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Abstract

Previous studies have highlighted the necessity for entity linking systems to capture the local
entity-mention similarities and the global topical coherence. We introduce a novel framework
based on convolutional neural networks and recurrent neural networks to simultaneously model
the local and global features for entity linking. The proposed model benefits from the capacity
of convolutional neural networks to induce the underlying representations for local contexts and
the advantage of recurrent neural networks to adaptively compress variable length sequences of
predictions for global constraints. Our evaluation on multiple datasets demonstrates the effec-
tiveness of the model and yields the state-of-the-art performance on such datasets. In addition,
we examine the entity linking systems on the domain adaptation setting that further demonstrates
the cross-domain robustness of the proposed model.

1 Introduction

We address the problem of entity linking (EL): mapping entity mentions in documents to their correct
entries (called target entities) in some existing knowledge bases (KB) like Wikipedia. For instance, in the
sentence “Liverpool suffered an upset first home league defeat of the season.”, an entity linking system
should be able to identify the entity mention “Liverpool” as a football club rather than a city in England
in the knowledge bases. This is a challenging problem of natural language processing, as the same entity
might be presented in various names, and the same entity mention string might refer to different entities
in different contexts. Entity linking is a fundamental task for other applications such as information
extraction, knowledge base construction etc.

In order to tackle the ambiguity in EL, previous studies have first generated a set of target entities in
the knowledge bases as the referent candidates for each entity mention in the documents, and then solved
a ranking problem to disambiguate the entity mention. The key challenge in this paradigm is the ranking
model that computes the relevance of each target entity candidate to the corresponding entity mention
using the available context information in both the documents and the knowledge bases.

The early approach for the ranking problem in EL has resolved the entity mentions in documents
independently (the local approach), utilizing various discrete and hand-designed features/heuristics to
measure the local mention-to-entity relatedness for ranking. These features are often specific to each
entity mention and candidate entity, covering a wide range of linguistic and/or structured representa-
tions such as lexical and part-of-speech tags of context words, dependency paths, topical features, KB
infoboxes (Bunescu and Pasca, 2006; Mendes et al., 2011; Cassidy et al., 2011; Ji and Grishman, 2011;
Shen et al., 2014) etc. Although the local approach can exploit a rich set of discrete structures for EL, its
limitation is twofold:

(i) The independent ranking mechanism in the local approach overlooks the topical coherence among
the target entities referred by the entity mentions within the same document. This is undesirable
as the topical coherence has been shown to be effective for EL in the previous work (Han et al.,
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2011; Hoffart et al., 2011; Ratinov et al., 2011; He et al., 2013b; Alhelbawy and Gaizauskas, 2014;
Pershina et al., 2015).

(ii) The local approach might suffer from the data sparseness issue of unseen words/features, the diffi-
culty of calibrating, and the failure to induce the underlying similarity structures at high levels of
abstraction for EL (due to the extensive reliance on the hand-designed coarse features) (Sun et al.,
2015; Francis-Landau et al., 2016).

The first drawback of the local approach has been overcome by the global models in which all entity
mentions (or a group of entity mentions) within a document are disambiguated simultaneously to obtain a
coherent set of target entities. The central idea is that the referent entities of some mentions in a document
might in turn introduce useful information to link other mentions in that document due to the semantic
relatedness among them. For example, the appearances of “Manchester” and “Chelsea” as the football
clubs in a document would make it more likely that the entity mention “Liverpool” in the same document
is also a football club. Unfortunately, the coherence assumption of the global approach does not hold
in some situations, necessitating the discrete/coarse features in the local approach as a mechanism to
compensate for the potential exceptions of the coherence assumption (Ratinov et al., 2011; Hoffart et al.,
2011; Sil et al., 2012; Durrett and Klein, 2014; Pershina et al., 2015). Consequently, the global approach
is still subject to the second limitation of data sparseness of the local approach due to their use of discrete
features.

Recently, the surge of neural network (NN) models has presented an effective mechanism to mitigate
the second limitation of the local approach. In such models, words are represented by continuous rep-
resentations (Bengio et al., 2003; Turian et al., 2010; Mikolov et al., 2013) and features for the entity
mentions and candidate entities are automatically learnt from data. This essentially alleviates the data
sparseness problem of unseen words/features and helps to extract more effective features for EL in a
given dataset (Kalchbrenner et al., 2014; Nguyen et al., 2016a). In practice, the features automatically
induced by NN are combined with the discrete features in the local approach to extend their coverage for
EL (Sun et al., 2015; Francis-Landau et al., 2016). However, as the previous NN models for EL are local,
they cannot capture the global interdependence among the target entities in the same document (the first
limitation of the local approach).

Guided by these analyses, in this paper, we propose to use neural networks to model both the local
mention-to-entity similarities and the global relatedness among target entities in an unified architecture.
This allows us to inherit all the benefits from the previous systems as well as overcome their inher-
ent issues. Our work is an extension of (Francis-Landau et al., 2016) which only considers the local
similarities.

Given a document, we simultaneously perform linking for every entity mention from the beginning to
the end of the document. For each entity mention, we utilize convolutional neural networks (CNN) to
obtain the distributed representations for the entity mention as well as its target candidates. These dis-
tributed representations are then used for two purposes: (i) computing the local similarities for the entity
mention and target candidates, and (ii) functioning as the input for the recurrent neural networks (RNN)
that runs over the entity mentions in the documents. The role of the RNNs is to accumulate information
about the previous entity mentions and target entities, and provide them as the global constraints for the
linking process of the current entity mention. We systematically evaluate the proposed model on multiple
datasets in both the general setting and the domain adaptation setting. The experiment results show that
the proposed model outperforms the current state-of-the-art models on the evaluated datasets. To our
knowledge, this is also the first work investigating the EL problem in the domain adaptation setting.

2 Model

The entity linking problem in this work can be formalized as follows. Let D be the input document and
M = {m1,m2, . . . ,mk} be the entity mentions in D. The goal is to map each entity mention mi to its
corresponding Wikipedia page (entity) or return “NIL” if mi is not present in Wikipedia. For each entity
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mention mi ∈ D, let Pi = {pi1, pi2, . . . pini} be its set of Wikipedia candidate pages (entities)1 where
ni is the number of page candidates for mi. Also, let p∗i ∈ Pi be the correct target entity for mi.

Following Francis-Landau et al. (2016), we represent each entity mention mi by the triple mi =
(si, ci, di), where si is the surface string of mi, ci is the immediate context (within some predefined
window) of mi and di is the entire document containing mi. Essentially, si, ci and di are the sequences
of words to capture the contexts or topics of mi at multiple granularities. For the target candidate pages
pij , we use the title tij and body content bij to represent them (pij = (tij , bij)). For convenience, we also
denote p∗i = (t∗i , b

∗
i ) for the correct entity pages. Again, tij , bij , t∗i and b∗i are also sequences of words.

In order to link the entity mentions, the strategy is to assign a relevance score φ(mi, pij) for each target
candidate pij of mi, and then use these scores to rank the candidates for each mention. In this work, we
decompose φ(mi, pij) as the sum of the two following factors:

φ(mi, pij) = φlocal(mi, pij) + φglobal(m1,m2, . . . ,mi, P1, P2, . . . , Pi)

In this formula, φlocal(mi, pij) represents the local similarities between mi and pij , i.e, only using the
information related to mi and pij . φglobal(m1,m2, . . . ,mi, P1, P2, . . . , Pi), on the other hand, addi-
tionally considers the other mentions and candidates in the document, attempting to model the interde-
pendence among these objects. The denotation φglobal(m1,m2, . . . ,mi, P1, P2, . . . , Pi) implies that we
are computing the ranking scores for all the target candidates of all the entity mentions in each docu-
ment simultaneously, preserving the order of the entity mentions from the beginning to the end of the
document.

The model in this work consists of three main components: (i) the encoding component that applies
convolutional neural networks to induce the distributed representations for the input sequences si, ci, di,
tij , and bij , (ii) the local component that computes the local similarities φlocal(mi, pij) for each entity
mention mi, and (iii) the global component that runs recurrent neural networks on the entity mentions
{m1,m2, . . . ,mk} to generate the global features φglobal(m1,m2, . . . ,mi, P1, P2, . . . , Pi).

2.1 Encoding

Let x be some context word sequence of the entity mentions or target candidates (i.e, x ∈ {si, ci, di}i ∪
{tij , pij}i,j ∪ {t∗i , b∗i }i). In order to obtain the distributed representation for x, we first transform each
word xi ∈ x into a real-valued, h-dimensional vector wi using the word embedding table E (Mikolov et
al., 2013): wi = E[xi]. This essentially converts the word sequence x into a sequence of vectors that is
padded with zero vectors to form a fixed-length sequence of vectors w = (w1, w2, . . . , wn) of length n.

In the next step, we apply the convolution operation over w to generate the hidden vector sequence,
that is then transformed by a non-linear function G and pooled by the sum function (Francis-Landau et
al., 2016). Following the previous work on CNN (Nguyen and Grishman, (2015a; 2015b)), we utilize
the set L of multiple window sizes to parameterize the convolution operation. Each window size l ∈ L
corresponds to a convolution matrix Ml ∈ Rv×lh of dimensionality v. Eventually, the concatenation
vector x̄ of the resulting vectors for each window size inLwould be used as the distributed representation
for x:

x̄ =
⊕
l∈L

n−l+1∑
i=1

G(Mlwi:(i+l−1))

where
⊕

is the concatenation operation over the window set L and wi:(i+l−1) is the concatenation vector
of the given word vectors.

For convenience, let s̄i, c̄i, d̄i, t̄ij , b̄ij , t̄∗i and b̄∗i be the distributed representations of si, ci, di, tij , pij ,
t∗i and b∗i obtained by the convolution procedure above, respectively. Note that we apply the same set
of convolution parameters for each type of text granularity in the source document D as well as in the

1For comparison purpose, we use the target candidates provided by Francis-Landau et al. (2016). Essentially, a query
generation is executed for each entity mention, whose outputs are combined with link counts to retrieve the potential entities
(including “NIL”). The query generation itself involves removing stop words, plural suffixes, punctuation, and leading or tailing
words.
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target entity side. The vector representations of the context would then be fed into the next components
to compute the features for EL.

2.2 Local Similarities
We employ the local similarities φlocal(mi, pij) from (Francis-Landau et al., 2016), the state-of-the-art
neural network model for EL. In particular:

φlocal(mi, pij) = φsparse(mi, pij)+φCNN (mi, pij) = WsparseFsparse(mi, pij)+WCNNFCNN (mi, pij)

In this formula, Wsparse and WCNN are the weights for the feature vectors Fsparse and WCNN respec-
tively. Fsparse(mi, pij) is the sparse feature vector obtained from (Durrett and Klein, 2014). This vector
captures various linguistic properties and statistics that have been discovered in the previous studies for
EL. The representative features include the anchor text counts from Wikipedia, the string match indica-
tions with the title of the Wikipedia candidate pages, or the information about the shape of the queries
for candidate generations (Francis-Landau et al., 2016).
FCNN (mi, pij), on the other hand, involves the cosine similarities between the representation vectors

at multiple granularities of mi and pij . In particular:

FCNN (mi, pij) = [cos(s̄i, t̄ij), cos(c̄i, t̄ij), cos(d̄i, t̄ij), cos(s̄i, b̄ij), cos(c̄i, b̄ij), cos(d̄i, b̄ij)] (1)

The intuition for this computation is that the similarities at different levels of contexts might help to
enforce the potential topic compatibility between the contexts of the entity mentions and target candidates
for EL (Francis-Landau et al., 2016).

2.3 Global Similarities
In order to encapsulate the coherence among the entity mentions and their target entities, we run recurrent
neural networks over the sequences of the representation vectors for the entity mentions (i.e, the vector
sequences for the surface strings (s̄1, s̄2, . . . , s̄k) and for the immediate contexts (c̄1, c̄2, . . . , c̄k)) and
the target entities (i.e, the vector sequences for the page titles (t̄∗1, t̄∗2, . . . , t̄∗k) and for the body contents
(b̄∗1, b̄∗2, . . . , b̄∗k))2.

Let us take the representation vector sequence of the body contents of the target pages (b̄∗1, b̄∗2, . . . , b̄∗k)3

as an example. The recurrent neural network with the recurrent function Φ for this sequence will generate
the hidden vector sequence (hb

1, h
b
2, . . . , h

b
k) where: hb

i = Φ(hb
i−1, b̄

∗
i ).

Each vector hb
i in this sequence encodes or summarizes the information about the content of the pre-

vious target entities (i.e, before i) in the document due to the property of RNN.
Given the hidden vector sequence, when predicting the target entity for the entity mention mi, we

ensure that the target entity is consistent with the global information stored in hb
i−1. This is achieved by

using the cosine similarities between hb
i−1 and the representation vectors of each target candidate pij of

mi, (i.e, cos(hb
i−1, t̄ij) and cos(hb

i−1, b̄ij)) as the global features for the ranking score.
We can repeat this process for the other representation vector sequences in both the entity mention side

and the target entity side. The resulting global features would then be grouped into a single feature vector
to compute the global similarity score φglobal(m1,m2, . . . ,mi, P1, P2, . . . , Pi) as in the local similarity
section. An overview of the whole model is presented in Figure 1.

Regarding the reccurent function Φ, we employ the gated recurrent units (GRU) (Cho et al., 2014)
to alleviate the “vanishing gradient problem” of RNN. GRU is a simplified version of long-short term
memory units (LSTM) that has been shown to achieve comparable performance (Józefowicz et al., 2015).

Finally, for training, we jointly optimize the parameters for the CNNs, RNNs and weight vectors
by maximizing the log-likelihood of a labeled training corpus. We utilize the stochastic gradient descent
algorithm and the AdaDelta update rule (Zeiler, 2012). The gradients are computed via back-propagation.
Following (Francis-Landau et al., 2016), we do not update the word embedding table during training.

2Note that we have different recurrent neural networks for different context vector sequences.
3In the training process, (b̄∗1, b̄

∗
2, . . . , b̄

∗
k) are obtained from the golden target entities while in the test time, they are retrieved

from the predicted target entities.
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Figure 1: Joint model for learning local and global features for a document with 3 entity mentions: Chelsea, Arsenal and
Liverpool. Each of the entity mentions has two entity candidate pages (either a football club or a city).The orange rectangles
denote the CNN-induced representation vectors s̄i, c̄i, d̄i, t̄ij and b̄ij . The circles in red and green are the ranking scores for the
target candidates, in which the green circles correspond to the correct target entities. Finally, the circles in grey are the hidden
vectors (i.e, the global vectors) of the RNNs running over the entity mentions. We only show the global entity vectors in this
figure to improve the visualization.

3 Experiments

3.1 Datasets

Following (Francis-Landau et al., 2016), we evaluate the models on 4 different entity linking datasets:
i) ACE (Bentivogli et al., 2010): This corpus is from the 2005 evaluation of NIST. It is also used in

(Fahrni and Strube, 2014) and (Durrett and Klein, 2014).
ii) CoNLL-YAGO (Hoffart et al., 2011): This corpus is originally from the CoNLL 2003 shared task

of named entity recognition for English.
iii) WP (Heath and Bizer, 2011): This dataset consists of short snippets from Wikipedia.
iv) WIKI (Ratinov et al., 2011): This dataset contains 10,000 randomly sampled Wikipedia articles.

The task is to disambiguate the links in each article4.
For all the datasets, we use the standard data splits (for training data, test data and development data)

as the previous works for comparable comparison (Francis-Landau et al., 2016).

3.2 Parameters and Resources

For all the experiments below, in the CNN models to learn the distributed representations for the inputs,
we use window sizes in the set L = {2, 3, 4, 5} for the convolution operation with the dimensionality
v = 200 for each window size5. The non-linear function for transformation is G = tanh.

We employ the English Wikipedia dump from June 2016 as our reference knowledge base.
Regarding the input contexts for the entity mentions and the target candidates, we utilize the window

size of 10 for the immediate context ci, and only extract the first 100 words in the documents for di and
bij .

Finally, we pre-train the word embedings on the whole English Wikipedia dump using the word2vec
toolkit (Mikolov et al., 2013). The training parameters are set to the default values in this toolkit. The
dimensionality of the word embeddings is 300.

Note that every parameter and resource in this work is either taken from the previous work (Nguyen
and Grishman, 2016b; Francis-Landau et al., 2016) or selected by the development data.

4As noted by Francis-Landau et al. (2016) and Nguyen et al. (2014b), the original Wikipedia dump in Ratinov et al. (2011)
is no longer accessible, so we cannot duplicate the results or conduct comparable experiments with (Ratinov et al., 2011). We
instead compare our performance with (Francis-Landau et al., 2016) that provides the access to their Wikipedia dump.

5As we need to compute the cosine similarities between the hidden vectors of the RNN models and the representation
vectors of the target candidates, the number of hidden units for the RNN is set to 200|L| = 800 naturally.
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3.3 Evaluating the Global Features
In this section, we evaluate the effectiveness of the global features for EL. In particular, we differentiate
two types of global features based on the side of information we expect to enforce the coherence. The
first type of global features (global-mention) concerns the entity mention side and involves applying the
global RNN models on the CNN-induced representation vectors of the entity mentions (i.e, the surface
vectors (s̄1, s̄2, . . . , s̄k) and the immediate context vectors (c̄1, c̄2, . . . , c̄k)). The second type of global
features (global-entity), on the other hand, focuses on the target entity side and models the coherence
with the representation vectors of the target entities (i.e, the page title vectors (t̄∗1, t̄∗2, . . . , t̄∗k) and the
body content vectors (b̄∗1, b̄∗2, . . . , b̄∗k)). Table 1 reports the development performance (F1 scores) of the
proposed model on different cases where the global-mention and global-entity features are included or
excluded from the model.

Global Features
Dataset

ACE CoNLL WP
No 86.1 89.3 84.0
global-mention 86.8 90.2 84.2
global-entity 86.9 90.7 84.2
global-mention + global-entity 86.2 90.6 84.0

Table 1: Performance of the global features on the development set. No means not using the global features.

The most important observation from the table is that the global features, in general, help to improve
the performance of the model on different datasets. This is substantial on the ACE and CoNLL datasets
when only one type of the global features (either global-mention or global-entity) is integrated into
the model. The combination of global-mention and global-entity is not very effective as it is actually
worse than the performance of the individual global feature types. This suggests that global-mention and
global-entity might cover overlapping information and their combination would inject redundancy into
the model. The best performance is achieved by the global-entity features that would be used in all the
evaluations below.

3.4 Comparing to the Previous Work
This section compares the proposed system (called Global-RNN) with the state-of-the-art models on our
four datasets. These systems include the neural network model in (Francis-Landau et al., 2016), the
joint model for entity analysis in (Durrett and Klein, 2014) and the AIDA-light system with two-stage
mapping in (Nguyen et al., 2014b)6. Table 2 shows the performance of the systems on the test sets with
the reference knowledge base of the June 2016 Wikipedia dump. We also include the performance of the
systems on the December 2014 Wikipedia dump that was used and provided by (Francis-Landau et al.,
2016) for further and compatible comparison.

Systems
Wikipedia 2014 Wikipedia 2016

ACE CoNLL WP WIKI ACE CoNLL WP WIKI
DK2014 (Durrett and Klein, 2014) 79.6 - - - - - - -
AIDA-LIGHT (Nguyen et al., 2014b) - 84.8 - - - - - -
Local CNN (Francis-Landau et al., 2016) 89.9 85.5 90.7 82.2 86.1 84.5 90.4 81.4
Global-RNN 89.7 87.2† 91.2† 83.7† 87.8† 86.5† 91.2† 81.7

Table 2: Performance of the systems. Cells marked with †designate the Global-RNN models that significantly outperform the
Local CNN model (ρ < 0.05).

First, we see that the performance of the systems drop significantly when we switch from Wikipedia
2014 to Wikipedia 2016 (especially for the datasets ACE and CoNLL). This is can be partly explained by
the inclusion of new entities (pages) into Wikipedia from 2014 to 2016 that has made the entity mentions
in the datasets more ambiguous7. Second and more importantly, Global-RNN significantly outperforms

6We note that (Alhelbawy and Gaizauskas, 2014) and (Pershina et al., 2015) also use the CoNLL-YAGO dataset for their
experiments. However, since they evaluate the models on the whole dataset rather than the test set as the other works do, they
are not comparable to the performance we report in this paper.

7The number of Wikipedia pages in 2014 is about 4.5 million while this number is 5 million in June 2016.
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the all the compared models (except for the ACE dataset on Wikipedia 2014 and the WIKI dataset on
Wikipedia 2016), thereby demonstrating the benefits of the joint modeling for local and global features
via neural networks for EL in this work.

3.5 Domain Adaptation Experiments
The purpose of this section is to further evaluate the models in the domain adaptation setting to investigate
their cross-domain robustness for EL.

It is often observed in many natural language processing tasks that the performance of a model trained
on a source domain would degrade significantly when it is applied to a different target domain (Blitzer
et al., 2006; Daume, 2007; McClosky et al., 2010; Plank and Moschitti, 2013; Nguyen and Grishman,
2014a). Such a performance loss originates from a variety of mismatches between the source and the
target domains, including the differences in vocabulary, data distributions, styles etc. This has motivated
the domain adaptation research that aims to improve the cross-domain performance of the models by
adaptation techniques.

One of the key strategies of the domain adaptation techniques is the search for the domain-independent
features that are discriminative across different domains (Blitzer et al., 2006; Jiang, 2009; Plank and Mos-
chitti, 2013; Nguyen and Grishman, 2014a). These invariants serve as the connectors between different
domains and help to transfer the knowledge from one domain to the others. For EL, we hypothesize that
the global coherence is an effective domain-independent feature that would help to improve the cross-
domain performance of the models. The intuition is that the entities mentioned in a document of any
domains should be related to each other. Eventually, we expect that the proposed model with global
coherence features would be more robust to domain shifts than the local approach (Francis-Landau et al.,
2016).

3.5.1 Dataset
We use the ACE dataset to evaluate the cross-domain performance of the models. ACE involves docu-
ments in 6 different domains: broadcast conversation (bc), broadcast news (bn), telephone conversation
(cts), newswire (nw), usenet (un) and webblogs (wl). Following the common practice of domain adap-
tation research on this dataset (Plank and Moschitti, 2013; Nguyen et al., 2015c; Gormley et al., 2015),
we use news (the union of bn and nw) as the source domain and bc, cts, wl, un as four different target
domains. We take half of bc as the development set and use the remaining data for testing. We note that
news consists of formally written documents while a majority of the other domains is informal text, mak-
ing the source and target domains very divergent in terms of vocabulary and styles (Plank and Moschitti,
2013).

3.5.2 Evaluation
Table 3 compares Global-RNN with the neural network EL model in (Francis-Landau et al., 2016), the
best reported model on the ACE dataset in the literature8. In this table, the models are trained on the
source domain news, and evaluated on news itself (in-domain performance) (via 5-fold cross validation)
as well as on the 4 target domains bc, cts, wl, un (out-of-domain performance). The experiments in this
section are done with the 2016 Wikipedia dump.

Models
Domain

in-domain bc cts wl un
Local CNN (Francis-Landau et al., 2016) 90.6 87.8 88.7 80.2 82.1
Global-RNN 91.0 88.7† 88.9 81.3† 83.1†

Table 3: Cross-domain performance. Cells marked with †designate the Glob-RNN models that significantly outperform the
Local CNN model (ρ < 0.05).

The first observation from the table is that the performance of all the compared systems on the target
domains is much worse than the corresponding in-domain performance. In particular, the performance
gap between the in-domain performance and the the worst out-of-domain performance (on the domain

8The performance of the model from (Francis-Landau et al., 2016) reported in this work is obtained by running their actual
released system.
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wl) is up to 10%, thus indicating the mismatches between the source and the target domains for EL.
Second and most importantly, Global-RNN is consistently better than the model with only local fea-
tures in (Francis-Landau et al., 2016) over all the target domains (although it is less pronounced in the
cts domain). This demonstrates the cross-domain robustness of the proposed model and confirms our
hypothesis about the domain-independence of the global coherence features for EL.

3.5.3 Analysis
In order to better understand the performance gap in the domain adaptation experiments for EL, we vi-
sualize the representation vectors of the entity mentions in different domains. In particular, after Global-
RNN is trained, we retrieve the representation vectors c̄i for the immediate contexts of the entity mentions
in the source and target domains, project them into the 2-dimension space via the t-SNE algorithm and
plot them. Figure 2 shows the plot.

NEWS

BC

CTS

WL

UN

Figure 2: t-SNE visualization on the representation vectors ci of different domains.

As we can see from the figure, the entity mentions in the target domains bc, cts, wl and un are quite
separated from those of the source domain news, thereby explaining the performance loss in the domain
adaption experiments.

It is not clear in Figure 2 why the models perform much worse on the target domains wl and un than
the other domains (i.e, bc and cts). We further investigate this problem by computing the similarities
between the target domains and the source domain. While there are several methods to estimate domain
similarities (Plank and van Noord, 2011), in this work, we employ the mean of the cosine similarities
of every mention pairs in the two domains of interest. Specifically, let E and F be the two domains of
interest, and E = {e1, e2, . . . , eg} and F = {f1, f2, . . . , fw} be the sets of the representation vectors for
the entity mentions in E and F respectively (g = |E|, w = |F |). The similarity between E and F is then
given by:

Sim(E,F ) = 100×
∑g

i=1

∑w
j=1 cos(ei, fj)
gw

Table 4 shows the similarities between the source domain news and each target domains bc, cts, wl and
un with respect to the representation vectors of the immediate context c̄i (context) and the target entity
titles t̄∗i (title) for the entity mentions mi. We also include the similarities in which the representation
vectors are the local feature vectors FCNN (mi, t

∗
i ) in Equation 1 (interaction). The goal of the local

feature similarities is to characterize how the entity mentions in different domains interact with their
target entities.

It is clear from the table that wl is the most dissimilar domain from the source domain. This is followed
by un and partly explains the performance in Table 3.
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Domain context title interaction
bc 10.7 2.0 34.4
cts 11.4 2.0 32.6
wl 9.2 0.8 30.3
un 9.5 1.4 31.1

Table 4: Similarities to the source domain news.

4 Related Work

Entity linking or disambiguation has been studied extensively in NLP research, falling broadly into
two major approaches: local and global disambiguation. Both approaches share the goal of measuring
the similarities between the entity mentions and the target candidates in the reference KB. The local
paradigm focuses on the internal structures of each separate mention-entity pair, covering the name
string comparisons between the surfaces of the entity mentions and target candidates, entity popularity
or entity type and so on (Bunescu and Pasca, 2006; Milne and Witten, 2008; Zheng et al., 2010; Ji
and Grishman, 2011; Mendes et al., 2011; Cassidy et al., 2011; Shen et al., 2014). In contrast, the
global approach jointly maps all the entity mentions within documents to model the topical coherence.
Various techniques have been exploited for capturing such semantic consistency, including Wikipedia
category agreement (Cucerzan, 2007), Wikipedia link-based measures (Kulkarni et al., 2009; Hoffart et
al., 2011; Shen et al., 2012), Point-wise Mutual Information measures (Ratinov et al., 2011), integer
linear programming (Cheng and Roth, 2013), PageRank (Alhelbawy and Gaizauskas, 2014; Pershina et
al., 2015), stacked generalization (He et al., 2013a), to name a few. The entity linking techniques and
systems have been actively evaluated at the NIST-organized Text Analysis Conference (Ji et al., 2014).

Neural networks are applied to entity linking very recently. He et al. (2013b) learn enttiy represen-
tation via Stacked Denoising Auto-encoders. Sun et al. (2015) employ convolutional neural networks
and neural tensor networks to model mentions, entities and contexts while Francis-Landau et al. (2016)
combine CNN-based representations with sparse features to improve the performance. However, none
of these work utilize recurrent neural networks to capture the coherence features as we do in this work.

5 Conclusion

We present a joint model to learn the local context similarities and the global topical relatedness features
for entity linking. CNNs are employed to capture the local similarities while RNNs are utilized to
introduce the coherence. The model achieves the state-of-the-art performance on multiple datasets for
entity linking. It is also shown to be more robust to domain shifts. Our future work is threefold: (i)
integrating entity embedding models into the current work, (ii) exploring new neural models to jointly
perform entity linking and entity extraction (Nguyen et al., 2016c), and (iii) further evaluating the models
in the cross-lingual settings.
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