordered list of n input vectors x1, ..., xn and an initial state vector s0, a RNN generates
an ordered list of n state vectors s0, ..., sn and an ordered list of n output vectors y1, ..., yn, that is,
RNN(s0, x1, ..., xn) = s1, ..., sn, y1, ..., yn. The input vectors xi (which corresponds to a fixed dimen-
sional representation for each word in the sequence) are presented to the RNN in a sequential fashion
and si represents the state of the RNN after observing the inputs x1, ..., xi. The output vector yi is a

2http://nlp.stanford.edu/projects/snli/

2764

function of the corresponding state vector si and is then used for further prediction. An RNN is given by
the following update equations:

si = R(xi, si−1) (1)

yi = O(si) (2)

The recursively defined function R takes as input the previous state vector si−1 and the current input
vector xi ∈ Rdx and results in an updated state vector si ∈ Rds . An additional function O maps the state
vector si to an output vector yi ∈ Rdy . Different instantiations of R and O will result in the different
network structures (Simple RNN, LSTM (Hochreiter and Schmidhuber, 1997), GRU (Cho et al., 2014),
etc.). The final state vector sn can be thought of as encoding the entire input sequence into a fixed size
vector, which can be passed to a softmax layer to produce class probabilities.

3.3 Convolutional Neural Networks (CNNs)
CNNs are built on the premise of locality and parameter sharing which has proven to produce very
effective feature representation for images. Following the groundbreaking work by Kim (2014), there
has been a lot of interest shown by the text community towards applying CNNs for modelling text
representation.

As in case of RNNs defined above, an n-word sentence consists of embedding vectors x1, ..., xn ∈
Rdx , one for each word in the sentence. Let xi:i+j denote the concatenation of words xi, xi+1, ..., xi+j .
A convolution operation defined by a non-linear function f applies a filter w ∈ Rhdx to a window of h
words to produce a single feature value as given below:

ci = f(w.xi:i+h−1 + b) (3)

c = [c1, c2, ..., cn−h+1] (4)

In the next step, max-pooling is applied which essentially produces a single feature value ĉ = max{c},
corresponding to one filter that has been used. The model can have multiple feature values, one for each
applied filter, thus producing a feature representation for the input sentence, which can again be passed
to a softmax layer to produce class probabilities.

3.4 Bi-Sequence RNN models
For bi-sequence classification tasks we use two RNNs, one RNN to encode the context sentence (context
RNN) and another separate RNN encode the target sentence (target RNN). We define the following five
different variants of combining these two RNNs for bi-sequence classification tasks (see Figure 1 for
illustration of these variants).

1. conditional-state: The final state of the context RNN is fed as the initial state of the target RNN. This way of handling
context for RNNs has been previously used in conversational systems (Vinyals and Le, 2015), image description (Vinyals
et al., 2015) and image question answering (Ren et al., 2015) systems.

2. conditional-input: The final state of the context RNN is fed as auxiliary input (concatenated with every input) for the
target RNN. This way of handling context has been previously used in machine translation tasks (Sutskever et al., 2014).

3. conditional-state-input: The final state of the context RNN is fed as the initial state of the target RNN and also fed as
input for target RNN concatenated with every input.

4. concat: The final states of both the context and the target RNN are concatenated and then fed to a softmax layer for the
label prediction.

5. bi-linear: The final states of both the context and the target RNN are combined using a bi-linear form (x>Wy) with a
softmax function for the final prediction. There are different W for different classes under consideration.

From here on, we would refer to architecture types 1, 2 and 3 as conditional variants while the others
will be addressed as is. In addition, we consider another baseline variant concat-sentence, in which we
concatenate the context and the sentence with a special separator token and feed the entire concatenated
sequence to a single RNN. For all these variants we use a common embedding layer. Also note that the
conditional variants require a common RNN size for both the context and the target RNNs. Even though
that restriction is not there for other variants, we choose the same RNN size anyways for convenience.

2765

word embedding layer

class label

linear + soft-max

context sentence
the right to bear arms

target sentence
Some gun control organizations say that … negative outcomes

.

context RNN target RNN

(a) conditional-state

word embedding layer

class label

linear + soft-max

context sentence
the right to bear arms

target sentence
Some gun control organizations say that … negative outcomes

.

context RNN target RNN

(b) conditional-input

word embedding layer

class label

linear + soft-max

context sentence
the right to bear arms

target sentence
Some gun control organizations say that … negative outcomes

.

context RNN target RNN

(c) conditional-state-input

word embedding layer

class label

linear + soft-max

context sentence
the right to bear arms

target sentence
Some gun control organizations say that … negative outcomes

.

context RNN target RNN

(d) concat

word embedding layer

class label

soft-max

context sentence
the right to bear arms

target sentence
Some gun control organizations say that … negative outcomes

.

context RNN target RNN

W

(e) bilinear

word embedding layer

class label

linear + soft-max

context sentence + target sentence
the right to bear arms <SEP> Some gun control organizations say that … negative outcomes

. . .

single RNN

(f) concat-sentence

Figure 1: RNN based Architectures for bi-sequence classification.

word embedding layer

.

Context Target

CBOW

CNN

RNN

CNN

RNN

Concat

Bilinear

(a) concat-bilinear-all-combinations

word embedding layer

.

Context Target

CNN

RNN

RNN

Conditional-State

Conditional-Input

Conditional-State-Input

(b) conditional-all-combinations

Figure 2: Multiple model variants for bi-sequence classification.

3.5 Bi-Sequence model variants

In this paper, we consider multiple ways of extending the bi-sequence architectures mentioned in section
3.4, by replacing RNN with CBOW or CNN either for context or target or both. For the variations concat
and bi-linear (see Fig. 2(a)), we have considered CBOW, RNN and CNN for context representation
whereas we have RNN and CNN for target representation. In tasks where context has very few words
(say debating tasks or question-answering), a simple representation like CBOW may work for context.
However, we haven’t considered modelling target using CBOW as targets are usually of larger length.
For the conditional variants (see Fig. 2(b)), we haven’t considered CBOW due to their limited modelling
capacity and there is no softmax layer directly on top of context representation to compensate for it (even
though softmax is only on top of target RNN). Moreover, target can only be RNN as there is no concept of
hidden state for CNNs. Hence, we use CNN and RNN for context whereas RNN for target. In addition,
we consider the concat-sentence (mentioned in section 3.4) as a baseline. This leads to 19 architectures
for empirical comparison (12 from Fig. 2(a) and 6 from Fig. 2(b) and the baseline).

4 Experiments

We have carried out extensive evaluation of the above architecture variants over a wide range of datasets
related to argumentation mining as well as datasets appealing to the larger natural language community

2766

like textual entailment and question answering data. We consider data with class imbalance problem
as well as balanced and we do not restrict ourselves to binary classification by working with multiclass
dataset as well. As can be found in the Table 1, we consider the following tasks related to the domain of
argumentation mining(Aharoni et al., 2014), which is available here 3 :

• Claim Sentence : This is the dataset for the CDCD task defined in section 2.1.1. This is the current benchmark dataset
for the Claim Detection task. There are a total 47183 canditate claims distributed among 33 motions.

• EXPERT Evidence : This is corresponding to the CDED task defined in section 2.1.2 for evidence type EXPERT. There
are 56985 labelled candidates for 57 different motion topics.

• STUDY Evidence : For evidence type STUDY, the dataset consists of 33534 labelled candidates for 49 motion topics.

Table 1 summarizes all of the datasets above. Interesting point to be noted here is that all the datasets
above have very low number of positives and the architectures we are evaluating need to be resilient to
the class imbalance problem for these datasets. Other than the debating datasets listed above, we also
consider two datasets related to more popular problems in the natural language processing community:

• Textual Entailment (TE) 4 (Bowman et al., 2015) :This dataset consist of around 500K instances evenly distributed across
all three classes. So, here we have a multiclass problem in a balanced setting.

• WikiQA 5 (Yang et al., 2015) : There are around 29K labelled question/answer pairs at our disposal.

Task Motions Data Size Positives
Claim Sentence 33 47183 2.77%
EXPERT Evidence 57 56985 4.56%
STUDY Evidence 49 33534 3.74%

Table 1: Argument Mining Datasets.

Task Train Dev Test Problem Class
TE 549367 9842 9824 Multiclass Balance
WikiQA 20360 2733 6165 Binary Imbalance

Table 2: More Datasets.

4.1 Experimental Setup
For each of the architectures mentioned in section 3.5, we choose the best configuration of hyperpa-
rameters based on the validation portion of the particular dataset (For Claim and Evidence datasets, we
consider a train:valid:test split of 60:10:30 while for the TE and WikiQA datasets we consider their
corresponding given split).

Performance of the best performing configuration for every architecture is reported on the test data
using the appropriate metric. As the claim and expert and study Evidences had similar data characteristics
(in terms of data size and context and target lengths), we did extensive hyperparam tuning only on the
claim dataset and applied the best configurations without further tuning to the expert and study datasets.
Exhaustive hyperparam tuning was done on the TE dataset as well because its data characteristics are
very different from other datasets.

In addition to reporting the test metrics for argumentation datasets, we carried out Leave-One-
Out(leaving one motion out for testing) Mode training and evaluation which is more appropriate for
this problem setting as it is crucial that we generalize well to totally unseen motion topics. In this case,
we report the macro-average metrics over all motions.

4.2 Hyperparameter Tuning
Considering the number of variations of combinations of architectures we have considered, we have a
huge hyperparameter space to deal with. Hence, we decided to fix insignificant hyperparameters and
focus only on the relevant ones. We have decided to use word2vec (Mikolov et al., 2013) pretrained
models for initializing the word embeddings across CBOW, CNN and RNNs and made them trainable
specific to task at hand. In addition we have found through minimal tuning that the Adam (Kingma and
Ba, 2015) optimizer seems to work best. We have also found that a learning rate of 0.001 works best

3https://www.research.ibm.com/haifa/dept/vst/mlta_data.shtml
4http://nlp.stanford.edu/projects/snli/
5http://aka.ms/WikiQA

2767

in most scenarios except when the parameter space in some architectures (for ex, bi-linear) is large, in
which case lower learning rates of 0.0001 or 0.00001 worked well. Rather than tuning the maximum
sequence length for context and target sentence, we tried to fix it by getting reasonable values by plotting
histogram of sequence lengths and had a cut-off at around 98-99 percentile. The max lengths turned out to
be 14 for context and 60 for target for Claim, Evidence and WikiQA datasets while for textual entailment,
they turned out to be 30 in both due to the symmetrical nature between premise and hypothesis. We tuned
the following hyperparameters:
RNN Model : GRU or LSTM.

RNN Size : 50,100,200,300,400,500,1000.

CNN Filter Sizes : 3,3+4,3+4+5,2+3+4+5.

CNN Number of Filters : 10,20,40,64,128.

L2 Reg coeff for CNN : 0, 0.01, 0.001, 0.0001.

For every architecture type, we carried out the optimization of the relevant hyperparams from the above
list over the whole grid. One point to note is that for certain architectures like conditional-state, as output
of context is fed in to the hidden state of target RNN, there are some restrictions in the allowable context
RNN/CNN hyperparam configurations based on the target RNN settings as the output dimension of the
context RNN/CNN needs to match the hidden state dimension of the target RNN.

4.3 Evaluation Metrics

For the datasets Claim, Expert, Study Evidence and WikiQA datasets, we have used standard evalu-
ation measures like Average Precision (Area under Precision Recall Curve) and AUC to choose best
hyperparam configurations based on validation data as well as report test metrics. For argument mining
specific tasks, we have reported other additional metrics like P@200, R@200, F1@200, P@50, R@50
and F1@50 (Levy et al., 2014) in addition to reporting AUC and Average Precision. Please note for
leave-one-out mode, the reported metrics are macro-average over all motion topics. For Textual entail-
ment, since it is a more balanced dataset, reporting valid and test accuracies are standard in the literature
and we have done the same.

Task Context Target Architecture Test AVGP

Claim Sentence
RNN CNN Concat 0.307
CNN CNN Concat 0.304
Concat-Sentence baseline 0.17

EXPERT Evidence
RNN RNN Conditional-State-Input 0.257
CNN CNN Concat 0.254
Concat-Sentence baseline 0.225

STUDY Evidence
CNN CNN Concat 0.297
RNN CNN Concat 0.29
Concat-Sentence baseline 0.236

WikiQA CBOW RNN Concat 0.187
CNN RNN Conditional-State-Input 0.186

Table 3: Empirical evaluation based on Average Precision on assymetric datasets.

Task Context Target Architecture Test AUC

Claim Sentence
CNN CNN Concat 0.873
CNN RNN Conditional-State 0.873
Concat-Sentence baseline 0.831

EXPERT Evidence
RNN RNN Conditional-State 0.832
RNN RNN Conditional-State-Input 0.823
Concat-Sentence baseline 0.805

STUDY Evidence
CNN CNN Concat 0.87
CBOW CNN Concat 0.864
Concat-Sentence baseline 0.844

WikiQA CNN CNN Concat 0.74
CBOW RNN Concat 0.74

Table 4: Empirical evaluation based on AUC on assymetric datasets.

2768

Method Model TrainAcc(%) TestAcc(%)
(Bowman et al., 2015) Use of features incl unigrams and bigrams 99.7 78.2
(Vendrov et al., 2016) 1024D GRU encoders w/ unsupervised ’skip-thoughts’ pre-training 98.8 81.4
(Mou et al., 2016) 300D Tree-based CNN encoders 83.3 82.1
(Cheng et al., 2016) 450D LSTMN with deep attention fusion 88.5 86.3
(Parikh et al., 2016) 200D decomposable attention model with intra-sentence attention 90.5 86.8
Conditional-State-RNN-RNN Simple architecture with RNNs without attention 89.97 82.36

Table 5: Comparison with the state-of-the-art in Textual Entailment dataset.

Method P@200 R@200 F1@200 P@50 R@50 F1@50 AVGP AUC
CDCD (Levy et al., 2014)** 9.0 73.0 - 18.0 40.0 - - -
BoW (Lippi and Torroni, 2015b) 8.2 51.7 14.2 - - - 0.117 0.771
TK (Lippi and Torroni, 2015b) 9.8 58.7 16.8 - - - 0.161 0.808
TK+Topic (Lippi and Torroni, 2015b) 10.5 62.9 18.0 - - - 0.178 0.823
Concat-CNN-CNN 9.64 61.5 15.8 17.1 27.7 19.2 0.173 0.812
Conditional-State-Input-RNN-RNN 9.56 60.0 15.6 16.6 26.9 18.5 0.162 0.801

Table 6: Results in Leave-One-Motion-Out mode for Claim Sentence Task. **Levy et al. (2014) used a smaller version of
the dataset consisting of only 32 motions and also less number of claims. For fair comparison, we also use the same version of
dataset as in CDCD and report the results in Appendix A.

Task P@200 R@200 F1@200 P@50 R@50 F1@50 P@20 P@10 P@5 AVGP AUC
Claim Sentence Task 9.64 61.5 15.8 17.1 27.7 19.2 22.4 27.9 28.5 0.173 0.812
EXPERT Evidence Task 9.53 64.0 14.5 14.5 35.0 15.7 18.6 21.1 22.5 0.160 0.750
STUDY Evidence Task 8.33 79.5 13.5 15.5 53.9 18.9 20.8 25.3 31.8 0.298 0.836

Table 7: Numbers in Leave-One-Motion-Out mode for all three debating tasks using our approach.

4.4 Results and Discussion

Tables 3 and 4 report the two top ranking architectures for four datasets based on Test AUC and
Test Avg Precision. We find that Concat is the winning architecture variant across majority of the
datasets considered. Moreover, the runner-up architecture type Conditional-State-Input is also similar
to ’Concat’ in the sense that concatenation of context representation is done at the input of the sentence
RNN. Now the four datasets we considered are asymmetric in nature as there are significantly fewer
contexts (motions or questions) than the targets. Hence the context model does not see enough data for
learning and hence, if the learnt context model is fed directly to the hidden state of the target RNN, the
improperly learnt context model can play a big role. In contrast if a Concat kind of architecture is used,
the linear plus softmax layer can decide on how much importance to give to the context model. Hence,
Concat is doing better in this case.

From Textual entailment dataset(which is symmetric in nature), we found that conditional type of
architectures are doing better at the Test accuracies. In fact, the winning architecture was Conditional-
State with RNN-RNN combo, which did better in terms of test accuracy than the feature based models
(Bowman et al., 2015) and one tree-based model (Mou et al., 2016). However, it came close to the state-
of-the-art attention based model (Parikh et al., 2016). In our work we are empirically evaluating simple
architectures for bisequence classification without using more sophisticated tree-based or attention-based
models. It is possible that adding attention on top of this will improve the results further.

The bi-linear model, is supposed to capture the interaction between the context and target reps via a
quadratic form (section 3.4). For the asymmetric datasets, this is not doing well again due to insufficient
data for context. Whereas, it does well for the TE data. However, due to the huge parameter space for
bi-linear, training times are considerably higher and requires lower learning rate than other architecture
types. The runtimes are comparable for the other architecture variants.

From Table 6, the main takeaway is that we are the only deep learning based method with zero
feature engineering and we have come very close to the state-of-the-art systems (Levy et al., 2014) and
(Lippi and Torroni, 2015b), which are heavily feature-engineered. Here again the winner is a ’Concat’
based combination of architecture. Moreover, Tables 6 and 7 are the first deep learning zero feature
engineered baselines for all argument mining datasets. Appendix A contains the details of the exhaustive

2769

experiments on all architectures on the different datasets in terms of the best hyperparameters used.

5 Conclusion

In this work, we have considered taking up multiple architectures for bisequence classification tasks,
for which not much understanding is there in the current literature. In addition to suggesting winning
architecture recipes for different kinds of datasets, we have established deep learning based baselines for
argument mining tasks with zero feature engineering. As future work, it remains to be seen how adding
attention on top of winning simple architectures fare in terms of benchmark performance.

6 Acknowledgements
We would like to thank Mitesh M. Khapra for the multiple discussions that we had with him leading to this paper. In addition,
we are also grateful to our colleagues at IBM Debating Technologies for the numerous suggestions and feedback at different
points of time.

References
Ehud Aharoni, Anatoly Polnarov, Tamar Lavee, Daniel Hershcovich, Ran Levy, Ruty Rinott, Dan Gutfreund, and Noam Slonim.

2014. A benchmark dataset for automatic detection of claims and evidence. In in the Context of Controversial Topics”, in
Proceedings of the First Workshop on Argumentation and Computation, ACL 2014.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. 2015. A large annotated corpus for
learning natural language inference. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computational Linguistics.

Jianpeng Cheng, Li Dong, and Mirella Lapata. 2016. Long short-term memory-networks for machine reading. In Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Processing (EMNLP).

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua
Bengio. 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation. In Proceed-
ings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014, October 25-29, 2014,
Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL, pages 1724–1734.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural Comput., 9(8):1735–1780, November.

Yoon Kim. 2014. Convolutional neural networks for sentence classification. In Proceedings of the 2014 Conference on Empir-
ical Methods in Natural Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a
Special Interest Group of the ACL, pages 1746–1751.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. In 3rd International Conference for
Learning Representations, San Diego, 2015.

Ran Levy, Yonatan Bilu, Daniel Hershcovich, Ehud Aharoni, and Noam Slonim. 2014. Context dependent claim detection.
In COLING 2014, 25th International Conference on Computational Linguistics, Proceedings of the Conference: Technical
Papers, August 23-29, 2014, Dublin, Ireland, pages 1489–1500.

Marco Lippi and Paolo Torroni. 2015a. Argument mining: A machine learning perspective. In Theory and Applications of
Formal Argumentation - Third International Workshop, TAFA 2015, Buenos Aires, Argentina, July 25-26, 2015, Revised
Selected Papers, pages 163–176.

Marco Lippi and Paolo Torroni. 2015b. Context-independent claim detection for argument mining. In Proceedings of the
Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31,
2015, pages 185–191.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013. Distributed representations of words and
phrases and their compositionality. In C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger, editors,
Advances in Neural Information Processing Systems 26, pages 3111–3119. Curran Associates, Inc.

Lili Mou, Rui Men, Ge Li, Yan Xu, Lu Zhang, Rui Yan, and Zhi Jin. 2016. Natural language inference by tree-based
convolution and heuristic matching. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 130–136, Berlin, Germany, August. Association for Computational Linguistics.

Ankur P. Parikh, Oscar Täckström, Dipanjan Das, and Jakob Uszkoreit. 2016. A decomposable attention model for natural
language inference. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin,
Texas, US., November. Association for Computational Linguistics.

Mengye Ren, Ryan Kiros, and Richard S. Zemel. 2015. Exploring models and data for image question answering. In In
Advances in Neural Information Processing Systems, pages 2935–2943.

2770

Ruty Rinott, Lena Dankin, Carlos Alzate Perez, Mitesh M. Khapra, Ehud Aharoni, and Noam Slonim. 2015. Show me
your evidence - an automatic method for context dependent evidence detection. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2015, Lisbon, Portugal, September 17-21, 2015, pages
440–450.

Noam Slonim, Ehud Aharoni, Carlos Alzate Perez, Roy Bar-Haim, Yonatan Bilu, Lena Dankin, Iris Eiron, Daniel Hershcovich,
Shay Hummel, Mitesh M. Khapra, Tamar Lavee, Ran Levy, Paul Matchen, Anatoly Polnarov, Vikas C. Raykar, Ruty Rinott,
Amrita Saha, Naama Zwerdling, David Konopnicki, and Dan Gutfreund. 2014. Claims on demand - an initial demonstration
of a system for automatic detection and polarity identification of context dependent claims in massive corpora. In COLING
2014, 25th International Conference on Computational Linguistics, Proceedings of the Conference System Demonstrations,
August 23-29, 2014, Dublin, Ireland, pages 6–9.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning with neural networks. In Advances in
neural information processing systems, pages 3104–3112.

Ivan Vendrov, Ryan Kiros, Sanja Fidler, and Raquel Urtasun. 2016. Order-embeddings of images and language. In 4th
International Conference for Learning Representations, Puerto Rico, 2016.

Oriol Vinyals and Quoc V. Le. 2015. A neural conversational model. CoRR, abs/1506.05869.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. 2015. Show and tell: A neural image caption generator.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3156–3164.

Yi Yang, Wen-tau Yih, and Christopher Meek. 2015. WikiQA: A challenge dataset for open-domain question answering. In
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP), Lisbon, Portugal,
September. Association for Computational Linguistics.

A Appendix

Method P@200 R@200 F1@200 P@50 R@50 F1@50 AVGP AUC
CDCD (Levy et al., 2014) 9.0 73.0 - 18.0 40.0 - - -
Concat-CNN-CNN 7.29 60.5 12.4 14.7 31.5 18.3 0.166 0.810
Conditional-State-Input-RNN-RNN 6.87 58.1 11.7 13.5 29.5 17.0 0.163 0.789

Table 8: Results in Leave-One-Motion-Out mode for Claim Sentence Task according to the dataset used by Levy et al. (2014).

Architecture Context Target Setting Test AVGP
Concat CBOW CNN FilterSize:3,Filters:40 0.3
Concat CBOW RNN Cell:GRU,Size:300 0.276
Concat RNN CNN Cell:LSTM,Size:200,FilterSize:3+4+5,Filters:20 0.307
Concat CNN RNN Cell:GRU,Size:200,FilterSize:3,Filters:64 0.28
Concat RNN RNN Cell:GRU,Size:300 0.27
Concat CNN CNN FilterSize:3+4,Filters:64,L2:0.01 0.304
Bilinear CBOW CNN FilterSize:3+4+5,Filters:40 0.237
Bilinear CBOW RNN Cell:GRU,Size:300 0.263
Bilinear RNN CNN Cell:GRU,Size:200,FilterSize:3+4+5,Filters:64 0.254
Bilinear CNN RNN Cell:GRU,Size:200,FilterSize:3,Filters:10 0.268
Bilinear RNN RNN Cell:GRU,Size:200 0.263
Bilinear CNN CNN FilterSize:3+4,Filters:20 0.237
Conditional-State CNN RNN Cell:GRU,Size:200,FilterSize:3+4,Filters:100 0.248
Conditional-State RNN RNN Cell:GRU,Size:200 0.266
Conditional-Input CNN RNN Cell:GRU,Size:300,FilterSize:3+4+5,Filters:100 0.254
Conditional-Input RNN RNN Cell:GRU,Size:100 0.246
Conditional-State-Input CNN RNN Cell:GRU,Size:300,FilterSize:3,Filters:300 0.264
Conditional-State-Input RNN RNN Cell:GRU,Size:100 0.247
Concat-Sentence baseline Cell:GRU,Size:200 0.17

Table 9: Best configurations of all architectures on Claim Sentence Dataset tuning based on AVGP

2771

Architecture Context Target Setting Test AUC
Concat CBOW CNN FilterSize:3+4+5,Filters:64,L2:0.01 0.863
Concat CBOW RNN Cell:GRU,Size:200 0.868
Concat RNN CNN Cell:GRU,Size:200,FilterSize:3,Filters:40 0.867
Concat CNN RNN Cell:LSTM,Size:200,FilterSize:3+4+5,Filters:20 0.855
Concat RNN RNN Cell:GRU,Size:100 0.864
Concat CNN CNN FilterSize:3,Filters:128,L2:0.01 0.873
Bilinear CBOW CNN FilterSize:3,Filters:128,L2:0.01,LR:0.0001 0.831
Bilinear CBOW RNN Cell:GRU,Size:500 0.832
Bilinear RNN CNN Cell:LSTM,Size:100,FilterSize:3+4,Filters:128,LR:0.00001 0.828
Bilinear CNN RNN Cell:LSTM,Size:200,FilterSize:3+4+5,Filters:10,LR:0.0001 0.857
Bilinear RNN RNN Cell:LSTM,Size:300,LR:0.0001 0.855
Bilinear CNN CNN FilterSize:3+4,Filters:64,L2:0.001,LR:0.0001 0.82
Conditional-State CNN RNN Cell:GRU,Size:48,FilterSize:3+4+5,Filters:16,LR:0.0001 0.873
Conditional-State RNN RNN Cell:GRU,Size:100 0.86
Conditional-Input CNN RNN Cell:GRU,Size:50,FilterSize:3,Filters:50,LR:0.0001 0.873
Conditional-Input RNN RNN Cell:GRU,Size:200 0.86
Conditional-State-Input CNN RNN Cell:GRU,Size:300,FilterSize:3+4,Filters:150,LR:0.00001 0.856
Conditional-State-Input RNN RNN Cell:GRU,Size:200 0.862
Concat-Sentence baseline Cell:GRU,Size:200 0.83

Table 10: Best configurations of all architectures on Claim Sentence Dataset tuning based on AUC

Architecture Context Target Setting Test AVGP Test AUC
Concat CBOW CNN FilterSize:3,Filters:40 0.239 0.81
Concat CBOW RNN Cell:GRU,Size:300 0.251 0.819
Concat RNN CNN Cell:LSTM,Size:200,FilterSize:3+4+5,Filters:20 0.242 0.812
Concat CNN RNN Cell:GRU,Size:200,FilterSize:3,Filters:64 0.231 0.794
Concat RNN RNN Cell:GRU,Size:300 0.241 0.811
Concat CNN CNN FilterSize:3+4,Filters:64,L2:0.01 0.254 0.819
Bilinear CBOW CNN FilterSize:3+4+5,Filters:40 0.218 0.79
Bilinear CBOW RNN Cell:GRU,Size:300 0.202 0.788
Bilinear RNN CNN Cell:GRU,Size:200,FilterSize:3+4+5,Filters:64 0.219 0.789
Bilinear CNN RNN Cell:GRU,Size:200,FilterSize:3,Filters:10 0.229 0.791
Bilinear RNN RNN Cell:GRU,Size:200 0.214 0.788
Bilinear CNN CNN FilterSize:3+4,Filters:20 0.233 0.792
Conditional-State CNN RNN Cell:GRU,Size:200,FilterSize:3+4,Filters:100 0.226 0.797
Conditional-State RNN RNN Cell:GRU,Size:200 0.254 0.832
Conditional-Input CNN RNN Cell:GRU,Size:300,FilterSize:3+4+5,Filters:100 0.229 0.797
Conditional-Input RNN RNN Cell:GRU,Size:100 0.231 0.817
Conditional-State-Input CNN RNN Cell:GRU,Size:300,FilterSize:3,Filters:300 0.211 0.796
Conditional-State-Input RNN RNN Cell:GRU,Size:100 0.257 0.823
Concat-Sentence baseline Cell:GRU,Size:200 0.225 0.805

Table 11: Performance of all architectures on EXPERT Evidence Dataset

Architecture Context Target Setting Test AVGP Test AUC
Concat CBOW CNN FilterSize:3,Filters:40 0.281 0.864
Concat CBOW RNN Cell:GRU,Size:300 0.279 0.851
Concat RNN CNN Cell:LSTM,Size:200,FilterSize:3+4+5,Filters:20 0.29 0.863
Concat CNN RNN Cell:GRU,Size:200,FilterSize:3,Filters:64 0.262 0.829
Concat RNN RNN Cell:GRU,Size:300 0.28 0.842
Concat CNN CNN FilterSize:3+4,Filters:64,L2:0.01 0.297 0.869
Bilinear CBOW CNN FilterSize:3+4+5,Filters:40 0.271 0.831
Bilinear CBOW RNN Cell:GRU,Size:300 0.202 0.788
Bilinear RNN CNN Cell:GRU,Size:200,FilterSize:3+4+5,Filters:64 0.271 0.833
Bilinear CNN RNN Cell:GRU,Size:200,FilterSize:3,Filters:10 0.254 0.839
Bilinear RNN RNN Cell:GRU,Size:200 0.257 0.84
Bilinear CNN CNN FilterSize:3+4,Filters:20 0.275 0.835
Conditional-State CNN RNN Cell:GRU,Size:200,FilterSize:3+4,Filters:100 0.254 0.835
Conditional-State RNN RNN Cell:GRU,Size:200 0.267 0.861
Conditional-Input CNN RNN Cell:GRU,Size:300,FilterSize:3+4+5,Filters:100 0.245 0.838
Conditional-Input RNN RNN Cell:GRU,Size:100 0.28 0.854
Conditional-State-Input CNN RNN Cell:GRU,Size:300,FilterSize:3,Filters:300 0.257 0.839
Conditional-State-Input RNN RNN Cell:GRU,Size:100 0.25 0.849
Concat-Sentence baseline Cell:GRU,Size:200 0.236 0.844

Table 12: Performance of all architectures on STUDY Evidence Dataset

2772

Architecture Context Target Setting Test AVGP Test AUC
Concat CBOW CNN FilterSize:3,Filters:40 0.162 0.735
Concat CBOW RNN Cell:GRU,Size:300 0.187 0.74
Concat RNN CNN Cell:LSTM,Size:200,FilterSize:3+4+5,Filters:20 0.15 0.727
Concat CNN RNN Cell:GRU,Size:200,FilterSize:3,Filters:64 0.119 0.66
Concat RNN RNN Cell:GRU,Size:300 0.171 0.705
Concat CNN CNN FilterSize:3+4,Filters:64,L2:0.01 0.179 0.74
Bilinear CBOW CNN FilterSize:3+4+5,Filters:40 0.129 0.672
Bilinear CBOW RNN Cell:GRU,Size:300 0.119 0.656
Bilinear RNN CNN Cell:GRU,Size:200,FilterSize:3+4+5,Filters:64 0.122 0.676
Bilinear CNN RNN Cell:GRU,Size:200,FilterSize:3,Filters:10 0.131 0.681
Bilinear RNN RNN Cell:GRU,Size:200 0.149 0.688
Bilinear CNN CNN FilterSize:3+4,Filters:20 0.129 0.712
Conditional-State CNN RNN Cell:GRU,Size:200,FilterSize:3+4,Filters:100 0.122 0.681
Conditional-State RNN RNN Cell:GRU,Size:200 0.171 0.739
Conditional-Input CNN RNN Cell:GRU,Size:300,FilterSize:3+4+5,Filters:100 0.141 0.713
Conditional-Input RNN RNN Cell:GRU,Size:100 0.184 0.729
Conditional-State-Input CNN RNN Cell:GRU,Size:300,FilterSize:3,Filters:300 0.186 0.726
Conditional-State-Input RNN RNN Cell:GRU,Size:100 0.169 0.714

Table 13: Performance of all architectures on WikiQA Dataset

Architecture Context Target Setting TrainAcc(%) ValidAcc(%) TestAcc(%)
Concat CBOW CNN FilterSize:3+4+5,Filters:128 74.33 69.43 68.44
Concat CBOW RNN Cell:LSTM,Size:400 72.75 69.4 69.02
Concat RNN CNN Cell:GRU,Size:200,FilterSize:3+4+5,Filters:20 74.01 69.34 68.96
Concat CNN RNN Cell:GRU,Size:200,FilterSize:3,Filters:20 72.93 69.99 69.69
Concat RNN RNN Cell:LSTM,Size:200 72.74 69.96 69.46
Concat CNN CNN FilterSize:3+4+5,Filters:64 74.55 69.49 68.97
Bilinear CBOW CNN FilterSize:3+4,Filters:128 83.86 77.1 77.07
Bilinear CBOW RNN Cell:GRU,Size:300 84.78 79.07 78.19
Bilinear RNN CNN Cell:GRU,Size:500,FilterSize:2+3+4+5,Filters:200 84.42 77.68 77.18
Bilinear CNN RNN Cell:GRU,Size:500,FilterSize:2+3+4+5,Filters:200 83.71 78.72 78.6
Bilinear RNN RNN Cell:GRU,Size:1000,LR:0.0001 84.91 81.1 80.3
Bilinear CNN CNN FilterSize:3+4,Filters:128,LR:0.0001 84.51 76.58 76.81
Conditional-State CNN RNN Cell:GRU,Size:500,FilterSize:3,Filters:500 87.77 80.87 80.81
Conditional-State RNN RNN Cell:GRU,Size:500 89.97 82.38 82.36
Conditional-Input CNN RNN Cell:GRU,Size:500,FilterSize:3+4,Filters:250 87.36 80.81 81.1
Conditional-Input RNN RNN Cell:GRU,Size:500 89.02 81.45 80.92
Conditional-State-Input CNN RNN Cell:GRU,Size:500,FilterSize:3,Filters:500 85.78 80.05 79.61
Conditional-State-Input RNN RNN Cell:GRU,Size:500 89.03 81.93 81.38

Table 14: Performance of all architectures on Textual Entailment Dataset

2773

