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Abstract

We propose a hierarchical clustering approach designed to group linguistic features for super-
vised machine learning that is inspired by variationist linguistics. The method makes it possible
to abstract away from the individual feature occurrences by grouping features together that be-
have alike with respect to the target class, thus providing a new, more general perspective on the
data. On the one hand, it reduces data sparsity, leading to quantitative performance gains. On the
other, it supports the formation and evaluation of hypotheses about individual choices of linguis-
tic structures. We explore the method using features based on verb subcategorization information
and evaluate the approach in the context of the Native Language Identification (NLI) task.

1 Introduction and related work

Native Language Identification (NLI) is the task of inferring the native language (L1) of writers from
texts they wrote in another language. NLI started to attract attention in computational linguistics with
the work of Koppel et al. (2005). Since then interest has steadily risen, leading to the First NLI Shared
Task in 2013, with 29 participating teams (Tetreault et al., 2013).

NLI is usually considered as a text classification problem with the different L1s as labels. A range
of features reaching from character and word n-grams to dependency- and constituency-based features
have successfully been used in standard supervised machine learning setups, yielding accuracies of up to
around 83% for the 11 classes in the First NLI Shared Task. Some more recent papers further advance
the best result from that competition, namely 83.6% (Jarvis et al., 2013), reaching around 85% (Bykh
and Meurers, 2014; Ionescu et al., 2014).

While pushing the quantitative side is one option of advancing the NLI work further, another avenue
of research tries to improve our understanding of how the different feature types work and what conclu-
sions one can draw from these observations for Second Language Acquisition (SLA) research. Swanson
and Charniak (2013) utilized Tree Substitution Grammars as well as different measures of relevancy and
redundancy to extract indicative linguistic patterns. Swanson and Charniak (2014) adopted the approach
to dependencies. Malmasi and Dras (2014) proposed a technique to detect over- and underuse of certain
patterns by writers with a particular L1-background using linear SVM weights derived from Adaptor
grammar collocations or Stanford Dependencies. Meurers et al. (2014) employed verb subcategorization
patterns as features and showed that there are differences in the usage patterns of verbs between native
English writers and, e.g., writers with Chinese L1-background. Bykh and Meurers (2014) systemati-
cally explored constituency-based features and discussed the distinctive power of the different variants
realizing lexical and phrasal categories. Malmasi and Cahill (2015) investigated the correlation between
various features in a feature set commonly used in NLI.

Many of the current NLI approaches rely on large feature sets, which makes it difficult to qualitatively
interpret the findings. We therefore want to explore grouping features together which behave alike to
advance linguistic insight and improve classification. In place of zooming in on single features, with
the potential danger of overfitting the training data, feature grouping can help make explicit underlying
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linguistic properties within a set of features. Thus, on the one hand, it can support the identification
of linguistic generalizations, which is relevant for qualitative analysis and theoretical interpretation. On
the other hand, we also expect quantitative benefits due to the potential reduction of data sparsity, espe-
cially in cases where the particular single feature realizations might be rare but the underlying structure
captured by a group is more common.

One of the well-established techniques for building feature groups is hierarchical clustering (Park,
2013; Krier et al., 2007; Butterworth et al., 2005). It can be an effective method for capturing linguistic
generalizations. For example, Pate and Meurers (2007) show in the context of PCFG parsing that con-
textually enriching categories followed by clustering the categories with similar distributions results in a
performance improvement.

In this paper, we propose to employ hierarchical clustering for feature grouping in a way that is in-
formed by the classification label – here the L1 of the writer. Adopting a variationist linguistic perspective
that attempts to identify variants of an underlying variable (Tagliamonte, 2011), we illustrate and evalu-
ate the feature grouping technique in detail for features encoding the different subcategorization options
realized by a given verb – a feature type that is well-motivated in related SLA research (Tono, 2004;
Callies and Szczesniak, 2008; Stringer, 2008). Using the technique, we first test the hypothesis, whether
writers with different L1-backgrounds prefer certain subcategorization patterns when realizing particular
verbs. Then we show how the technique can be used to investigate specific hypotheses about L1-transfer
suggested in the SLA research; we focus on the subject in the subcategorization pattern and explore some
of its realization options in L1 Chinese following Wang (2009). The results presented below confirm that
feature grouping can indeed provide theoretical and practical benefits.

2 Feature grouping

We propose a label-informed feature grouping technique that can be used to group structured linguistic
features in line with a variationist perspective. We first introduce the variationist perspective and the
nature of variationist features, before we turn to our implementation of the technique.

Variationist sociolinguistics In variationist sociolinguistics, the focus is on the possible linguistic
choices made by a speaker. This makes it possible to connect the choices in the language with extra-
linguistic variables, such as the gender or the age of a speaker. For example, in Labov’s seminal study
“The Social Stratification of (r) in New York City Department Stores” (Labov, 1972), he found that the
presence or absence of the consonant [r] in postvocalic position (e.g., fourth) correlates with the ranking
of people in status (social stratification). Hence, under a variationist perspective, one observes which of
the possible variants of a variable is chosen by a particular speaker (Tagliamonte, 2011). Recent research
in the language learning context argues that a preference for particular variants can also be indicative of
individual characteristics such as proficiency or L1-background (Lüdeling, 2011; Callies and Zaytseva,
2011; Meurers et al., 2014; Bykh and Meurers, 2014).

Variationist features To obtain variationist features one has to implement the logic described in the
previous paragraph. It requires choosing some language variables that can be realized by a particular set
of variants. For our first explorations of the proposed technique, we chose verb lemmas as variables and
the different subcategorization (subcat) patterns of that lemma as variants.

Grouping technique As motivated above, we want to explore whether writers with a given L1 prefer
certain subcat variants when realizing a particular verb lemma variable.

In the training corpus, we can record the relative frequencies for the different subcat variants used to
realize a lemma. Individual lemmas occur quite rarely, though, so we want to group together all those
lemmas that behave alike with respect to their subcat variants.

Can we also take the classification label into account when clustering the variables by the frequency
proportions of their variants? In other words, how can we group those lemmas together that for a given
L1 have similar proportions of subcat variant realizations? In order to incorporate the classification label
into the grouping procedure, we do not generate a single vector of variants for a variable, but k vectors,
where k is the number of L1 labels in the training data. Each of the k vectors contains the proportions of
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the variants for a given variable, calculated using the subset of the training data for a particular L1. Then
the k vectors for each variable are concatenated in order to get an instance for clustering. Hierarchical
clustering then groups variables together that for writers of a specific L1 realize a similar set of variants in
similar proportions, i.e., it groups lemmas together that for a specific L1 label pattern alike with respect to
the realized subcat variants. Since the feature set for clustering is informed by the L1 labels, we refer to
this technique as label-informed feature grouping. Viewed from the variationist perspective, the method
is designed to group those variables together that in terms of their variants behave alike with respect to
the classification label.

Let us spell this out in an example. Assume that writers with Spanish L1 prefer the subcat variant
p ∈ {p, q}, whereas writers with Chinese L1 prefer the variant q in connection with a particular set of
verbs A. That information is captured by the difference in relative frequencies for the variants p and q in
connection with A in the training data subsets for the two different L1s. Using separate vectors for the
different L1s, explicitly provides that relevant information to the clustering algorithm. Clustering thus
can identify the group A of verbs that is indicative for the classification purposes in terms of the choice
of variants made by different L1s, and also of interest from the perspective of interpreting these effects
in terms of SLA research.

We cluster the variables via agglomerative hierarchical clustering, employing some standard param-
eters, namely, Euclidean distance1 and complete-linkage. We set the number of clusters c = 1, which
means that after clustering we obtain a dendrogram corresponding to a single-rooted binary tree.

Now, the question is, how to decide, which grouping is the most appropriate one? I.e., where do we
want to cut the dendrogram? We approach that issue experimentally, by systematically applying different
branch length cut-offs with step s = 0.1 to the dendrogram, and then evaluating every grouping via text
classification using the different groupings as features.

In connection with using subcat variants, realized by groups of verbs, as features there are two more
points to clarify. First, how to merge clustered variables with different sets of variants? Here, we simply
take the union of the variant sets as the resulting variant set of the variables group. Second, how to
compute the feature values for the groups? For that we use the micro average measure adapted to the
variationist perspective (Krivanek, 2012; Meurers et al., 2014). In sum, we apply the following steps:

1. For each of the n variables Vi and each of the m variants vj occurring in the whole training data,
calculate the matrices Mk

ij using the corresponding label-distinct data subset lk:

Mk
ij =

f(vj , Vi, lk)
m∑

q=1

f(vq, Vi, lk)

where f(v, V, D) yields the frequency of the variant v realizing the variable V in the data D. Here
D = lk. If a variant v does not occur in the context of V using data D, f(v, V, D) = 0.

2. Perform a horizontal matrix concatenation of the k matrices Mk
ij resulting in a single matrix Mij

containing the variable based instances for clustering (the rows of Mij).

3. Perform hierarchical clustering with the number of clusters c = 1, Euclidean distance, and
complete-linkage as parameters.

4. Systematically apply different branch length cut-offs r using a suitable step s (here we employed
s = 0.1). Evaluate the resulting clusters, i.e., groups of variables by using them as features in a
classification setup.

1We also explored using other distance measures, such as the Manhattan or the Hellinger distance. Especially, the latter is
supposed to be more suitable for probability-based features. However, the Euclidean distance performed best.
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(a) Merging groups: Let a group (cluster) C contain x variables, each realized by a particular
variant set Xi. Then the resulting variant set Xc for the variables group C is defined as the
union of all variant sets Xi:

Xc =
x⋃

i=1

Xi

(b) Encoding groups as features for classification: Calculate micro average for each variant v ∈
Xc associated with the group C = {V1, ..., Vn}, using data t:

mic(v, C) =

n∑
i=1

f(v, Vi, t)

n∑
i=1

m∑
j=1

f(vj , Vi, t)

where f(v, V, D) is defined as above (1), and D = t is a given text.

5. Terminate evaluation (at the latest) after a particular cut-off r yielded one single group containing
the whole variables set.

Note that the same technique can also be used to group variants based on their frequency proportions
for all variables using the k label-based data subsets – an option we here do not go into further to keep
things clear and within the space constraints.

3 Data

For the experiments described in this paper, we use the TOEFL11 corpus (Blanchard et al., 2013) in-
troduced for the NLI Shared Task 2013 (Tetreault et al., 2013), which has become a common frame of
reference for NLI research. It consists of essays written by English learners with 11 L1-backgrounds
(Arabic, Chinese, French, German, Hindi, Italian, Japanese, Korean, Spanish, Telugu and Turkish) at
three proficiency levels (low, medium, high). Each of the 11 L1s is represented by 1,100 essays (900
training, 100 development, 100 test). We use the union of the training and development sets for training
and the standard test set for testing. In total for all L1s, we thus train on 11,000 and test on 1,100 essays.

4 Tools

We utilized the MATE tools2 (Björkelund et al., 2010) for data preprocessing (tokenization, lemmatizing,
POS-tagging) and the MATE dependency parser (Bohnet, 2010) to identify the arguments of a verb
realized in a sentence, i.e., the subcat frame that was realized. For hierarchical clustering we employed
WEKA (Hall et al., 2009). To process the resulting dendrograms we used the Libnewicktree3 tree parser.
Finally, classification was carried out using L2-regularized Logistic Regression from the LIBLINEAR
package (Fan et al., 2008) accessed through WEKA.

5 Features

The hypothesis we are testing is whether writers with different L1s prefer different subcat variants. To
systematically explore the potential benefits of feature grouping, we start with simple features, where
every variable, i.e., verb lemma, is considered separately. We then infer sets of complex features, i.e.,
sets of various groups of variables using the proposed technique, abstracting from individual verb lemmas
to classes of verbs. All feature values are calculated using micro average as introduced in section 2 (4b),
with simple features being a special case of the complex ones, where the group C consists of a single
variable (C = {V1}).

2https://code.google.com/p/mate-tools
3https://github.com/cjb/libnewicktree
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5.1 Simple features

We dependency parsed the data and extracted the corresponding argument realization patterns, i.e., the
realized subcat variants, for all verbs occurring in the data. We consider the following labels as argu-
ments:

• sbj: subject

• lgs: logical subject

• obj: (in)direct object or clause complement

• bnf : benefactor in dative shift

• dtv: dative in dative shift

• prd: predicative complement

• oprd: object complement

• put: locative complements of the verb put

• vc: verb chain

Utilizing the verb lemmas with their extracted subcat variants, we generated features, such as:

• believe sbj
• believe sbj obj
• may sbj vc
• put sbj put
• help sbj obj
• make sbj obj oprd

Feature reduction We performed the following three feature reduction steps due to some theoretical
and practical considerations:

1. Verbs as features are rather rare. In order to reduce data sparsity issues, at this point we opted
for ignoring the different permutations of arguments within a subcat variant. This step reduced the
number of distinct variants from 355 to 218.

2. Some of the subcat variants are still rather specific and unlikely to occur frequently enough in the
data. Some of them also suffer from tagging or parsing errors. So, in a second reduction step we
grouped all argument labels into three coarse-grained classes in order to get more general patterns
and to cope with data sparsity:

• {sbj, lgs} → s (subject)
• obj→ o (object)
• {bnf, dtv, prd, oprd, put, vc} → x (rest group)

The number of distinct subcat variants reduced from 218 to 48. Applied to the examples listed
above, we obtain features of the following form:

• believe sbj→ believe s
• believe sbj obj→ believe s o
• may sbj vc→ may s x
• put sbj put→ put s x
• help sbj obj→ help s o
• make sbj obj oprd→ make s o x, etc.
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3. The last reduction step is conceptually different from the first two. It is based on theoretical consid-
erations in connection with the variationist perspective: We are interested in the linguistic choices
made by a speaker. If there is only a single variant for using a verb, we cannot observe a choice
being made. We therefore dropped all features for verb lemmas that only occur with a single subcat
variant in the training data. That reduced the number of distinct verb lemmas from originally 11,401
to 3,785.

Feature reduction clearly also means a loss of potentially indicative subcat information. A more fine-
grained reduction therefore constitutes an important topic for future work.

As a result of feature reduction, we obtain 3,785 distinct verb lemmas (variables) with 14,389 subcat
variants as features. That means that on average there are roughly four subcat variants per variable.

5.2 Complex features
We refer to the features defined by grouping the verb lemmas as proposed in section 2 as complex fea-
tures. The purpose of these complex features is to abstract away from individual verb lemmas to more
general classes. In contrast to Meurers et al. (2014), where verb lemmas realizing exactly the same subcat
variants were grouped together, the technique proposed here makes it possible to systematically explore
a range of different groupings of lemmas based on the similarity of the realized subcat variants, and to
take into account the classification label. Each group of verb lemmas C and the corresponding set of
subcat variants Xc constitutes a complex feature in the sense of (4a) of section 2.

6 Results

An overview of the results is presented in Figure 1. On the x-axis, the leftmost point (marked “s”)
corresponds to using only simple features (every verb lemma with the corresponding subcat variants is
considered separately), i.e., no clustering. With increasing x-values, we go up in the dendrogram to
obtain groups of verbs. The x-values are the branch length cut-offs applied to the dendrogram using a
step of 0.1. The y-axis represents the accuracy of the classification on the test set, using the training-test
split described in section 3 and the classifier spelled out in 4. The random baseline is 9.1%.

Model with simple and complex features ([s/c]): This is the basic setting using simple and complex
features. The figure shows that 44.5% at point “s” is the highest accuracy, so feature grouping does
not provide a quantitative edge. For settings incorporating complex features, the best result is 44.2%,
obtained for the cut-off 0.3. The clustering technique groups verb lemmas in terms of the proportion of
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Figure 1: Accuracy of classification for different feature sets
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their subcat variants. The particular verb lemmas, i.e., surface forms, which are part of a group, are not by
themselves encoded in the feature space any more. For complex features the classifier therefore does not
have an access to the potentially highly indicative surface based properties. Even different misspellings
of the verbs can be indicative of the native language – distinctions that the basic method counting variants
glosses over.4 The disadvantage of loosing indicative surface information seems to outweigh the potential
advantage of the generalization in terms of reducing data sparsity. We can validate that assumption by
creating a binary verb lemma model and then combining it in a model with the simple and complex
variant features.

Binary verb lemma model ([bvm]): To be able to identify the contribution of the subcat variants of
individual verbs and groups of verbs, we need a way to separately quantify the information provided
by the verb lemma itself (i.e., the presence of the variable, as separate from the choice of variants).
In the bvm model, we thus only encode the presence/absence of the 3,785 verb lemmas for each text.
The accuracy for that model is 42.7%. We included that result as a line in Figure 1 to visualize the
performance relative to the other two models, which make use of subcat pattern information. Comparing
the other models to that one shows the benefits of incorporating the subcat variants as features. Indeed,
the other curves discussed below show better results, confirming that such features are useful.

Binary verb lemma combined with simple and complex features ([s/c, +bvm]): To validate our
assumption regarding the role of surface properties, we tried a combined setup, where the [s/c] setting
was used in combination with the binary verb lemma model [bvm] described above. We assume the
[bvm] model to restore the surface information lost due to the generalization, which should improve the
classification performance. Indeed, the classification performance increased compared to the basic [s/c]
setting. For simple features, the accuracy is 46.2%, and thus 1.7% higher. Including [bvm] therefore
is beneficial even for settings not involving clustering. For settings including complex features, the
difference depends on the actual cut-off. The best performance is 48.0% obtained using the cut-off 0.7
(273 complex and 3016 simple features). The difference between the best complex feature results is
3.8%. In most of the cases, the difference is even much higher, as seen when comparing the [s/c] and the
[s/c, +bvm] curves at corresponding cut-offs in Figure 1. That result supports our assumption regarding
the role of the surface properties. It is also supported by the shape of the [s/c, +bvm] curve only. The
best model using complex features (cut-off 0.7) outperforms the model solely based on simple features
(“s”) by 1.8%5. Thus, when built on top of a surface-based model such as [bvm], the proposed grouping
and generalization technique shows practical advantages in terms of accuracy. The findings confirm the
hypothesis that in general learners with different L1s seem to prefer different subcat patterns. Finally,
using more data or some more frequent variables resulting in more reliable frequency distributions of the
variants, is expected to increase the quantitative gains. We plan to explore this issue in our future work.

Relative performance In comparison with previous research, the proposed automatic feature grouping
method outperforms the approach presented in Meurers et al. (2014), where only verb lemmas with equal
subcat variant sets constituted a group. A replication of that approach employing the verb subcat features
and the data setup used in this paper, showed an accuracy of 38.7%, and after adding the [bvm] model,
we obtained 44.4%. This result is 3.6%6 lower than our best accuracy obtained in [s/c, +bvm].

In order to further investigate the potential quantitative advantages of the proposed features and the
clustering method, we combined a range of features using the meta-classifier approach described in
Bykh and Meurers (2014). The results are summarized in Table 1. First, we combined the core 16
feature types employed in Bykh et al. (2013), namely features based on n-grams, dependencies, local
trees, suffix information, linguistic complexity and lemma realization, with the best performing model
in Bykh and Meurers (2014), which is based on constituency variation features plus 40 different types
of n-grams, i.e., word- and lemma-based n-grams as well as two types of n-grams incorporating POS,

4For example, we discovered that some of the clusters contained misspelled versions of the same verbs, such as commmu-
nicate/communicat, tounderstand/ubderstand, exaggrate/exxagarate, etc.

5p < 0.05 using McNemar’s test.
6p < 0.001 using McNemar’s test.
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with 1 ≤ n ≤ 10 each (see also Bykh and Meurers, 2012). This model yielded an accuracy of 85.2%.7

Second, we added the best performing system in this paper, namely [s/c, +bvm] with cut-off 0.78 to that
ensemble, and alternatively the basic setting of [s/c, +bvm] without clustering, i.e., using simple features
only (“s”). Both options showed an increase in accuracy by the same value of 0.2%, resulting in 85.4%.
To the best of our knowledge, the highest outcome obtained so far on the same data was 85.3%, reported
by Ionescu et al. (2014). Thus, by using the new features explored in this paper, it was possible to slightly
outperform the already very high best previous accuracy on the standard TOEFL11 data setup. However,
in the comprehensive ensemble model used here, there was no quantitative difference between adding
the best performing [s/c, +bvm] setting (cut-off 0.7), which incorporates complex features, and the lower
performing version containing simple features only (“s”). Yet, there is a difference in terms of the feature
counts for the two models, namely, 16,841 vs. 18,174 respectively. Thus, the version incorporating
complex features is more efficient, providing the same quantitative advantage with a more compact
model. This supports the assumption that the generalizations made by the technique are reasonable. The
findings suggest that the approach can further advance the already high performance of the state-of-the-
art NLI systems.

Rank Id System Accuracy
1 A D + E + F/G 85.4%
2 B Ionescu et al. (2014) 85.3%
3 C D + E 85.2%
4 D Bykh and Meurers (2014) 84.8%
5 E Bykh et al. (2013) 82.5%
6 F [s/c, +bvm], cut-off 0.7 48.0%
7 G [s/c, +bvm], s 46.2%

Table 1: Relative performance. System B is the best previously reported system based on the same data.

7 Qualitative explorations

In the previous sections we explored in detail the quantitative gains of the proposed technique using verb
subcat features. In this section we sketch, how the method can be used to advance the qualitative analysis
in the context of the SLA research. In particular, we investigate the hypothesis by Wang (2009), sug-
gesting that learners with L1 Chinese overuse pronoun-subjects over noun-subjects in Chinese-English
translations.9 The findings of Wang (2009) based on translations by 81 students support the hypothesis.

In order to investigate this hypothesis, we slightly modify our features, i.e., we use only the subject
part of the verb subcat, and in addition we consider only those subjects, which are tagged as personal
pronouns (prp) or nouns (nn). So, based on our training data, we extract features such as believe sbj+prp
and believe sbj+nn, or study sbj+prp and study sbj+nn, etc. Then we run one vs. rest classifiers with
L1 Chinese vs. the western L1s in our set, namely French, German, Italian and Spanish. The classifiers
follow the logic of the [s/c] and [s/c, +bvm] settings discussed in section 6. To determine distinctive
patterns, we used the weights assigned to the features by the classifier (Malmasi and Dras, 2014).

First, we explored the general usage pattern for sbj+prp and sbj+nn variants, detached from particular
verb lemmas. That was done by cutting off the dendrograms for the [s/c] settings at the root (cut-off 3.0),
which results in having all of the considered verbs in a single cluster and hence, just the two variants,
i.e., sbj+prp and sbj+nn, encoded by the relative frequency for each text. It turned out that both weights
are negative, showing that there do not seem to be any pattern indicative for L1 Chinese compared to the

7Best ensemble optimization parameters for all ensembles in this paper: +all, -opt (Bykh and Meurers, 2014).
8This cut-off turned out to yield best results in our evaluations on both, the TOEFL11 test and development sets, thus it

seems to be relatively reliable for TOEFL11 data.
9“Chinese people always hold the idea that human being and nature are mingled together, so Chinese people intend to make

themselves as the start to narrate object things and are used to taking the pronoun as the subject. However, in the western
philosophy, object is emphasized and it is believed that human being and nature are separated. So western people intend to
express things from an object view and are used to taking non-pronoun such as things or abstract concept as the subject. The
choice of pronoun-subject or non-pronoun-subject between Chinese and English will lead to negative transfer of mother tongue,
which will make the translation of subject an improper one.” (Wang 2009, p. 139)

746



western L1s. Second, we bring the actual verbs back into the equation, and explore the best performing
[s/c, +bvm] setting (cut-off 2.6). Here, all verb lemmas are grouped into five clusters. The findings are
summarized in Table 2.

Cluster id # Verb lemmas Pattern indicative for L1 Chinese Weight
1 166 sbj+nn < 0.01
2 100 - -
3 312 - -
4 65 sbj+prp 0.73
5 68 sbj+prp 0.19

Table 2: Usage pattern for L1 Chinese at the best performing dendrogram cut-off yielding five clusters.

For the cluster 1 there is some very weak (a positive weight ≈ 0) indication for the variant sbj+nn,
which essentially can be ignored. For the two clusters 2 und 3 there is no indicative pattern for L1 Chi-
nese, whereas for the two clusters 4 and 5, there is a clear indicative preference for the variant sbj+prp.
In sum, for most of the verbs in our data set, there is no indicative usage pattern for L1 Chinese com-
pared to the western L1s. However, in connection with some particular verb groups, there is an indicative
preference indeed, namely, for the variant sbj+prp, supporting the given hypothesis. Interestingly, the
method does not simply support a known hypothesis, but it makes it possible to observe subsets of verbs
for which the characteristics emerge. Studying what the 65 verbs grouped in the most indicative clus-
ter have in common thus provides the opportunity for a more fine-grained qualitative analysis in SLA
research.

8 Conclusions

In this paper, we proposed and explored a grouping technique for linguistic features. The method is
inspired by a variationist linguistic perspective and uses hierarchical clustering on the basis of label-
informed feature representations. The approach emphasizes how the underlying linguistic structure in-
forms the classification label, reducing potential problems arising from idiosyncrasies and sparsity of
individual features. We evaluated the approach in the context of NLI using a linguistic feature type well-
suited to a variationist perspective, verb subcategorization patterns, treating the verb lemmas as variables
and the different patterns as variants.

We motivated why we consider the technique to be of interest from a theoretical and a practical per-
spective. Grouping verb lemmas based on the subcategorization information, and thus abstracting from
individual occurrences to the underlying linguistic structure, resulted in a significant improvement in
terms of accuracy, confirming the hypothesis that in general learners with different L1s seem to prefer
different subcategorization patterns. We then turned to investigating a particular hypothesis from SLA
regarding the usage of the subject as part of the verb subcategorization information. We showed that
the method can discover differences in the variant realization patterns in connection with different auto-
matically induced classes of verbs, supporting a fine-grained qualitative analysis. Linking the analysis
to a theoretical perspective informed by traditional SLA research, the method seems well capable of
advancing the qualitative insights in NLI – a primary concern in that field of research today. Combining
features obtained by the approach proposed in this paper with a set of previously used features resulted
in an accuracy of 85.4%, which is the best result reported so far on the standard TOEFL11 data setup.

In terms of future work, we plan to explore different syntactic and morphological features under a
variationist perspective, to extend the qualitative analysis, and to establish a firm enough link between
the data-induced patterns and the traditional insights into L1-transfer to be able to test specific SLA
hypotheses. Regarding the label-informed feature grouping technique, we are also considering applying
it to NLP tasks other than NLI in order to obtain a more comprehensive assessment of the method.
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