
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers,
pages 2378–2388, Osaka, Japan, December 11-17 2016.

FastHybrid: A Hybrid Model for Efficient Answer Selection

Lidan Wang
IBM Watson

T.J. Watson Research Ctr.
Yorktown Heights, NY
wangli@us.ibm.com

Ming Tan
IBM Watson

T.J. Watson Research Ctr.
Yorktown Heights, NY

mingtan@us.ibm.com

Jiawei Han
Computer Science Dept.

UIUC
Urbana, IL

hanj@cs.uiuc.edu

Abstract

Answer selection is a core component in any question-answering systems. It aims to select cor-
rect answer sentences for a given question from a pool of candidate sentences. In recent years,
many deep learning methods have been proposed and shown excellent results for this task. How-
ever, these methods typically require extensive parameter (and hyper-parameter) tuning, which
gives rise to efficiency issues for large-scale datasets, and potentially makes them less portable
across new datasets and domains (as re-tuning is usually required). In this paper, we propose an
extremely efficient hybrid model (FastHybrid) that tackles the problem from both an accuracy
and scalability point of view. FastHybrid is a light-weight model that requires little tuning and
adaptation across different domains. It combines a fast deep model (which will be introduced in
the method section) with an initial information retrieval model to effectively and efficiently han-
dle answer selection. We introduce a new efficient attention mechanism in the hybrid model and
demonstrate its effectiveness on several QA datasets. Experimental results show that although
the hybrid uses no training data, its accuracy is often on-par with supervised deep learning tech-
niques, while significantly reducing training and tuning costs across different domains.

1 Introduction

Open-domain question answering (QA) aims to serve a user’s information request by returning a list of
direct answers. This problem has been receiving an increasingly amount of attention in the NLP and
machine learning communities in the recent years (Ferrucci et al., 2012; Etzioni et al., 2011). Answer
sentence selection (Yih et al., 2013; Tan et al., 2016; Yu et al., 2014; Severyn et al., 2013), which, given
a user question, returns the correct sentences that contain the exact answer, is a core component in QA
systems. The performance of QA systems critically depends on choosing the right candidate sentences
which facilitate the extraction of final answers.

To be successful, in addition to accuracy, real-world systems must be scalable and select the most
accurate answer sentences in a short amount of time. However, accuracy and speed/scalability are com-
peting forces that often counteract each other. It is often the case that methods developed for improving
accuracy incur moderate-to-large computational costs. For example, models based on neural networks
have become very popular due to their strong accuracy for this task (Yu et al., 2014). However, they
are typically slower at training and test time as compared to simple models, which may limit their use
on very large datasets (Joulin et al., 2016). The speed issue is particularly important when working
with new domains and datasets, as the model may have to be re-trained or adapted for the new dataset.
Model re-training and adaptations, even with incremental techniques (Zhou et al., 2012; Chopra et al.,
2013; Glorot et al., 2011) on state-of-the-art hardware (Chilimbi et al., 2014; Xing et al., 2015), could
be prohibitively inefficient when working with time-critical applications or an impatient end-user – who
may prefer a method with minimum (or no) training time spent, and getting similar accuracy as the
expensively trained models.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/

2378



On the other hand, classical information retrieval (IR) models are extremely fast as compared to the
deep models, but may not be as quite accurate. IR models use fast word matching features (e.g., uni-
gram, bigram overlaps between question and answer) to quickly score candidate sentences. Typically no
training is necessary, since these simple models are fairly robust and can be applied to different datasets
without modification (Tao et al., 2007; Bendersky et al., 2010; Buttcher et al., 2006). This property
makes them attractive for scaling to large number of new domains and datasets.

In this paper, we take a step to eliminate the virtual dichotomy between accuracy and scalability/speed
by developing a hybrid model that is simultaneously effective (as the deep models) and extremely effi-
cient at training and test time (as the simple models). We name our proposed structure FastHybrid. We
introduce the concept of a fast (deep) model in Section 3, then describe the FastHybrid model which
combines IR with the proposed fast (deep) model for the best possible accuracy and training speed.

Unlike many other deep learning models, the fast deep model skips the intermediate convolution steps
altogether, and directly operates on the raw word vectors coming from the answer and a slightly modi-
fied question text, constructed from a simple attention approach we propose in Section 3.2, to perform
standard pooling operations. The simple attention in the fast deep model (Section 3.2) works by focusing
explicitly on the question’s influence on the answer with respect to the answer’s representation. While
seemingly, important information from convolution may get lost, however, with the new simple attention,
our model often beats its expectations – not only does it perform well for time, but for accuracy equally.

The fast deep model is combined with an IR model via a hybrid structure to handle answer selection
accurately and efficiently. The IR model is used to create an initial ranking of candidate sentences, and
for the questions that cannot be handled well by IR, the fast deep model is applied. The hybrid structure
leverages complementary strengths by IR and the fast model (both in terms of accuracy and speed), as
will be discussed in Section 3.4.

Our model is nearly hyper-parameter/parameter-free, so it is extremely efficient (no training) for dif-
ferent datasets, and as a result, it can scale very easily to a large number of new domains and users. The
remainder of the paper is organized as follows: we start with a discussion of related work, Section 3
describes our fast model and the hybrid approach, and our methods are evaluated in Section 4, before
discussing future work and concluding.

2 Related work

In recent years, the problem of answer selection, which is a sub-problem in question-answering, has
been getting a lot of attention in the research community (Yih et al., 2013; Tan et al., 2016; Yu et al.,
2014; Severyn et al., 2013). Moving away from the shallow word-level features, these deep learning
approaches focus on extracting important features from low-level representations (word embeddings) by
using various types of deep neural networks (Graves et al., 2013; Hochreiter et al., 1997). The resulting
models can effectively work at a semantic-level (i.e., can match a correct answer with a question even
if they do not have any words in common, however semantically related). This can be viewed as a big
improvement in comparison to the standard information retrieval approaches for the same task, which
typically use hand-crafted word matching features.

However, from an efficiency’s point of view, the deep models are very time-consuming to train. In par-
ticular, to achieve good success, the models typically require a large number of parameters and weights,
making parameter (and hyper-parameter) tuning an expensive process for large-scale applications. While
many remedies have been proposed to address the efficiency issue, ranging from developing fast training
hardwares (Chilimbi et al., 2014) to parameter sharing and simplifying model structures, in comparison
to standard simple IR approaches (Tao et al., 2007; Bendersky et al., 2010; Buttcher et al., 2006), the
training efficiency and scalability of these methods still significantly lack behind.

This issue is particularly significant when we have to adapt the model repeatedly for new domains.
While domain-adaptation techniques have been proposed for many deep learning models (Chopra et al.,
2013; Zhou et al., 2012; Ganin et al., 2015; Sun et al., 2016), the focus and starting point of these work
have largely been on how to adjust the models for accuracy, rather than from an accuracy and scalability
point of view.

2379



Figure 1: Model architecture for simplified deep learning model (a.k.a. fast model)

3 Methods

In this section, we describe our proposed hybrid model, FastHybrid, for effective and efficient answer
selection. It combines a fast (deep) model1 with an initial IR model to create an efficient and effective
overall structure for this task.

A major area that distinguishes our work from the past deep learning models is that we directly operate
on the raw word embedding vectors to perform standard aggregation operations (e.g., max, min-pooling)
before computing similarity scores (Section 3.3). We completely discard the convolution operations used
by many other deep models altogether. With the simple attention (Section 3.2) used by the fast model,
our system is orders of magnitude faster in training than the standard deep models, while performing well
for accuracy equally. We begin with a quick overview of the preliminary background on the Word2Vec
embedding, then focus on the fast (deep) model in Section 3.2 and Section 3.3, before discussing the
hybrid structure in Section 3.4.

3.1 Word2Vec Embedding

Recently (Mikolov et al., 2013) introduced word2vec, a word-embedding procedure. They use a shallow
neural network language model to learn a vector representation for each word. More specifically, a neural
network architecture (the skip-gram model) is proposed and consists of an input layer, a projection layer,
and an output layer to predict words nearby. Each word vector is trained to maximize the log probability
of neighboring words in a corpus. That is, given a sequence of words w1, . . . , wZ ,

1
Z

=
Z∑

z=1

∑
i∈nb(z)

log p(wi|wz)

1We slightly abuse terminology and refer to it as a fast (deep) model. Note no convolution filters etc (representative of
standard deep models) are used. We use this name mostly for comparison purpose with the state-of-the-arts deep learning
models.

2380



where nb(z) denotes the set of neighboring words of wz and p(wi|wz) denotes the hierarchical softmax
of the associated word vectors vwz and vwt (see (Mikolov et al., 2013) for more details). Due to the
simple architecture and the use of hierarchical softmax, the skip-gram model can be trained on billions of
words per hour using a conventional desktop computer. It is unsupervised to learn the word embeddings
and it can be computed on the corpus of interest or pre-trained in advance. Note our framework is
not limited to a particular type of word embeddings, any commonly-used embeddings for text can be
substituted into our framework.

3.2 Efficient simple attention
Attention mechanisms (Mnih et al., 2014) have been shown to be useful in deep learning models. They
help guide pooling to be more cognizant of the key answer tokens relative to the question. While useful,
using attention brings another layer of complexity, more model parameters, hence longer training time.

In this section, we ask the question – can we design a more efficient attention method in the fast model
that does not require additional parameters yet achieves good results? The answer is in the affirmative.
Our new attention strategy in the fast model is extremely simple (only 1 line of code!), however, it is
surprisingly effective. For a pair of question and answer, we replace the question text by an augmented
version of the question, which is formed by a simple concatenation of the original question and the given
answer. This exact process is illustrated by the left side in Figure 1, where each wq

m denotes a word in the
question q, and wa

n is a word in the answer a. The new question consists of the combined tokens from the
question and answer. A look-up on word-embeddings is then performed to get the corresponding word
vectors for the new question tokens. Then max- and min-pooling will be performed (details in the next
section) on these word vectors. The final cosine score will be computed between the new question and
the answer. Note on the answer side, the representation of the answer text stays intact (i.e., a lookup on
word vectors of the original answer tokens is performed, and the vectors are passed to the pooling stage).

Why do we call this simple strategy an attention mechanism? Adding question q’s tokens into the
answer will “corrupt” the answer’s representation and the subsequent max- and min-pooling results of
the answer, by biasing the answer’s representation towards q’s semantic meaning. Intuitively, if the
answer is correct for q, then they are semantically identical, in which case the “corruption” of the answer
a by q should not change the answer’s semantic meaning, and the subsequent cosine similarity between
the answer a and the combined text should be very close to one (i.e., strong similarity). One the other
hand, if the answer is incorrect for q, they are semantically different, the corruption of a by q will make
the answer’s representation drastically different from its original, forcing the cosine score with its original
representation far from one.

The simple “corruption” by q can be viewed as an attention placed on the answer, by focusing explicitly
on q’s influence on the answer with respect to the answer’s original representation. This is exactly what is
captured by Figure 1. The new question can be viewed as a corrupted version of a (by adding q’s tokens
into it), and after the subsequent pooling operations, cosine similarities between the original answer’s
representation and the new corrupted version are computed.

3.3 Pooling and similarity computation
The next step in the fast model is the max- and min-pooling as shown in Figure 1. They are directly
performed on word vectors from the answer and the modified question to form one-dimensional vector
representations. The pooling is performed along each dimension in the word vector, over the tokens in
the input text.

We can think of max-pooling as a way for the model to ask whether a given semantic class is found
anywhere in the input text, while the min-pooling captures the absence of it. Both pooling techniques
have been used before in deep learning applications. In this work, each pooling is used to create a pair of
representations for the inputs, from which a cosine similarity score is derived. The resulting two cosine
similarity scores (based on two pooling strategies) are then combined via a weighted linear combination
to form a final score for the answer:

Score(a) = w · cosine(vq′
max, va

max) + (1− w) · cosine(vq′
min, va

min)

2381



Figure 2: Hybrid approach combining IR with fast, simplified deep model (Figure 1)

where vectors vq′
max and va

max denote the outcome of max-pooling performed on the inputs (i.e., answer
a and the augmented question q′). The vectors vq′

min and va
min are similarly defined. The single weight

w in the linear combination is empirically set. We found in practice, this weight is fairly robust and
insensitive to different datasets. In this work, it is simply set to a constant (w = 0.7) and does not change
from datasets to datasets. Finally, Score(a) is the score used to rank each candidate answer for the given
question, and the one with the highest score is chosen as the best answer by this model.

3.4 Hybrid structure
A hybrid structure is used to combine the fast model with an IR retrieval model. In this work, we use
the IR retrieval model in (Bendersky et al., 2010), which has shown dominant performance in a number
of text and sentence retrieval tasks. The hybrid model is shown in Figure 2. It leverages complementary
strengths of the IR model and the fast model. For accuracy, the IR retrieval model and the fast model
each can cover a unique population of the questions. For example, the IR retrieval model excels at exact
matching of the question with answer terms, if the answer contains sufficient word overlaps with the
question. Predictably, a decent fraction of questions and answers may fall into this category, given the
past wide usage and success of such retrieval models (Tao et al., 2007; Bendersky et al., 2010; Buttcher
et al., 2006) for answer selection and retrieval. On the other hand, some correct answers may not share
any words with the question, and in this situation, the fast model, which works from a semantic level,
can be put into use.

A key component in the hybrid model is deciding when to return the IR results, and when to forward
it to the fast model for scoring. This problem is formulated as “query performance prediction” (QPP),
previously studied by the retrieval community (He et al., 2005; Hauff et al., 2009). A predictive model
(usually of the form of a logistic regression) is used to predict the accuracy of the initial results for a given
question, based on statistics extracted from IR answer scores for the question, such as the separation
(ratio) between the maximum and minimum answer scores, etc. In this work, we follow the work by (He
et al., 2005) to build the query performance prediction model, which is used to direct a question to either
the fast model or return the IR results. It is beyond the scope of our paper to detail the QPP approach;
we refer interested readers to (He et al., 2005) for more details about query performance prediction.

Finally, we would like to point out the entire pipeline is hyper-parameter free, relieving the need for
expensive hyper-parameters tuning. This property allows our model to work with new domains and
datasets more seamlessly – reducing the workload in model tuning.

4 Experiments

In this section we present a comprehensive set of experiments over three QA datasets: WikiQA, TrecQA,
and InsuranceQA. WikiQA (Yang et al., 2015) is an open domain question-answering dataset. We use
the subtask that assumes that there is at least one correct answer for a question. The TrecQA dataset
was created based on TREC QA task (8-13) data (Voorhees et al., 2000). We follow the exact approach
of train/dev/test question selections as in (Wang et al., 2015). InsuranceQA(v2)2 is a recently released

2git clone https://github.com/shuzi/insuranceQA.git

2382



WikiQA TrecQA InsuranceQA(v2)
Train (# questions) 873 1162 12,889
Dev (# questions) 126 65 2000
Test (# questions) 243 68 2000

Avg # cand answers 9 38 500

Table 1: Dataset statistics: WikiQA, TrecQA, and InsuranceQA(v2)

large-scale non-factoid QA dataset from the insurance domain, which has drawn interests from the deep
learning community for studying answer selections.

The statistics of these datasets are given in Table 1, including the number of questions, and the av-
erage number of candidate answers in the train/dev/test set. We study the following methods in our
experiments:

• IR retrieval model (Bendersky et al., 2010). This IR model utilizes unigram and bigram overlaps
between the question and answer, and represents the state-of-the-art in the IR field for effective
answer selection and text retrieval (Bendersky et al., 2010). Similar to our approach, this model
requires no training and it is applied the same way for all datasets.

• FastHybrid. The proposed hybrid model (Section 3) does not require any training. The tunable
parameter (the weight w in the linear combination of cosine scores) is empirically set to 0.7 and
stays the same for all datasets. Thus, the training and dev sets are not used by the hybrid model.
In addition, the model uses standard word embedding vectors3 trained from the Wikiepdia4 and
Gigaword 5 data collections. Although we do not re-train the word-embeddings and use the same
pre-trained embeddings for all datasets, we could potentially re-train it on each dataset to achieve
higher accuracy performance than reported here.

• Supervised background models. Since model scalability and efficiency are an issue, for supervised
models, rather than re-training them for each new QA dataset, we could instead just train them
on a big background dataset containing examples representative of the individual datasets, then
apply the trained model to each QA data without re-training. This strategy refrains from repeated
training, and scales better to large number of domains – thus, it serves as a direct comparison point
to the hybrid model in the experiments. Here we use the Yahoo! answers dataset6, which is a
large Q&A corpus from which we extracted question-answer pairs as the training data. As the
training method, we use two state-of-the-arts deep learning models (Feng et al., 2015; Santos et al.,
2016), which apply convolutional neural networks to extract meaningful representations for each
question and answer pair (Feng et al., 2015), and utilize bidirectional attentions on the questions
and answers to enhance answer selection accuracy (Santos et al., 2016). We denote these two
supervised background models as Supervised background-1 and Supervised background-2, from
applying (Feng et al., 2015) and (Santos et al., 2016) to the Yahoo background corpus, respectively.

• Deep learning methods for answer selection. As mentioned earlier, there is a recent surge on
applying deep learning for answer selection. To be maximally effective, these techniques typically
require in-domain training data for large-scale parameter tuning. Although our end goal is clearly
different from that of standard in-domain supervised deep learning – we approach the problem
from an accuracy and scalability point of view and develop light-weight models which require little
tuning and adaptation across different domains – we present their results for completeness purpose
whenever appropriate. As we will see, although the hybrid model uses no training data, its accuracy
is often on-par (and sometimes slightly better) than supervised deep learning methods trained with
in-domain data (Santos et al., 2016; Feng et al., 2015). This point echoes a similar observation made
recently by related work on classification (Joulin et al., 2016).

3http://nlp.stanford.edu/projects/glove/
4https://dumps.wikimedia.org/enwiki/20140102/
5https://catalog.ldc.upenn.edu/LDC2011T07
6https://webscope.sandbox.yahoo.com/

2383



Model WikiQA top-1 acc TrecQA top-1 acc InsuranceQAv2 top-1 acc
IR (Bendersky et al., 2010) 40.9% 63.23% 18.20%
Supervised background-1 44.4% 61.7% 21.6%
Supervised background-2 44.4% 60.2% 19.4%

FastHybrid 48.2% 71.5% 22.7%

Table 2: Top-1 test accuracy on three QA datasets

All experiments were run on a NVIDIA Tesla K20Xm GPU processor, with memory size per board
(GDDR5) 5GB.

4.1 Model accuracy

Table 2 presents the top-1 accuracy for each QA domain test set7. Among the four comparison methods,
IR and FastHybrid incur no training time (since no training is needed), while the supervised background
models are trained on the large-scale background Yahoo Q&A corpus. We see that the hybrid model con-
sistently achieves better accuracies for all QA domains in comparison to other techniques. An interesting
observation is that while the hybrid model is simple, it is more robust than the supervised background
models. For example, while in WikiQA and InsuranceQA, the supervised background models achieve
decent performance relative to IR and FastHybrid, in TrecQA, their performance drops significantly (at
61.7%, and 60.2%, respectively) with respect to the hybrid model (71.5%). While utilizing the same
training and tuning mechanism as the state-of-the-arts deep learning techniques (in terms of parameter
tuning etc), it cannot make up for the domain gap between the TrecQA domain and the background
Yahoo! Q&A corpus used as the training data. This points out that while the supervised background
models can save some training time by doing a one-time offline training, it may potentially and signifi-
cantly hurt the accuracy of new domains not well represented by the background corpus. This contrasts
with the hybrid model, which aims to simultaneously achieve better efficiency, scalability, while not
hurting accuracy.

Furthermore, while we try to build models that can scale to large number of domains more quickly and
easily – a departure from standard in-domain supervised techniques (which can be used as an accuracy
upper-bound), in many cases the hybrid model performs on-par with these methods for accuracy. As we
will see in Section 4.3, the hybrid model (not using any training data) slightly outperforms supervised
deep models (Feng et al., 2015) from in-domain training for two out of three datasets, while being
significantly faster and more scalable – a highly desirable property for large-scale real-world applications.
Note our original goal was to achieve no significant loss in accuracy while reducing costs. It is interesting

7Top-1 accuracy is one of the most commonly-used metrics to evaluate answer selection and question-answering. Other
metrics include MRR (Radev et al., 2002) and MAP (Baeza-Yates et al., 1999). Since in this paper we focus on getting a
correct answer rather than the entire ranking of answers, top-1 accuracy is reported.

2384



(i) WikiQA (ii) TrecQA (iii) InsuranceQA(v2)

Figure 3: Top-1 test accuracy as the training dataset size is being varied from 0% to 100% of its original,
in increments of 20%, for three QA datasets (i) WikiQA; (ii) TrecQA; and (iii) InsuranceQA(v2).

to see that the hybrid can surpass the expectation, and not only performs well for time, but for accuracy
equally. This confirms our earlier observation that the simple attention mechanism used by the model
works quite well in practice.

4.2 Training time
Table 3 presents the training time for each model. As mentioned earlier, all training and test experiments
were carried out on a NVIDIA Tesla K20Xm GPU. As expected, both the IR model and FastHybrid are
highly efficient. The supervised background models are more expensive, since they have to be trained
on a large-scale background corpus. We note the training times of the supervised background models
depend on the values of their hyper-parameters (e.g., # convolution filters, context window size etc).
They are set in accordance to the settings used by the authors of these deep learning models. We also
note that the supervised background models only have to be trained once. This is significant when we
want to scale to a large number new domains (e.g., in the order of thousands). The saving in time across
these many domains can add up to be quite noticeable. Nonetheless, when taking both accuracy and
scalability/efficiency into account, we would like to have a model that has a higher accuracy yet not
incurring too much costs (in training, tuning etc.), which is achieved by the hybrid model.

4.3 Test accuracy vs training set size
Next, we would like to ask the question – assume we follow the standard supervised setup where in-
domain training data is used to train a model each time, can we improve deep learning model training
efficiency by using a reduced set of the data and achieve similar test accuracy as using the full training
set? Figure 3 and Figure 4 explore the effects of in-domain training set size on test accuracy and training
time, respectively. Figure 3 shows the test accuracy as a function of the amount of training data used,
and each reduced training set is a random sample from the full training data (i.e., sampled at 20%, . . . ,
80% of the full set). Figure 4 reports the corresponding training efficiency achieved at each training set
size. Note it is clear for IR and the FastHybrid, they reside along the x-axis in Figure 4 which denotes
their constant (0) training time.

Given the results shown earlier (Table 2) where the deep learning training method (Feng et al., 2015),
when applied to the Yahoo background corpus (supervised background-1), slightly outperforms super-
vised background-2, we employ (Feng et al., 2015) for in-domain training, denoted by “Deep learning
(in-domain)” in Figure 3 and Figure 4. Note at 100% training data, this represents a standard in-domain
supervised deep learning model. As we can see from Figure 3, the hybrid model achieves equal/better
accuracies for two out of three datasets (TrecQA and InsuranceQA), as compared to the supervised in-
domain deep learning model from using full training data. Furthermore, for the deep learning model,
it is clear that reduced training sets lead to much improved training efficiency. For example, at 20% of
the original training set size (Figure 4), its training time drops to 0.35h, 0.75h, and 1.77h for WikiQA,
TrecQA, and InsuranceQA, respectively – a decent improvement over its original time (1.21h, 3.3h, 4.6h,
respectively). However, the enhanced training efficiency comes at a cost of reduced test accuracy. As

2385



(i) WikiQA (ii) TrecQA (iii) InsuranceQA(v2)

Figure 4: Training time as the training dataset size is being varied from 0% to 100% of its original, in
increments of 20%, for three QA datasets (i) WikiQA; (ii) TrecQA; and (iii) InsuranceQA(v2).

shown by Figure 3, when no training data is used, its test accuracy drops to 0%. In the future, it would
be interesting to look into how to deal with very few training data for these techniques, a problem that
has been drawing much interest recently (Socher et al., 2013; Romera-Paredes et al., 2015; Palatucci et
al., 2014; Ba et al., 2015).

5 Conclusion

In this work, we have developed the FastHybrid model, a hybrid model which combines a fast model
with an IR model to form an efficient and effective hybrid structure for the answer selection task. Unlike
the previous deep learning models for this task, our hybrid model is nearly hyper-parameter/parameter-
free, so it is extremely efficient (no training) for different datasets, and as a result, it can scale very easily
to a large number of new domains and users. We performed a set of extensive experimental studies
that demonstrate both the accuracy and training efficiency of our new method, as compared to several
strong baselines noted for their accuracy and efficiency. In the future, we plan to explore applying this
model to related tasks such as recommendation. In addition, we are interested in building and plugging
in additional query performance prediction (QPP) models into our hybrid model.

6 Acknowledgements

We sincerely thank Bowen Zhou and Bing Xiang for comments that improved the manuscript, and Cicero
dos Santos for assistance with the deep learning software used in this paper.

References
Jimmy Lei Ba, Kevin Swersky, Sanja Fidler, and Ruslan Salakhutdinov. 2015. Predicting Deep Zero-Shot Convo-

lutional Neural Networks using Textual Descriptions. In IEEE International Conference on Computer Vision.

Ricardo Baeza-Yates, and Berthier Ribeiro-Neto 1999. Modern Information Retrieval. Addison-Wesley Longman
Publishing Co., Inc.

Michael Bendersky, Donald Metzler, and Bruce Croft. 2010. Learning Concept Importance Using a Weighted
Dependence Model. In ACM International Conference on Web Search and Data Mining.

Stefan Buttcher, Charles Clarke, and Brad Lushman. 2006. Term proximity scoring for ad-hoc retrieval on very
large text collections. In The 29th annual international ACM SIGIR conference on Research and development
in information retrieval.

Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman. 2014. Building an efficient and
scalable deep learning training system. In The 11th USENIX conference on Operating Systems Design and
Implementation.

Sumit Chopra, Suhrid Balakrishnan, and Raghuraman Gopalan. 2013. DLID: Deep Learning for Domain Adap-
tation by Interpolating between Domains. In ICML 2013 Workshop on Representation Learning.

2386



Oren Etzioni. 2011. Search needs a shake-up. In Nature. 476(7358):25–26

Minwei Feng, Bing Xiang, Michael R. Glass, Lidan Wang, and Bowen Zhou. 2015. Applying deep learning to
answer selection: a study and an open task. In 2015 IEEE Workshop on Automatic Speech Recognition and
Understanding (ASRU).

David Ferrucci. 2012. Introduction to “This is Watson”. In IBM Journal of Research and Development. 56(3.4).

Yaroslav Ganin, and Victor Lempitsky. 2015. Unsupervised Domain Adaptation by Backpropagation. In Interna-
tional Conference on Machine Learning.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Domain Adaptation for Large-Scale Sentiment Classi-
fication: A Deep Learning Approach. In International Conference on Machine Learning.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. 2013. Speech recognition with deep recurrent neural
networks. In International Conference on Acoustics, Speech and Signal Processing.

Claudia Hauff, Leif Azzopardi, and Djoerd Hiemstra. 2009. The Combination and Evaluation of Query Perfor-
mance Prediction Methods. In European Conference on Information Retrieval.

Ben He, and Iadh Ounis. 2005. Query Performance Prediction. In Information Systems, 31(7).

Sepp Hochreiter, and Jurgen Schmidhuber. 1997. Long short-term memory. In Neural Computation.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. 2016. Bag of Tricks for Efficient Text
Classification. http://arxiv.org/pdf/1607.01759.pdf.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of word representations in
vector space. In Workshop at ICLR.

Volodymyr Mnih, Nicolas Heess, Alex Graves, and Koray Kavukcuogl. 2014. Recurrent Models of Visual Atten-
tion. In Annual Conference on Neural Information Processing Systems.

Mark Palatucci, Dean Pomerleau, Geoffrey E. Hinton, and Tom M. Mitchell. 2009. Zero-shot Learning with
Semantic Output Codes. In Annual Conference on Neural Information Processing Systems.

Dragomir R. Radev, Hong Qi, Harris Wu, and Weiguo Fan. 2002. Evaluating Web-based Question Answering
Systems. In The International Conference on Language Resources and Evaluation.

Bernardino Romera-Paredes, and Philip H. S. Torr. 2015. An embarrassingly simple approach to zero-shot learn-
ing. In International Conference on Machine Learning.

Cicero dos Santos, Ming Tan, Bing Xiang, and Bowen Zhou. 2016. Attentive Pooling Networks.
http://arxiv.org/pdf/1602.03609.pdf.

Aliaksei Severyn, and Alessandro Moschitti. 2013. Automatic feature engineering for answer selection and
extraction. In Proceedings of Conference on Empirical Methods in Natural Language Processing (EMNLP).

Richard Socher, Milind Ganjoo, Christopher Manning, and Andrew Ng. 2013. Zero-Shot Learning Through
Cross-Modal Transfer. In Annual Conference on Neural Information Processing Systems.

Baochen Sun, Jiashi Feng, and Kate Saenko. 2016. Return of Frustratingly Easy Domain Adaptation. In Proceed-
ings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16).

Ming Tan, Cicero dos Santos, Bing Xiang, and Bowen Zhou. 2016. Improved Representation Learning for
Question Answer Matching. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics.

Tao Tao, and ChengXiang Zhai. 2007. An exploration of proximity measures in information retrieval. In The 30th
annual international ACM SIGIR conference on Research and development in information retrieval.

Ellen Voorhees. 2000. Overview of the Trec-9 Question Answering Track. In TREC conference.

Di Wang, and Eric Nyberg. 2015. A Long Short-Term Memory Model for Answer Sentence Selection in Question
Answering. In Conference on Empirical Methods in Natural Language Processing (EMNLP).

Eric P. Xing, Qirong Ho, Wei Dai, Jin Kyu Kim, Jinliang Wei, Seunghak Lee, Xun Zheng, Pengtao Xie, Abhimanu
Kumar, and Yaoliang Yu. 2015. Petuum: A new platform for distributed machine learning on big data. In CM
SIGKDD International Conference on Knowledge Discovery and Data Mining.

2387



Yi Yang, Wen-tau Yih, and Christopher Meek. 2015. Wikiqa: A challenge dataset for open-domain question
answering. In Conference on Empirical Methods in Natural Language Processing (EMNLP).

Wen-tau Yih, Ming-Wei Chang, Christopher Meek, and Andrzej Pastusiak. 2013. Question Answering Using
Enhanced Lexical Semantic Models. In The 51st Annual Meeting of the Association for Computational Lin-
guistics.

Lei Yu, Karl Hermann, Phil Blunsom, and Stephen Pulman. 2014. Deep learning for answer sentence selection.
In NIPS Deep Learning Workshop.

Guanyu Zhou, Kihyuk Sohn, and Honglak Lee. 2012. Online Incremental Feature Learning with Denoising
Autoencoders. In The 15th International Conference on Artificial Intelligence and Statistics (AISTATS).

2388


