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Abstract

The exchangeability assumption in topic models like Latent Dirichlet Allocation (LDA) often
results in inferring inconsistent topics for the words of text spans like noun-phrases, which
are usually expected to be topically coherent. We propose copulaLDA, that extends LDA by
integrating part of the text structure to the model and relaxes the conditional independence
assumption between the word-specific latent topics given the per-document topic distributions. To
this end, we assume that the words of text spans like noun-phrases are topically bound and we
model this dependence with copulas. We demonstrate empirically the effectiveness of copulaLDA
on both intrinsic and extrinsic evaluation tasks on several publicly available corpora.

1 Introduction

Probabilistic topic models, such as Latent Dirichlet Allocation (LDA) (Blei et al., 2003), are generative
models that describe the content of documents by discovering the latent topics underlying them.

A limitation inherent from the bag-of-words representation in such state-of-the-art models concerns
the independence assumption: given their topics, words are assumed to occur independently. While this
exchangeability assumption greatly impacts the involved computations and, in particular, the calculations
of the conditional probabilities, it is rather naive and unrealistic (Heinrich, 2005). As another limitation
caused by the exchangeability assumption, the grouping of words in topically coherent spans, that is
contiguous text spans like sentences, is lost.

On the other hand, text structure generally contains useful information that could be leveraged in
inference process. Sentences or phrases, for instance, are by definition text spans complete in themselves
that convey a concise statement. To better illustrate how text structure could help in topic identification,
consider the example of Figure 1. It illustrates the topics inferred by LDA for the words (excluding
stop-words) of a sentence drawn from a Wikipedia page. At the sentence level, one could argue that the
sentence is generated by the “Cinema” topic since it discusses a film and its authors. LDA, however, fails
and assigns several topics to the words of the sentence. Importantly, several of those topics like “Elections”
and “Inventions” are unrelated. In finer text granularity, LDA also fails to assign consistent topics in
noun-phrases like “film noir classic” and entities like “Brian Donlevy”. A binding mechanism among the
topics of the words of a sentence, or a phrase, could have prevented those limitations and taking simple
text structure into account would be beneficial.

The film is a remake of the 1947 film noir classic
that starred Victor Mature, Brian Donlevy and
Richard Widmark.

Cinema Science Elections Inventions

Figure 1: Applying LDA on Wikipedia documents.

Motivated by the previous example, we propose
to incorporate text structure in the form of sentence
or phrase boundaries as an intermediate structure
in LDA. We plan to model this binding mechanism
with copulas. Copulas have been found to be a
flexible tool to model dependencies in the fields of
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risk management and finance (Embrechts et al., 2002). They are a family of distribution functions that
offer a flexible way to model the joint probability of random variables using only their marginals. This
results in decoupling the marginal distributions by the underlying dependency. These properties make
them appealing and some preliminary studies have started investigating their integration into different
learning tasks (Wilson and Ghahramani, 2010; Tran et al., 2015; Amoualian et al., 2016).

The remainder of the paper is organized as follows: Section 2 presents the related work. The main
contribution of this article is presented in Section 3, in which we propose to bind the latent topics that
generate the words of a segment using copulas. We show that sampling word topics from copulas offers
an elegant way to impose different levels and types of correlation between them. Section 4 then illustrates
the behavior of copulaLDA, the copula-based version of LDA introduced in Section 3, while Section 5
concludes the paper.

2 Related Work

Despite the success that vector-space models (Salton et al., 1975) have enjoyed, they come with a number
of limitations. We mention, for instance, their inability to model synonymy and polysemy and the sparse,
high-dimensional induced representations. Many research studies have researched these problems, and
Probabilistic Latent Semantic Analysis (Hofmann, 1999) was among the first attempts to model textual
corpora using latent topics. In our work, we build on LDA (Blei et al., 2003), which is often used as a
building block for topic models. In its context, the corpus is associated with a set of latent topics, and each
document is associated with a random mixture of those topics. The words are assumed exchangeable, that
is their joint probability is invariant to their permutation. Previous work proposed a variety of extensions
to LDA in order to incorporate additional information such as class labels (Blei and McAuliffe, 2008) and
temporal dependencies between stream documents (Wang et al., 2012). Here, our goal is to extend LDA
by incorporating simple text structure in its generative and inference processes using copulas.

One may identify two lines of research to address the limitations due to the exchangeability assumption
in LDA: extensions to account for the boundaries of text spans like sentences and extensions to account
for the word order. With respect to the first line, (Wang et al., 2009) combine a unigram language model
with topic models over sentences so that the latent topics are represented by sentences instead of terms.
In (Griffiths et al., 2004), the authors investigate a combination of a topic model with a Hidden Markov
Model (HMM). They assume that the HMM generates the words that handle the long-range dependencies
(semantic dependencies) and the topic model the words that handle the short range dependencies (syntactic
dependencies). Also, (Boyd-Graber and Blei, 2009) proposed the Syntactic Topic Model whose goal is to
integrate the text semantics and the syntax in a non-parametric topic model. In another effort, (Zhu et al.,
2006) propose TagLDA, where they replace the unigram word distributions by a factored representation
that is conditioned on the topic and the part-of-speech tag of a term. Recently, (Balikas et al., 2016)
introduced senLDA, that assumes that the terms occurring within a sentence are generated by the same
topic. In our work here, we integrate part of the text structure in LDA by relying only on the boundaries
of contiguous text spans like sentences, which can be obtained without deep linguistic analysis like the
one required in the Syntactic Topic Model. Also, differently from senLDA, we do not restrict the words of
the spans to be generated by the same topic. Instead, using copulas we pose correlations between those
topics, which is more flexible.

The second line of research investigates how topic models can be extended to incorporate word order.
In (Shafiei and Milios, 2006), the authors propose a four-level hierarchical structure where the latent topics
of paragraphs are decided after performing a nested word-based LDA operation. In a similar context,
(Wang et al., 2007) study how the word order in the form of n-grams can be leveraged to better capture a
document’s topical content. Their topical n-gram model extends LDA by determining unigram words and
phrases based on context and assigning mixture of topics to both individual words and n-gram phrases.

Another interesting line of research studied the task of discovering and partitioning text in topically
coherent spans. In (Du et al., 2010; Du et al., 2013) the authors rely on hierarchical Bayesian models to
accomplish it. In this work, contrary to identifying such spans, we assume them to be topically coherent a
priori, and we investigate how to leverage and incorporate this information to LDA.
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Lately, there is an increasing interest over the integration of copulas in machine learning applications
(Elidan, 2013) such as classification (Elidan, 2012) or structure learning (Liu et al., 2009). Interestingly,
(Wilson and Ghahramani, 2010) have shown how to incorporate copulas in Gaussian processes in order to
model the dependency between random variables with arbitrary marginals with a practical application
on predicting the standard deviation of variables in the financial sector (volatility estimation). In another
generic framework, (Tran et al., 2015) have shown the benefits of using copulas to model complex
dependencies between latent variables in the general variational inference setting. The idea of using
copulas with topic models was recently investigated in (Amoualian et al., 2016). In the context of
document streams they proposed a topic model where the dependencies between the topic distributions of
two consecutive documents are captured by copulas.

3 Integrating text structure to LDA using copulas

In this section we develop copulaLDA (hereafter copLDA), that extends LDA by integrating simple text
structure in the model using copulas. We assume that the topics that generate the terms of coherent text
spans are bound. A strong binding signifies high probability for the terms to have been generated by the
same topic. Therefore, as we show, the conditional independence of topics given the per-document topic
distributions does not hold. Before presenting the generative and inference processes of copLDA, we
shortly discuss the idea of coherent text spans.

The film is a remake of the 1947 film noir clas-
sic that starred Victor Mature, Brian Donlevy
and Richard Widmark.

Figure 2: Shallow parsing using the Stanford Parser.
Contiguous words in italics denote a noun-phrase.

Each sentence is a coherent, meaningful seg-
ment of text and we consider them as coherent
text spans in this study. However, each sentence
can be further decomposed into smaller segments
through syntactic analysis. Figure 2 illustrates
the output of a shallow parsing step of the ex-
ample sentence of Figure 1, generated using the
Stanford Parser.1 Among these different segments, noun phrases play a particular role as they are, for
instance, at the basis of terminology extraction that aims at capturing concepts from a document. Noun
phrases usually constitute a semantic unit, pertaining to a given concept related to few, related topics. For
this reason, we also consider noun phrases as coherent text spans in this study. Another advantage of
the two types of coherent text spans we consider (whole sentences and noun phrases) is that they can be
easily extracted using shallow parsing techniques, and one needs not resort to complex syntactic analysis
in practice.

3.1 Copulas and random variables
Copulas are interesting because they separate the dependency structure of random variables from their
marginals. Formally (Nelsen, 2007; Trivedi and Zimmer, 2007), a p-dimensional copula C is a p-variate
distribution function with C : Ip = [0, 1]p → [0, 1] whose univariate marginals are uniformly distributed
on I and C(u1, . . . , up) = P (U1 ≤ u1, . . . , Up ≤ up). Copulas allow one to explicitly relate joint and
marginal distributions, through Sklar’s theorem (Sklar, 1959):

Theorem 3.1 Let F be a p-dimensional distribution function with univariate margins F1, . . . , Fp. Let Aj
denote the range of Fj . Then there exists a copula C such that for all (x1, . . . , xp) ∈ Rp

F (x1, . . . , xp) = C(F1(x1), . . . , Fd(xp)) (1)

Furthermore, when F1, . . . , Fp are all continuous, then C is unique.

As a result any multivariate distribution F can be decomposed into its marginals Fi, i ∈ {1, . . . , p} and
a copula, allowing to study the multivariate distribution independently of the marginals. Sklar’s theorem
also provides a way of sampling multivariate distributions with a large number of random variables using
copulas: F (x1, . . . , xp) = F

(
F−1

1 (u1), . . . , F−1
p (up)

)
= P [U1 ≤ u1, . . . , Up ≤ up] = C(u1, . . . , up).

Hence, to sample F it suffices to sample the dependence structure modeled by copulas and then transform
1http://nlp.stanford.edu/software/lex-parser.shtml
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Figure 3: The transformation of a random vari-
ate to multinomial (or arbitrary) marginals. The
arrows illustrate the generalized inverse; the his-
tograms in y (resp. x) axis depict the distribu-
tions of the initial (resp. transformed) samples.

0 1
0

1

U
1

U
2

Dependency of a random sample with Frank copula

Figure 4: The positive correlation imposed to
two random variates when sampling from a
Frank copula with λ = 25. The histograms
in x (resp. y) axis show the distributions of
each of the variates that generate the scatterplot.

the obtained sample in the marginals of interest using the probabilistic integral transform. We illustrate
this transformation for one variable in Figure 3. Sampling the copula returns, for each variate, a sample as
the one indicated in the histogram of the y axis. One can then transform the sample using the quantile
(F−1) of an arbitrary marginal.

Before proceeding further, we visit some extreme conditions of dependence illustrating the respective
copulas that model them: (1) Independence, which is a frequently assumed simplification in topic models

and is obtained with
p∏
i=1

ui, and (2) Co-monotonicity, which is the complete, positive correlation between

the random variables up, obtained with min(u1, . . . , up).
In the rest of our development we will be using a particular family of copulas, the Archimedean copulas.

Archimedean copulas are widely used copulas and are defined with respect to a generator function ψ.
They take the form: C(u1, · · · , ud) = ψ−1(ψ(u1) + · · · + ψ(ud)). A special case of Archimedean
copulas corresponds to Frank copulas, which are obtained by setting: ψλ(u) = −1

λ log(1− (1−e−λ)e−u).
When λ → 0, the Frank copula approaches the independency copula; when λ → ∞ it approaches
the co-monotonicity copula. Hence, the Frank copula allows one to model all dependencies between
complete independence to perfect dependence while varying λ from 0 to∞. Therefore, λ can be seen
as an additional hyper-parameter to be tuned or learned from the data. Figure 4 illustrates the positive
dependence between two random variables sampled from a Frank copula with λ = 25. To sample from
the Archimedean copulas, we rely on the algorithm proposed by (Marshall and Olkin, 1988), which was
further improved in (McNeil, 2008; Hofert, 2011) and implemented in the R language (Hofert et al.,
2011).

3.2 Extending LDA with copulas

As mentioned above, copulas provide a nice way to bind random variables. We are making use of them
here to bind word-specific topics (the z variables in LDA) within coherent text spans, the rationale being
that coherent text spans can not be generated by many different, uncorrelated topics. This leads us to the
following generative model:

• For each topic k ∈ [1,K], choose a per-word distribution: φk ∼ Dir(β), with φk, β ∈ R|V |

• For each document di, i ∈ {1, . . . , D}:
– Choose a per-document topic distribution: θi ∼ Dir(α), with θi, α ∈ R|K|

– Sample number of segments in di: Si ∼ Poisson(ξ);
– For each segment si,j , j ∈ {1, . . . , Si}:
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∗ Sample number of words: Ni,j ∼ Poisson(ξd);
∗ Sample topics Zi,j = (zi,j,1, . . . , zi,j,Ni,j ) from a distribution admitting Mult(1, θi) as

margins and C as copula;
∗ Sample words Wi,j = (wi,j,1, . . . , wi,j,Ni,j ): wi,j,n ∼Mult(1, φzi,j,n), 1 ≤ n ≤ Ni,j .

α θ z1

λ

zN

w1 wN

φβ

. . .

SD

K

Figure 5: The copLDA generative model. We
model the dependency between the topics un-
derlying a segment with copulas.

There are two main differences between copLDA
and LDA. Firstly, the former assumes a hierarchical
structure in the documents: the topics that generate the
words in the coherent segments exhibit topical correla-
tion, hence the conditional independence assumption
between the terms of a segment given the document
per-topic distribution (θi) no longer holds. Secondly,
this topical correlation is modeled using copulas. Fig-
ure 5 provides the graphical model for copLDA. For
clarity, we draw each word in a coherent segment S
(w1, . . . , wN ) to make the dependencies explicit. No-
tice how the topics of those words depend on both
the copula parameter λ and the per-document topic
distribution θ.

The hyper-parameters α and β correspond to priors
of the model. Following (Blei et al., 2003), we assume
them here to be symmetric and we fix them to 1

K , with
K the number of topics retained. The hyper-parameter
λ is chosen after exploration of a grid of possible values, and is the same for the whole corpus. We choose
the value that minimizes perplexity.

3.3 Inference with Gibbs sampling

The parameters of the above model, that are φ, θ and the topics of each segment Zi,j =
(zi,j,1, · · · , zi,j,Ni,j ), can be directly estimated through Gibbs sampling. Denoting Ω and Ψ the count
matrices such that Ω = (Ωi,k) (resp. Ψ = (Ψk,v)) represents the count of word belonging to topic k
assigned to document di (resp. the count of word v being assigned to topic k), the Gibbs updates for θ
and φ are the same as the ones for the standard LDA model (Blei et al., 2003):

θi ∼ Dir(α+ Ωi) and φk ∼ Dir(β + Ψk) (2)

The update for the variables z is obtained as follows:

p(Zi,j |Z−i,j ,W,Θ,Φ, α, β, λ) =
p(Zi,j ,Z−i,j ,W |Θ,Φ, α, β, λ)

p(Z−i,j ,W |Θ, φ, α, β, λ)
=

p(Zi,j ,Wi,j |Θ,Φ, λ)p(Z−i,j ,W−i,j |Θ,Φ, λ)

p(Wi,j |Θ, φ)p(Z−i,j ,W−i,j |Θ,Φ, λ)
=

p(Zi,j ,Wi,j |Θ,Φ, λ)∑
Zi,j

p(Zi,j ,Wi,j |Θ,Φ, λ)
=

p(Wi,j |Zi,j ,Φ)p(Zi,j |Θ, λ)∑
Zi,j

p(Wi,j |Zi,j ,Φ)p(Zi,j |Θ, λ)
∼ p(Wi,j |Zi,j ,Φ)p(Zi,j |Θ, λ) = p(Zi,j |Θ, λ)

Ni,j∏
n=1

φwi,j,n,zi,j,n (3)

where W , Θ and Φ stand for the whole parameter set of w, θ and φ and the probability outside the product
in the last step admits a copula Cλ and Mult(1, θi) as margins. As is standard in topic models, the
notation −i, j means excluding the information for i, j. Note that in case where λ→ 0, the words of a
segment become conditionally independent given the per-document distribution and one recovers the non
collapsed Gibbs sampling updates of LDA.

From the expression of Eq. (3), a simple acceptance/rejection algorithm can be formulated: (1)
Sample a random variable of pdf p(Zi,j |Θ, λ) using copula, and, (2) Accept the sample with probability
p(Wi,j |Zi,j ,Φ) =

∏Ni,j
n=1 φwi,j,n,zi,j,n . Algorithm 1 summarizes the inference process.
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3.4 Computational Considerations

As the values of φwi,j,1,zi,j,1 × · · · × φwi,j,n,zi,j,n tend to be very low, the acceptance/rejection sampling
step described above is very slow in practice (see below). We propose here to speed it up by considering,
for each word wi,j,n in a given segment, not the exact probability of zi,j,n, but its mean (noted M ) over all
the other words in the segment:

M(zi,j,n|Z−i,j ,W,Θ,Φ, α, β, λ) =
∑

wij,l,l 6=n

∑
zij,l,l 6=n

P (Zi,j |Z−i,j ,W,Θ,Φ, α, β, λ) ∝ φwi,j,nθd,zi,j,n

as
∑

wij,l
φwi,j,l = 1. Note that the above form is a marginalization of P (Zi,j |Z−i,j ,W,Θ,Φ, α, β, λ)

and thus defines a valid probability and a valid Gibbs sampler, even though on a joint distribution that
slightly differs from the original one.

Algorithm 1: A Gibbs Sampling iteration for copLDA
Input: documents’ words grouped in segments, α, β, K, Copula
family and its parameter λ
//Initialize counters Ψ,Ω
for document di, i ∈ [1, D] do

for segment si,j : j ∈ {1, . . . , Si} do
Draw a random vector U = (U1, . . . , UNi,j ) that
admits a copula Cλ
do /* If the mean approximation is used, the loop is

done once, ignoring the acceptance condition */
for words wi,j,k, k ∈ [1,WNi,j ] in si,j do

Decrease counter variables Ψ,Ω
Get zi,j,k by transforming Uk to Mult.
marginals with the generalized inverse
Assign topic zi,j,k to wi,j,k
Increase counters Ψ,Ω

end
while Accept the new segment topic assignments with
probability φwi,j,1,zi,j,1 × · · · × φwi,j,n,zi,j,n

end
end

Figure 6 compares the perplexity scores
achieved in 200 documents from the
Wikipedia dataset “Wiki46” of Table 1 by
the copLDA model, when considering noun-
phrases as coherent spans, with and without
rejection sampling. We repeat the experi-
ment 10 times and also plot the standard
deviation. We first note that approximat-
ing Algorithm 1 by ignoring the rejection
sampling step results in slightly worse per-
formance. On the other hand, without the re-
jection sampling, copLDA converges faster
in terms of iterations. Furthermore, the cost
in terms of running time of a single itera-
tion is significantly smaller: for instance,
for 30 iterations with rejection sampling,
the algorithm needs almost 6 hours, that is
100 times more than the 3.5 minutes needed
without the rejection sampling. Hence, in
the rest of the study, for scaling purposes, we adopt the above mean approximation.

4 Experimental study

Models In our experiments, we compare the following topic models: (1) copLDAsen that considers
sentences as coherent segments, (2) copLDAnp that considers noun-phrases as coherent segments, (3)
LDA as proposed in (Blei et al., 2003) using the collapsed Gibbs sampling inference of (Griffiths and
Steyvers, 2004), and (4) senLDA described in (Balikas et al., 2016) using its public implementation. For
copLDAx models, we use the Frank copula which was reported to obtain the best performance in similar
tasks (Amoualian et al., 2016) and was also found to achieve the best performance in our local validation
settings compared to Gumbel and Clayton copulas. We have implemented the models using Python;2

for sampling the Frank copulas we used the R copula package (Hofert et al., 2011) and rPY.3 As
mentioned in Section 3.2, λ is set to 2 for copLDAsen and to 5 for copLDAnp (values which we found to
perform well in every dataset we tried). Furthermore, the hyper-parameters α and β where set to 1/K,
where K is the number of topics, which was selected from {50, 100, 200, 300, 400} for each dataset. For
the shallow parsing step, required for copLDAnp, we used the Stanford Parser (Klein and Manning, 2003).
The text pre-processing steps performed are: lower-casing, stemming using the Snowball Stemmer and
removal of numeric strings.

2The models used in this paper are available for research purposes at https://github.com/balikasg/
topicModelling.

3https://pypi.python.org/pypi/rpy2
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Figure 7: The perplexity curves of the investigated models
for 200 Gibbs sampling iterations and different datasets.

Basic Statistics Perplexity Scores Classification (MiF1) scores

Docs. |N | |V | Classes senLDA copLDAsen LDA copLDAnp senLDA copLDAsen LDA copLDAnp

20NG 19,056 1.7M 75.4K 20 2636 2083 2200 1483 0.5622 0.6328 0.6246 0.6490
TED 1,096 1.16M 30.4K 15 2099 1812 1805 1775 0.4612 0.4678 0.4633 0.4764
PubMed 5498 1.09M 28.7K 50 1601 1385 1384 1085 0.6666 0.7525 0.7406 0.7431
Reuters 10,788 875K 21.4K 90 579 512 501 499 0.7504 0.7692 0.7893 0.7851
Wiki15 1,198 162K 13.4K 15 2988 2766 2640 2397 0.6920 0.7230 0.74 0.7403
Wiki37 2,459 317K 19.7K 37 3103 2871 2711 2395 0.5717 0.6053 0.6447 0.6220
Wiki46 3,657 478K 23.4K 46 2220 2280 2135 1978 0.5326 0.6170 0.6599 0.6326
Austen 5,262 170K 6.3K - 1110 898 798 805 - - - -

Table 1: The basic statistics, the perplexity and the classification scores of the datasets used.

Datasets We have used the following publicly available data collections to test the performance of the topic
models: (1) 20NG (20 news groups), which is a standard text dataset for such tasks as provided by (Bird
et al., 2009), (2) Reuters (Reuters-21578, the “ModApte” version), also discussed in (Bird et al., 2009),
(3) TED, that is transcriptions of TED talks released in the framework of the International Workshop
on Spoken Language Translation 2013 evaluation campaign4 (we have merged the train, development
and test parts and we selected the transcriptions with at least one associated label among the 15 most
common in the data5), (4) Wikix, with x ∈ {15, 37, 46} and PubMed, both excerpts6 from the Wikipedia
dataset of (Partalas et al., 2015) and the PubMed dataset of (Tsatsaronis et al., 2015) used in (Balikas et
al., 2016), and (5) “Austen”, where we concatenated three books7 written by Jane Austen, available from
the Gutenberg project (each paragraph is considered as a document). Table 1 presents some basic statistics
for these datasets.
Manual inspection of the topics We begin by comparing LDA and copLDAnp. For presentation purposes,
we train the two topic models using the Wiki47 dataset with 10 topics and we illustrate the top-10 words
learned for each topic by the two models in Table 2. As one can note, since the two models have been
trained on the same data with the same training parameters, the identified topics are very similar. This said,
copLDAnp manages to produce arguably better topics. This is for example the case for the topic “Birth”;
although both models assign high probability to words like “born” and “american” due to the content
of the dataset, copLDAnp manages to identify several words corresponding to months which makes the
topic more thematically consistent and easier to interpret compared to its LDA counterpart. In the same
line, Table 3 visualizes the inferred topics for parts of the Wiki47 dataset. Notice here that given the topic
interpretations of Table 2, both models manage to identify intuitive topics. Note however how in most of
the cases the text structure information used by copLDAnp helps to obtain consistent topics to generate
noun-phrases like “crime thriller film” and “raspy voice”, a consistency that LDA is lacking.
Intrinsic evaluation: perplexity We present in Table 1 the perplexity scores achieved by the 4 models in

4http://workshop2013.iwslt.org/59.php
5Technology, Culture, Science, Global Issues, Design, Business, Entertainment, Arts, Politics, Education, Art, Creativity,

Health, Biology and Music.
6https://github.com/balikasg/topicModelling/tree/master/data
7We used the books: Emma, Persuasion, Sense. We considered each paragraph as a document.
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Profession Science Books Art Cinema Places Music Birth Elections Inventions

profession univers book art film state record born elect california
world research new new televis unit music american canadian plant

footbal scienc work work role us band known parti use
wrestl professor american paint appear township album best member invent
play work publish york also school song actress liber flower
born institut time american actor univers also decemb minist compani

american award author artist born serv produc june hous north
championship prize also museum play war releas april canada patent

team born year painter seri nation new juli serv inventor
first receiv york studi star build singer januari conserv found

known univers book art film township record play elect work
wrestl research new new born state music footbal canadian first
born scienc american york televis counti band born serv year
world professor author paint role us album american parti photograph

profession work publish american actor california song tour member design
american institut novel work appear michigan also golf liber state

name born time artist also plant singer year hous new
wrestler prize also painter seri civil releas profession minist use

best studi writer museum actress popul produc first state also
championship award magazin born american flower american season born build

Table 2: The top-10 words of copLDA (upper half) and LDA (lower half) in the Wiki46 dataset.

Kiss of Death is a 1995 crime thriller film starring David Caruso Samuel L.
Jackson and Nicolas Cage. The film is a very loosely based remake of the
1947 film noir classic of the same name that starred Victor Mature, Brian
Donlevy and Richard Widmark.

Kiss of Death is a 1995 crime thriller film starring David Caruso Samuel L.
Jackson and Nicolas Cage. The film is a very loosely based remake of the
1947 film noir classic of the same name that starred Victor Mature, Brian
Donlevy and Richard Widmark.

Bertram Stern (born 3 October 1929) is an American fashion and celebrity
portrait photographer.

Bertram Stern (born 3 October 1929) is an American fashion and celebrity
portrait photographer.

Dana Hill (born Dana Lynne Goetz in Los Angeles, California; May 6, 1964
- July 15, 1996) was an American actress and voice actor with a raspy voice
and childlike appearance, which allowed her to play adolescent roles well
into her 20s.

Dana Hill (born Dana Lynne Goetz in Los Angeles, California; May 6, 1964
- July 15, 1996) was an American actress and voice actor with a raspy voice
and childlike appearance, which allowed her to play adolescent roles well
into her 20s.

Table 3: The discovered topics underlying the words of example documents for LDA (left) and copLDA
(right). The parts of the documents in italics indicate the noun-phrases obtained by the Stanford Parser.
The text colours refer to the topics described in Table 2.

each of the datasets we examined. We split each dataset in two parts with 80%/20% of the documents: we
use the former for learning the model and the second for calculating the perplexity scores. First note that
copLDAnp achieves the lowest scores in most of the datasets. LDA is the second best performing model,
whereas the third one is copLDAsen. We believe that the difference between copLDAsen and copLDAnp
stems from the fact that perplexity is an evaluation measure that is calculated on the basis of words.
Hence, considering sentences as coherent spans whose topics are bound results in less flexibility and this
is reflected in higher perplexity scores. However, using copulas results in more flexibility than assigning
the same topic in each term of the sentence which is illustrated in the performance difference between
copLDAsen and senLDA. The former being more flexible, due to the copulas, performs better. In the same
line, Figure 7 illustrates the perplexity curves of the hold-out documents for the four models on three of
the datasets of Table 1 for 200 Gibbs sampling iterations. Note that senLDA is the model with the fastest
convergence rate with respect to the number of Gibbs iterations. On the other hand, LDA, copLDAsen and
copLDAnp require the same number of iterations, which depends on the dataset. copLDAnp manages to
achieve the lowest perplexity scores: notice its steep curves in the first iterations.

Extrinsic evaluation: text classification To further highlight the merits of copLDA, we also present in
Table 1 the classification results for the datasets used. The reported scores are the averages of 10-fold
cross-validation. We use the per-document topic distributions as classification features fed to Support
Vectors Machines (SVMs). We have used the implementation of (Pedregosa et al., 2011) with C = 1
for the SVM regularization parameter. For the multi-label datasets (TED and PubMed) we employed
one-versus-rest: the SVMs return every category with a positive distance from the separating hyper-planes.
As one can note, copLDAnp and LDA achieve the highest MiF scores in most of the datasets, without a
clear advantage to one vs the other. Binding the topics of sentence words with copulas improves over the
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results of senLDA: copLDAsen performs only slightly worse than LDA and copLDAnp on most datasets
and outperforms them, only slightly again, on one dataset.

5 Conclusions

We proposed copLDA that extends LDA to incorporate the topical dependencies within sentences and
noun-phrases using copulas. We have shown empirically the advantages of considering text structure and
incorporating it in LDA with copulas. In our future work we plan to integrate procedures to learn the λ
parameter of Frank copulas and to investigate ways to model not only dependencies within text segments
like noun-phrases, but also dependencies between such segments with nested copulas.
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