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Abstract

As time passes words can acquire meanings they did not previously have, such as the ‘twitter
post’ usage of ‘tweet’. We address how this can be detected from time-stamped raw text. We
propose a generative model with senses dependent on times and context words dependent on
senses but otherwise eternal, and a Gibbs sampler for estimation. We obtain promising parameter
estimates for positive (resp. negative) cases of known sense emergence (resp non-emergence)
and adapt the ‘pseudo-word’ technique (Schütze, 1998) to give a novel further evaluation via
‘pseudo-neologisms’. The question of ground-truth is also addressed and a technique proposed
to locate an emergence date for evaluation purposes.

1 Introduction

It is widely noted that a single word can have several senses. The diachronic aspect of this is that the set
of senses possessed by a word changes over time. (1a) and (1b) below illustrate this:

(a) she was a gay little soul, enjoying everything and always trilling with laughter (1905)
(b) applying heightened scrutiny to discrimination against gay men and lesbians (1990)
(a′) sie war ein Homosexuell kleine Seele, alles zu genießen und immer rollen vor Lachen

(1)

(1a), from 1905, illustrates a ‘being happy’ sense of gay, while (1b), dating from 1990, illustrates a
‘homosexual’ sense, a sense which the word did not possess in 1905, and came to possess at some
time since. The advent of a new sense for an existing form is sometimes called a semantic neologism
(Tournier, 1985), in contrast to the simpler formal neologism, where simply a new form arrives (eg.
selfie). The concern of this paper is to propose an unsupervised algorithm for detecting semantic neolo-
gisms, an algorithm which can be given time-stamped but plain-text examples of a particular word and
detect whether (and when) the word gained a sense.

Information about such lexical change could be useful to NLP tasks. For example, if a SMT system
is trained on data from particular times and is to be applied to texts from different times, either later or
earlier, advance warning of sense changes could be of use. To illustrate, (1a′) gives the English→German
translation via Google translate1 of (1a), mistranslating the 1905 usage of gay as Homosexuell, probably
due to the newer sense predominating in training data.

We will propose a diachronic sense model where a target’s sense is conditioned on time and the context
words are conditioned just on the target’s sense, and not the time. We use the Google n-gram data
set (Michel et al., 2011) which provides time-stamped data but no sense information and develop a
Gibbs sampling algorithm (Gelfand and Smith, 1990) to estimate the parameters in an unsupervised
fashion. We will show that the algorithm is able to provide an accurate date of sense emergence (true
positives), and also to detect the absence of sense emergence when appropriate (true negatives). We adapt
also the ‘pseudo-word’ technique first proposed by Schütze (1998) to give a further means of algorithm
assessment. We also make a number of points concerning difficulties and possibilities evaluating such a
sense-emergence system.

1Executed on Apr 13, 2016
This work is licenced under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/
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2 A Diachronic Sense Model

Assume we have a corpus of D time-stamped occurrences of some particular target expression σ, with
each time-stamp shared by many items. Let w be the sequence of words in a window around σ, and Y
be its time-stamp, ranging from 1 to N . Assume σ exhibits K different senses and let S be the sense of
a particular item. S will be treated as a hidden variable: the actual data provides values just for Y and
w. We will now propose a particular model of the joint probability p(Y, S,w).

It may be factorised as P (Y ) × P (S|Y ) × p(w|S, Y ) without loss of generality. We now make
two independence assumptions: (a) that conditioned on S the words w are independent of Y , so
p(w|S, Y ) = P (w|S) and (b) that conditioned on S the words are independent of each other, so
P (w|S) =

∏
i p(wi|S). With these assumptions the equation for a single data item is

P (Y, S,w;π1:N ,θ1:K , τ 1:N ) = P (Y ; τ 1:N )× P (S|Y ;π1:N )×
∏
i

p(wi|S;θ1:K) (2)

where we have also introduced explicit notations for model parameters: (i) for every time t, πt is a
length K vector of sense probabilities (ii) for every sense k, θk is a length V vector of context word
probabilities for target sense k — V is the size of the vocabulary encountered in all the data and (iii) for
every t, τt is a ‘time’ probability reflecting simply the abundance of target σ at t.

The fact that for every time t there is a parameter πt directly models that a sense’s likelihood varies
temporally; for an established sense this variation might be due to changes in the world and in people’s
concerns, but for an emergent sense, part of the variation represents genuine language change and for
some k, for some early range of times, πt[k] should ideally be zero. Assumption (a) reflects an expec-
tation that the vocabulary co-occuring with a particular sense is comparatively time independent. This
particular time-independence is perhaps plausible but certainly is not absolute and its viability as an
assumption can only be confirmed or disconfirmed by our later experiments.

To develop the model further to the level of a corpus and incorporate parameter priors, let
t1:D, s1:D,w1:D be the values of Y , S and W on D items, and let the πt sense probability vec-
tors have a K-dimensional Dirichlet prior with parameter γπ and the θk word probability vec-
tors have a V -dimensional Dirichlet prior with parameter γθ. We consider the joint probability
P (t1:D, s1:D,w1:D,π1:N ,θ1:K ;γπ,γθ, τ 1:N ) and its formula under our assumptions is equation (3)
in Figure 1, above which the model is depicted as a plate diagram.

From a generative perspective, the π1:N and θ1:K are generated from N and K samplings and then
used for all D data items. In actual data, the time-stamps and words are known, so for any fixed setting
of γπ,γθ there is a defined posterior distribution on s1:D,π1:N ,θ1:K . A Gibbs sampling algorithm
(Gelfand and Smith, 1990) can be derived, generating a large set of samples of this (D+N +K)-tuple,
representative of this posterior, from which mean values of the model parameters π1:N and θ1:K can be
derived. To arrive at the Gibbs sampler, sampling distributions for sd, πt and θk are needed, in each
case conditioned on all other parts of the sample tuple. The formulae for these sampling distributions
are shown as (4 – 6) in Figure 1 : in these formulae St[k] is the number of data items with time-stamp t
and sampled sense k and Vk[v] is the number of times word v occurs in data items with sampled sense
k. The derivation of these formulae is relatively straightforward given well-known conjugacy properties
of Dirichlet priors – Appendix A gives an outline derivation for πt. The sampling algorithm is given in
pseudo-code in Figure 1.

2.1 Ground truth for semantic neologisms?
Given a large-scale, time-stamped and sense-labeled corpus for a target expression σ, it would be easy
to determine a true emergence date — call it C0 — at which a new sense for σ first departed from zero
frequency (and continued to climb from zero). It has been noted (Lau et al., 2012; Cook et al., 2013) that
such reference corpora do not exist, thus posing the question of what can serve as ground truth instead.

One option, sometimes adopted though far from ideal, is simple speaker intuition, which is subjective,
of low temporal resolution and at best applicable to recent innovations. It is natural to consider dictio-
naries for something better. Form/meaning pairings are added to dictionaries at some particular time, so
inspecting a series of dictionary editions, though labour intensive, can give a first inclusion date – call
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Diachronic model: plate diagram
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(3)

P (sd) =
πt,k

∏|wd|
i=1 θk,wdi∑

k′ πt,k′
∏|wd|
i=1 θk′,wdi

(4)

P (πt) = Dir(πt;γπ + St) (5)

P (θk) = Dir(θk;γθ + Vk) (6)

as in text, assume data as
context wordsw1:D , time-stamps t1:D

assume K is a supplied no of senses
create S[D]; // data sense labels
create S[T ][K]; // see text
create V[K][V ]; // see text
for itr:=1 to no-iterations do

set S[t][k] = V[k][v] = 0 for all t,k,v
for d:=1 to D do

k ∼ P (sd) see (4);
S[d] = k;
S[td][k] += 1; // incr count

for i:=1 to len(wd) do
V[k][wdi ] += 1; // incr
count

end
end
for t:=1 to N do

πt ∼ P (πt) see (5);
end
for k:=1 to K do

θk ∼ P (θk) see (6);
end

end

Algorithm 1: Gibbs sampling estimation

Figure 1: From top left in anti-clockwise shows: plate digram for diachronic model, Gibbs sampler
updates, and pseudo-code for Gibbs sampler

this Di
0. The time resolution of this is low and the subtle criteria involved in inclusion decisions make it

a non-ideal approximation of C0 (Sheidlower, 1995; Simpson, 2000; Barnhart, 2007). Some researchers
(Lau et al., 2012) use this, though we will not. More accessibly, an historically oriented dictionary (eg.
the Oxford English Dictionary (OED)) strives to include the earliest known use of a word in a particular
sense — the so-called earliest citation. If we call this Dc

0, it seems to makes sense to use Dc
0 as a lower

bound on C0, and we will do this. Dc
0 represents a first use, which might be followed by a long interlude

before the usage is really taken up: the experiments in Section 3.2 will highlight examples of this.
We propose to use a different technique to establish C0 more precisely. If there are words which it is

intuitive to expect in the vicinity of a target word σ in the novel sense, and not in other senses, then by
consulting a time-stamped corpus one should see the probability of finding these words in σ’s context
start to climb at a particular time. For example, mouse has come to have a ‘computer pointing device’
sense, and in this usage it is intuitive to expect words like click, button, pointer and drag in it’s context.
For any word w and target σ let Pt(w|σ) be w’s probability of occurring in σ’s context in data from time
t, and let trackσ(w) to be the sequence these values. If when trackmouse(w) is plotted for the above
words, they all show a sharp increase at the same time point, this is good evidence that this is C0 – the
right-hand plot in Figure 3(a) is an example of this. This combines co-occurrence intuitions with corpus
data, and does not rely on somewhat unreliable speaker intuitions of recency. To forestall any possible
confusion, this procedure of inspecting the probabilities of words thought especially associated with a
particular sense is not being advanced as a proposed unsupervised algorithm to locate sense emergences.
It is advanced as a way to establish a ground-truth concerning emergence by which to evaluate our
proposed unsupervised algorithm.

3 Data and Experiments

In the experiments reported below we use the Google N-gram dataset (Michel et al., 2011). This is a
data-set based on Google’s digitized publication holdings and it provides per-year counts of n-grams, for
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Target Years Lines New sense OED Tracks GS-Date < 10%

mouse 1950-2008 910k computer pointing device 1965 1983 1982 yes
gay 1900-2008 1253k homosexual person 1922 1966 1969 yes
strike 1800-2008 5052k industrial action 1810 1880 1866 yes
bit 1920-2008 7393k basic unit of information 1948 1965 1954 no
paste 1950-2008 318k duplicate text in computer edit 1975 1982 1981 yes
compile 1950-2008 689k transform to machine code 1952 1966 1971 yes
surf 1950-2008 182k exploring internet 1992 1994 1993 yes
boot 1920-2008 1285k computer start up 1980 1980 1984 yes
rock 1920-2008 4136k genre of music 1956 1965 1965 yes
stoned 1930-2008 79k under drug influence 1952 1970 1979 no

Target Years Lines
ostensible 1800-2008 130k
present 1850-2008 56333k
cinema 1950-2008 305k
promotion 1930-2008 1681k
theatre 1950-2008 1125k
play 1950-2008 13726k
plant 1900-2008 8175k
spirit 1930-2008 11573k

Table 1: Google 5 gram dataset - the left table provides the information for targets that are neologisms
while the right one has the targets for non-neologisms – see text for explanation of columns

1 ≤ n ≤ 5: so for any given n-gram, x, and any year, t, it gives the total frequency2 of occurrences of x
across all books dated to year t. For a given target word σ we use the subset of all the data consisting of
the 5-grams that contain σ; we use the 5-grams as they provide most context around the target σ. For the
target mouse the following is an example of a line of data from the corpus

Enter or click the mouse 1990 9 7

The first of the final three numbers is a year. The penultimate number is the number of occurrences of
the 5-gram in all publications from that year – this is the significant count data for the algorithm. The
final number is the number of publications from the year that contain the 5-gram, which is not significant
for the algorithm.

For the experiments reported in Section 3.2 two sets of targets were chosen. The first set {mouse, gay,
strike, bit, paste, compile, surf, boot, rock, stoned} are words which, relative to particular time periods,
are known to exhibit sense emergence. The second set {ostensible, present, cinema, promotion, theatre,
play, plant, spirit} are words which, relative to particular time periods, are thought not to exhibit sense
emergence. Following Lau et al. (2012) the idea is that these should provide both positive and negative
tests for the algorithm. Table 1 lists the targets. For each target, the ‘Years’ and ‘Lines’ columns give
the range of years used and the total number of 5-gram lines of data for that year-range. For the positive
targets the ‘New sense’ column gives an indication of the emergent sense and the next two columns give
two kinds of reference dating information – see Section 2.1 – the OED first citation date and the ‘tracks’-
based date that is apparent from ‘tracks’ plots for words that are intuitively associated with the emergent
sense (the right-hand plot in Figure 3(a) is an example). The ‘GS date’ column gives the emergence date
inferred when the inference algorithm was run and will be discussed further in Section 3.2.

Before describing the experiments it is necessary to emphasize the Google n-gram data-set is best
thought of as a frequency table giving per-year counts associated with 5-gram types. It is not really a
corpus of text tokens. For brevity Algorithm 1 was formulated assuming that each data item represented
a single target token. Any original publication token of a target σ could have contributed to several
different 5-gram type counts (up to 5) but the data-set makes it impossible to know to what extent this
is so. We therefore effectively treat each 5-gram data entry d listed with frequency of nd as if it derives
from nd tokens of σ which contributed to no other 5-gram counts. This leads to changing the count
increment operations in Algorithm 1 to add nd rather than 1, that is, S[t][k]+=nd and V[k][w]+=nd.

For all of the experiments sampling is done according to Algorithm 1, for 10000 iterations, with the
first 1000 discarded as ‘burn-in’ samples and then means are determined for the model parameters π1:N

(sense-given-year) and θ1:K (word-given-sense) from the sampled values. The parameters γπ and γθ
of the Dirichlet priors are set to have 1 in all positions to make them non-informative priors so uniform
over all possible πt and θk. The sampler is initialised with values π1:N and θ1:K in the following way.
Let Pcorp be the observable corpus word probabilities inw1:D. Each θk is set to (1− α)Pcorp + αPran,
where Pran is a random word distribution and α is a mixing proportion, here set to 10−1. The πt are set
to some shared set of sense probabilities. Thus initially the word distributions for each sense k are almost
identical, and the sense distributions are the same at all times, so far from the neologism situation.

2They exclude 5-grams with total count < 40.
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The procedure was implemented in C++. To obtain the code or data see www.scss.tcd.ie/
Martin.Emms/SenseDynamics.

3.1 Experiments with ‘pseudo’-neologisms
The ‘pseudo-word’ technique was introduced in Schütze (1998) as a possible means to test unsupervised
word-sense discrimination. It can be given a diachronic twist to furnish what might be called ‘pseudo-
neologisms’ in the following way. Relative to some period of time select two words, σ1 and σ2, both
unambiguous, with σ1 in use throughout the time period, but with σ2 first emerging at some point, te, in
the period. If the 5-grams for σ1 and σ2 are then all treated as examples of the fake word ‘σ1-σ2’ this
functions as an artifical semantic neologism, manifesting σ2’s sense only from te onwards. Furthermore,
if we say ft(σi) gives the true empirical probability of target σi in pooled σ1,σ2 data for time t, then
ideally the outcome of inference when run forK = 2 should be that for each k, the trajectory of the πt[k]
values is very similar to that for one of the ft(σi). We tested this, for the time-period 1850–2008, with
‘ostensible’ for σ1 (present throughout), and ‘supermarket’, ‘genocide’ and ‘byte’ as possibilities for σ2

(which emerged as new words over this time frame) and indeed obtained the desired correspondence
between inferred πt[k] and empirical ft(σi) trajectories – Figure 2 shows the outcomes for the first two.
For the first case the succession of πt[1] values matches closely the succession of ft(‘supermarket’)
values, and in the second case the πt[0] values match the ft(‘genocide’) values. To get an insight into
the inferred θk values, we defined gist(S) to be the top 20 words when ranked according to the ratio of
P (w|S) to Pcorp(w). For the apparently neologistic sense S, Figure 2 also shows gist(S) and it can be
seen that these sets of words seem very consistent with relevant parts of the pseudo-neologisms.

Thus on these pseudo-neologisms, the proposed model and algorithm has been successful, identifying
an emerging ‘sense’ in an unsupervised fashion. Moving on from this first test of the algorithm, the next
section considers outcomes on authentic words.
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gist(sense 1) : at, a, ., local, END , in, go, your, chain, checkout,
shelves, from, or, line,you, store, buy, shopping

gist(sense 0): crimes, against, Rwanda, commit, humanity, in, war,
1994, Nazi, cultural, Armenian, cleansing, ethnic, Jews, term, dur-
ing, crime, victims, slavery

Figure 2: For (a-b), the left-hand plots show the inferred πt[k] sense parameters for a pseudo-neologism
σ1-σ2, and right-hand plot shows the known σ1 and σ2 proportions. Below the plots are ‘gist(S)’ words
associated to the apparent neologism sense – see text.

3.2 Experiments with genuine neologisms
Table 1 listed both targets expected to show sense emergence and targets expected to not show sense
emergence. For several of the sense emergence targets, Figure 3(a-d) depicts various aspects of the
outcomes. In each case the leftmost plot for a target σ shows for each k the succession of inferred πt[k]
values – the sense-given-year values – plotted as a solid line3; the rightmost plot in each case is a ‘tracks’
plot (see Section 2.1), showing for some collection of words considered to be associated with the novel
sense the succession of their probabilities of occuring in n-grams for the target σ, Pt(w|σ). These are
the basis for the ‘tracks’ column in Table 1.

mouse Figure 3(a): The algorithm was run looking for 3 sense variants on data between 1950 and 2008.
The blue line for the πt[1] sequence in the left-hand plot shows a neologistic pattern, starting near 0 and

3also shown is the HPD interval around the mean as dotted lines
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(a) mouse (inferred πt[k] and observed Pt(w|mouse))
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gist(sense 1) button, pointer, left, click, right, you, over, release, your, down,
move, to, drag, START , is, hold, use, when, then, Release

(b) gay (inferred πt[k] and observed Pt(w|gay))
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gist(sense 2) lesbian, men, lesbians, rights, bisexual, community, movement,
/, liberation, straight, male, women, couples, people, for, or, studies, parents,
issues, who

(c) strike (inferred πt[k] and observed Pt(w|strike))
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(d) bit (inferred πt[k] and observed Pt(w|bit))
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(e) paste (inferred πt[k] and observed Pt(w|paste))
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(f) compile (inferred πt[k] and observed Pt(w|compile))
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execute, code, source, or, determined, edit, not, application

(g) ostensible and present

1800 1850 1900 1950 2000

0
.2

0
.5

0
.8

Year

S
e

n
s
e

 P
ro

p

ostensible

1850 1900 1950 20000
.1

5
0

.3
0

0
.4

5

Year

S
e

n
s
e

 P
ro

p

present

(h) cinema and promotion

1950 1970 1990 20100
.3

5
0

.5
0

0
.6

5

Year

S
e

n
s
e

 P
ro

p

cinema

1940 1960 1980 20000
.3

5
0

.5
0

0
.6

5

Year

S
e

n
s
e

 P
ro

p

promotion

Figure 3: For (a-f), the left-hand plot shows the inferred πt[k] sense parameters, with the sense number
S of the potential neologism labeled; the right-hand plot show probability ‘tracks’ for some words intu-
itively associated with the neologism (see text for further details). The box below the plots has top 20
gist(S) words for the neologism sense S. (g-h) show the inferred πt[k] sense parameters for negative
targets

departing from 0 around 1983. The ‘tracks’ plot also shows that several words intuitively associated with
the neologistic sense, also drastically increase their probability conditioned on mouse around the same
time. The ‘GS-date’ column of Table 1 gives the time t, if any, in a πt[k] sequence where it appears to
depart from, and continues to climb from, zero. The ‘< 10%’ column records whether this agrees with
the tracks-based date to within 10% of the time-span considered – which it does in this case. Notably
in this case, the GS-based emergence date, though close to the tracks-based date, is more than 20 years
later than the OED first citation date. The OED first citation comes from a research paper in 1965, but
the mouse computer peripheral only became popular considerably later and it is not unexpected that the
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date at which this use of the term mouse departed and continued to climb from zero in the n-grams books
based data is substantially later. We take this to illustrate why simply taking the OED first citation date,
Dc

0, as a gold standard for the true corpus emergence date, C0, would be a mistake4. The box below the
plots in Figure 3(a) tries to give some insight into the estimated θ1 parameter concerning word-given-
sense probabilities by showing the words belonging to gist(1) (see definition in section 3.1). They seem
mostly consistent with the ‘pointing device’ sense.

gay Figure 3(b): In this case the procedure was run on data from 1900 to 2008, for 3 senses. In the
left-hand plot the black line, for the πt[2] sequence, shows sense emergence, appearing to depart from
near zero first around 1969. The ‘tracks’ plots to the right seem to increase around around 1966. The
OED first citation date of 1922 predates both considerably. The ‘gist’ words for S = 2 also seem mostly
consistent the ‘homosexual’ sense.

Similar to mouse and gay, the detailed outcomes for strike, bit, paste, compile are shown in figures
(c - f) with the procedures run on data for 3 senses. For space reasons, these details are not shown for
boot, surf, strike, rock and stoned but Table 1 summarizes all outcomes: in each case the inferred date
was later than the OED first citation date, and in all cases close to the tracks-based date, just missing the
10% margin in two cases.

Turning to the words which were not expected to exhibit an emergent sense, Figure 3(g-h) shows the
plots of the inferred πt[k] sequences for the targets ostensible, present, cinema and promotion. None
show a clear neologistic pattern, in line with expectations. Though the details are not shown in Figure 3
the same kind of outcome was found for the other negative targets listed in Table 1.

The value of K varied somewhat between the experiments. That the number of senses possessed by
the different targets varies is somewhat to be expected and in some cases where a neologistic trend was
less clear with n senses, it became clearer with n + 1. The automatic setting of this parameter remains
an area for future work.

4 Comparisons to related work and conclusions

We have looked at the detection that a word has acquired the possibility to express a meaning which it
could not hitherto (eg. mouse as pointing device). One can also look at senses themselves as changing
over time, perhaps widening or narrowing, and there has been prior work addressing this issue (Sagi et
al., 2009). We would like to treat this as a separate issue, though drawing a conclusive line between the
two is tricky.

Concerning sense emergence specifically, it has to be stressed there is no strict quantitative state-of-
the-art, because it is not the case that prior works share the same targets, use the same data, or address
in the same way the tricky ground-truth issue (see Section 2.1). Bearing this in mind we have tried to
organise the discussion below around major design options and papers that exemplify these.

There have been some proposals concerning sense emergence detection without modelling senses at
all (Cook and Hirst, 2011; Kim et al., 2014). Though able to detect a difference between corpora from
different eras, these systems tend to lack a capacity to pick out instances exemplifying a putative novel
sense, which is arguably a desirable feature.

Moving on to systems which do involve some kind of modelling of senses, a noteworthy characteristic
of many is that they often apply a WSI algorithm which is time-unaware. One design option is to pool all
training data for the WSI phase, then assign likeliest senses to examples, and then to finally check for a
correlation with time, such as a sense only being assigned after a particular time. Another design option
is to separate the data into eras, perform independent WSI on each subset and then seek to consider how
the sense representations from each era may (or may not) be linked to each other.

The pooling design option is exemplified in (Lau et al., 2012; Cook et al., 2013; Cook et al., 2014).
Their time-unaware WSI system is based on LDA (Blei et al., 2003), and treats the I words of a context
as generated from I topics, and then identifies a target’s sense with the most frequent amongst the I
topics of the context words. It is furthermore an HDP variant of LDA (Teh et al., 2004) in which the

4other than as a lower bound
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number of topics is self-determined by the training process. The equating of senses with topics could be
questioned (Wang et al., 2015) and also the self-determined sense number in their illustrative examples
seems strikingly high (10), with many unintuitive components included. Rather than a year-by-year
time-line, their data is time-stamped to just two time eras, E1 and E2 (eg. in one of their papers E1 is
the late 20th century (BNC) and E2 is 2007 (UkWaC)), and so they attempt a much lower resolution
of emergence dating than we do. Their approach to ground-truth on sense emergence was different
also, being that using Di

0 (dictionary inclusion date, mentioned in section 2.1), and so has some of
the drawbacks that were noted there. As we did, they had both positive and negative targets. Without
a time-line their evaluation cannot be a comparison of true and inferred emergence date and instead
they count success as a tendency to place positives above negatives when ranked by a ‘novelty’ score:
the max over k of the ratio of E2 to E1 frequency of assigned sense k. They obtain thus a ranking
on their targets: { domain(116.2), worm(68.4), mirror(38.4), guess(16.5), export(13.8), founder(11.0), cinema(9.7),

poster(7.9), racism(2.4), symptom(2.1) } (with positive targets in bold and negative in italics). As a possible
generalisation of this score to a time-line, consider a ‘novelty’ score computed in the following way:
from the sequence of πt[k] values, find ‘min’ and ‘max’ values and divide the temporally later value
by the temporally earlier one, letting the novelty score be the max over k of this ratio. On our targets
this gives a ranking: { stoned(105), strike(5442.7), gay(2791.1), mouse(1485.9), surf(156.7), compile(26.6), bit(10),

rock(7.4), boot(7), ostensible(3.5), plant(1.89), play(1.8), promotion(1.4), cinema(1.3), theatre(1.1), spirit(1) }, separating
the positive from the negative targets. Due to the data and target differences it would not make sense
to compare these rankings. Earlier work by Rohrdantz et al. (2011) also instantiates the pooling option
to exploit a time-unaware system. Their system was again LDA-based, their ground-truth approach was
also Di

0-based and their data was news articles between 1987 and 2007.
The separate-then-link strategy for deploying time-unaware WSI to nonetheless attempt to detect sense

dynamics is exemplified in (Mitra et al., 2014; Mitra et al., 2015). The time-unaware WSI system
in this case is a so-called ‘Distributional Thesaurus’ clustering approach (Rychlý and Kilgarriff, 2007;
Biemann and Riedl, 2013), which starting from a word(type) co-occurrence graph where edges reflect co-
occurrence, induces sets of words to represent a sense. Their data set consists of ‘syntactic dependency
n-grams’ as produced by Goldberg and Orwant (2013) from the same digitised books as those from which
the Google n-gram data is derived. They divide the entire time-line into eras E1 . . .E8 of ever shortening
duration but containing equal amounts of data (eg. E2 = 1909–53, E7 = 2002-05). For a given target,
for each era they run their clustering to induce sense-representing word sets, and then they propose ways
to link the clusters for Ei, {si1, . . . sim} to the clusters of later era Ej , {sj1, . . . sjn}. Roughly speaking a
cluster in Ej is judged a ‘birth’ (ie. sense emergence) if sufficiently few of its member words belong
to the any of the clusters for the earlier era Ei. In the paper they discuss outcomes concerning apparent
‘births’ when comparing the 1909-1953 and 2002-2005 eras. They do not test with respect to known
positive and negative examples. Instead they apply the procedure to all words, obtain a very large set of
candidate ‘births’, apply a relatively complex multi-stage filtering process to this and then on a randomly
selected 48 cases from the filtered ‘births’ they find 60% are correct. Their approach to ground-truth
concerning sense emergence (cf. Section 2.1) is somewhat varied but essentially was author intuition in
(Mitra et al., 2014) and dictionary first citation Dc

0 in (Mitra et al., 2015), though as we have noted this
should only serve as lower bound5.

Unlike these proposals, the experiments in this paper concern a model which is not time-unaware:
the model has variables and parameters referring to time. Earlier versions of this idea were discussed
in (Emms, 2013; Emms and Jayapal, 2014; Emms and Jayapal, 2015) though differing from the work
presented here in number of respects (such as the estimation approach (EM), data used (text snippets
via Google custom date search) and the targets considered (multiword expressions)). This aspect of
including time explicitly in a probabilistic model seems to have been considered much less often than
the above-mentioned essentially time-unaware approaches. The work of Wijaya and Yeniterzi (2011)
is one example. They do not propose a sense-emergence detection algorithm per-se but do make some

5Without getting too lost in case-by-case details, it is worth noting that some seem incorrectly judged true ‘births’ relative
to the eras considered, such as an assailant sense of thug, a calculus sense of derivative
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analyses on the Google n-gram data to seek indicators of sense change. They sought to apply the Topics
Over Time variant of LDA (Wang and McCallum, 2006), to do which they somewhat curiously collapse
a year’s worth of n-grams for a target into a single ‘document’ for that year. They found for example that
for gay, training for 2 topics, there is a switch from a strong preference for one topic to preference for
the other around 1970.

The recent work of Frermann and Lapata (2016) is a further example of a time-aware probabilistic
model, in fact one having much in common with the model we have been discussing. They, as we
have done, consider a generative model in which for a given time t a sense k is chosen, according
to some discrete distribution6 πt, and then, again as we have assumed, the context words in w are
generated independently of each other. Whereas we have assumed that word choices are conditionally
independent of the time t given the sense k, and so have for each sense k a parameter θk of word
probabilities, they do not assume this independence, and so for each time t and sense k have a parameter
θtk of word probabilities. The key further feature of their model is their use of intrinsic Gaussian
Markov Random Fields (iGRMFs) to have priors which control how the distributions πt and θtk change
over time: basically there is a precision hyper-parameter κ such that a high κ favours small changes
in successive values. For the succession of θtk values, they set κ to a high value, so that although θtk
does not have to be constant over time, only small variation is anticipated by the prior. The succession
of πt values is allowed greater variation. This use of iGMRF-based priors requires in its turn a more
sophisticated Gibbs sampling approach to parameter estimation than that which we have used – which
they achieve following ideas of Mimno et al. (2008). From the perspective of their model, our model is
more or less what would be arrived at by (i) letting κ for θtk tend to∞, preventing any change of word-
given-sense probabilites in successive times and (ii) letting κ for πt tend to 0, allowing arbitrary change
of sense-given-time probabilities. They evaluated their model in a variety of ways, the most comparable
of which was to consider particular target words in the Corpus of Historical American English (Davies,
2010) with number of senses set to 10 and a time-resolution of 10-year time spans. As with the other
papers already discussed, their use of different targets and a different data-set means again there is not
the possibility at the moment of a quantitative comparison. In our work whilst we do not have a prior to
encourage smooth change of the πt values, nonetheless relatively smooth change is obtained, and sense
emergence was successively detected in a number of cases, suggesting that for the n-gram data at least,
the more complex system of Frermann and Lapata (2016) is not required. It may be of interest in future
work to investigate to what extent this is dependent on the data-set used: the data-set they used contains
~100 times fewer occurrences for a given target per time-period compared to the n-gram data-set we have
used and it could be that with less data the priors they propose become more necessary.

In conclusion we have proposed a simple generative model, with a P (S|Y ) term for time-dependent
sense likelihood, and a p(W |S) term expressing that the context words are independent of time given the
target’s sense. The fact that intuitive outcomes were obtained on our pseudo-neologisms, and on some
authentic cases of sense emergence and non-emergence is indicative at least that the model’s assumptions
are tolerable. It remains for future work involving further targets to test the limits of these assumptions.
Amongst several possibiities for further investigation it would be of interest to reformulate the model
to refer not just to plain words but rather to syntactic annotations, as well as to consider data sources
representing other and more recent text types, such as social media posts.

Appendix A. Derivation of sampling formula for πt
For the sampling formula for πt we need the conditional probability
P (πt|π−(t), s

1:D,w1:D, t1:D, τ 1:N ,θ1:K ;γπ,γθ), where indexing by −(t) is meant to indicate
consideration of all indices except t. This conditional probability is given by

P (πt,π−(t), s
1:D,w1:D, t1:D, τ 1:N ,θ1:K ;γπ,γθ)∫

πt
P (πt,π−(t), s1:D,w1:D, t1:D, τ 1:N ,θ1:K ;γπ,γθ)

Recalling the model formula (3) given in Figure 1 the numerator in this fraction is
6Adapting their notation to make things as comparable as possible: they have Φt rather than πt and Ψt,k rather than θtk.
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∏
d

τtd × πtd,sd × |wd|∏
i=1

θsd,wdi

× Dir(πt;γπ)×
∏
−(t)

Dir(π−(t);γπ)×
∏
1:K

Dir(θk;γθ)

and the denominator differs only by the the integral over πt. πt is involved in the Dir(πt;γπ) term and
in those parts of the product for d where you have td = t. Because of this most terms in the denominator
can be taken outside the scope of the integral and then cancel with corresponding terms in the numerator.
Because of this, the fraction can be written∏

d:td=t
[πt,sd ]× Dir(πt;γπ)∫

πt

[∏
d:td=t

[πt,sd ]× Dir(πt;γπ)
]

In the data items {d : td = t} a variety of sense values have been sampled and the numerator can
instead be expressed using St,k, which counts the sampled sense values (see Section 2). Re-expressing
the numerator in this way and using the definition of the Dirichlet (Heinrich, 2005), we get∏

k

π
St,k
t,k ×

1
β(γπ)

∏
k

π
γπ [k]−1
t,k =

1
β(γπ)

∏
k

π
St,k+γπ [k]−1
t,k

Hence the fraction can be written∏
k π

St,k+γπ [k]−1
t,k∫

πt
[
∏
k π

St,k+γπ [k]−1
t,k ]

=
1

β(St + γπ)

∏
k

π
St,k+γπ [k]−1
t,k

where the last step uses the fact that in any Dirichlet Dir(x1:K ;α1:K) = 1
β(α1:K)

∏K
k=1 x

αk−1
k , the

‘normalizing’ constant β(α1:K) is the integral of the main product term. Hence we finally obtain

P (πt|π−(t), s
1:D,w1:D, t1:D,θ1:K ;γπ,γθ) = Dir(πt;γπ + St)

which is the sampling formula given earlier as (6). The derivation of the sampling formula for θk is
similar, and that for the discrete sd is straightforward.
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