
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers,
pages 630–640, Osaka, Japan, December 11-17 2016.

Splitting compounds with ngrams

Naomi Tachikawa Shapiro
Department of Linguistics

Stanford University
Stanford, CA 94305, USA

tsnaomi@stanford.edu

Abstract

Compound words with unmarked word boundaries are problematic for many tasks in NLP and
computational linguistics, including information extraction, machine translation, and syllabifica-
tion. This paper introduces a simple, proof-of-concept language modeling approach to automatic
compound segmentation, demonstrated with Finnish. The approach utilizes an off-the-shelf mor-
phological analyzer to split training words into their constituent morphemes. A language model
is subsequently trained on ngrams composed of morphemes, morpheme boundaries, and word
boundaries. Finally, linguistic constraints are used to weed out phonotactically ill-formed seg-
mentations, thereby allowing the language model to select the best grammatical segmentation.
This approach achieves an accuracy of ∼97%.

1 Introduction

Compound segmentation—the automatic splitting of compounds into their constituent words—is essen-
tial to many language processing tasks, including machine translation, information extraction, semantic
parsing, spell checking, and syllabification. To that end, we propose a simple, supervised approach to
compound segmentation that integrates existing morphological analysis software with language model-
ing and optional linguistic constraints.

Specifically, the proposed segmenter seeks to identify word boundaries in closed compounds, com-
pounds in which word boundaries go undelimited by spaces, hyphens, or other markers (e.g., bookworm).
These are distinct from open compounds, where word boundaries are clearly indicated (e.g., rain gutter)
and thus less of an issue for applications that require their whereabouts. (Note that all compounds are
considered complex, while words that are not compounds are considered simplex—e.g., book, rain).

In contrast to previous approaches, which have primarily sought to identify the dictionary forms of
compound constituents, this approach aims to identify the exact location of word boundaries in com-
pounds. This sort of identification is highly relevant to the domain of computational phonology.

For instance, the location of word boundaries is crucial for syllabification. Closed compounds pose a
problem for automatic syllabification because word boundaries form a proper subset of syllable bound-
aries; a syllable break will always fall on a word boundary (or, so common phonological theory tells
us). Without insight into the location of these boundaries, a rule-based syllabifier might fail to recognize
compound-internal word boundaries. For example, if bookworm is mistaken for a simplex word, English
phonotactics would syllabify it as *boo.kworm. Instead, we expect the syllabification book.worm, where
the syllable break falls on the unmarked word boundary between book and worm.

Hence, we have developed an approach to compound segmentation that specifically identifies word
boundaries in compounds, versus lemmatized constituents. In Section 2, we describe previous ap-
proaches to compound segmentation in the areas of machine translation and information extraction. We
then give a broad sketch of our approach in Section 3, introducing morpheme-based language modeling.
Finally, in Section 4, we describe and evaluate an implementation of our approach on Finnish data. This

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

630

implementation uses the morphological analyzer Morfessor 2.0 (Virpioja et al., 2013) and a trigram lan-
guage model with Stupid Backoff smoothing (Brants et al., 2007). We also compare our approach to the
popular frequency-based method by Koehn and Knight (2003).

2 Related work

Research in compound segmentation has varied in its motivations. While some has focused on improving
information retrieval (e.g., Alfonseca et al., 2008) and spell checking (e.g., Huyssteen and Zaanen, 2004)
systems, the majority of this work has been tailored to machine translation (e.g., Brown, 2002; Koehn
and Knight, 2003; Macherey et al., 2011).

Motivated by a need for translatable constituents, many of these approaches involve multiple lexica
and corpora. For instance, Brown (2002) utilizes parallel corpora and a translation lexicon to establish
cognates between source and target languages. This allows decompounding into cognate constituents.
Brown also proposes an extension to this approach that does not rely on cognate relationships.

Perhaps best known is Koehn and Knight’s (2003) benchmark work on compound segmentation.
Though the paper proposes several splitting methods, it is most cited for its frequency-driven approach,
which scores candidate segmentations according to the geometric means of their constituents’ corpus
frequencies:

ĉ = arg max
c∈C

(
∏
p∈C

count(p))
1
n (1)

Above, ĉ is the highest-scoring candidate in candidate set C, where each candidate c is composed of n
number of constituent parts p. Candidate sets include all splits into known words, according to a training
corpus. Splitting options are further confined to constituents of a minimum length three, and can assume
hand-specified letters either inserted or dropped between constituent words, mirroring morphological
operations at word joints. This monolingual approach is considered state-of-the-art and serves as a
comparison in subsequent work (e.g., Alfonseca et al., 2008; Clouet and Daille, 2014), as well as in
Section 4 of this paper.

Also in the domain of machine translation, Macherey et al. (2011) pitch an unsupervised, language-
independent approach to compound segmentation. The approach uses phrase translation tables to learn
the morphological operations that facilitate compounding, such as the insertion of linking morphemes.
It then references a monolingual corpus to assess candidate segmentations. These elements are brought
together in a complex dynamic programming algorithm.

Tackling compound segmentation from an information retrieval perspective, Alfonseca et al. (2008)
leverage 900 million web documents to determine whether proposed compound constituents exist in
anchor texts pointing to the same document. This approach builds on the semantic relationship between
compound constituents: “If two words can create a compound word in a language, we can assume that
there is some kind of semantic relationships [sic] between them and therefore we would expect to be able
to find them near each other in other situations” (134). Alfonseca et al. combine this mutual information
feature with lexical, frequency, and probability-based features in a Support Vector Machine classifier.

Efforts in compound segmentation vary widely in terms of the resources they require to get off the
ground: monolingual and bilingual corpora, hand-written linguistic rules, web documents, and POS
and frequency information. In addition, they have focused largely on the identification of lemmatized
constituent words, and not on the identification of compound-medial word boundaries.

The segmenter presented in this paper is a supervised, monolingual approach that uses existing soft-
ware and incorporates hand-written linguistic constraints. Instead of using multiple corpora, it draws
from a single word list annotated for word boundaries. In addition, its linguistic rules are to ensure
grammatical constituents, and do not mirror morphological operations to restore constituents to their
pre-compound or lemmatized form (as in Koehn and Knight, 2003; Clouet and Daille, 2014; Owczarzak
et al., 2014).

631

3 Compound splitting method

The method of compound segmentation introduced here begins with annotated training data, a set of
word forms, both simplex and complex, hand-annotated with any unseen word boundaries. For instance,
an annotator would likely mark up the Finnish closed compound Suomenmaassa ‘in the Finnish country’
as Suomen=maassa (suomen ‘Finland-NOM’, maassa-INE ‘country’). Affix boundaries are not annotated
unless they also constitute word boundaries.

An off-the-shelf morphological analyzer is trained on the annotated data and used to segment words
into their constituent morphemes (e.g., one might split Suomenmaassa into the morphemes suome, n,
maa, ssa). This morphological analyzer is then used to generate candidate compound segmentations and
to train a language model.

3.1 Candidate generation
For every morpheme m asserted by the morphological analyzer, there are the four possible bigrams
below, where # denotes a word boundary and X denotes a boundary between two morphemes, or ¬#.

#m
Xm
m #
m X

Using this decomposition, candidate segmentations are generated for a word by proposing a word
boundary along each of its alleged morpheme boundaries. Suppose that the morphological analyzer
takes in the input wi and outputs the morphemes {m1, m2, m3}. The list of candidate segmentations
for wi would then be every possible combination of internal morpheme boundaries, as shown below. (A
word assigned n morphemes will have 2n−1 candidate segmentations.)

#m1 #m2 #m3 # (the most segmented)
#m1 #m2 Xm3 #
#m1 Xm2 #m3 #
#m1 Xm2 Xm3 # (the least segmented)

To give a real world example, if Suomenmaassa is split into the constituents {suomen, maa, ssa},1 it
would yield the following four candidate segmentations:

suomen #maa # ssa # (suomen=maa=ssa)
suomen #maa X ssa # (suomen=maassa)
suomen Xmaa # ssa # (suomenmaa=ssa)
suomen Xmaa X ssa # (suomenmaassa)

One benefit of this approach to candidate generation is that it takes advantage of the linguistic insight
that a word boundary will only occur where there is also a morpheme boundary. This reduces the size
of the candidate set, compared to approaches that generate candidates by proposing a word boundary in
between each letter of a word (e.g., Macherey, 2011), or by recursively proposing all two-part segmenta-
tions of some minimum length (e.g., Clouet and Daille, 2014).

Yet, a drawback of this approach is that candidate generation is at the mercy of the performance of the
morphological analyzer. If the analyzer fails to identify a morpheme boundary between two morphemes,
that boundary will not be considered as a potential word boundary site during compound segmentation.

3.2 Language modeling with morphemes
The intuition behind this segmenter is that the left and right edges of a morpheme each have a certain
likelihood of appearing with a word boundary: For some morpheme mi, the bigram ‘# mi’ might be
more likely than the bigram ‘Xmi’ (or vice versa), and likewise for ‘mi #’ and ‘mi X’.

Consider the English simplex word lighting, composed of the root light and affix -ing
(‘# light X ing #’). English speakers know the bigram ‘X ing’ to be extremely common, or, at least, far
more common than its counterpart ‘# ing’. This intuition can be captured with language modeling.

1The correct morphological analysis for Suomenmaassa is Suome-n=maa-ssa ‘Finland-NOM=country-INE’.

632

Language models are used to assign probabilities to sequences of natural language tokens, typically
words and punctuation. A language model sets out to determine the conditional probability of some
token wi given its history h (i.e., all of the tokens that precede wi in a training corpus). We approximate
the posterior P (w|h) using the Markov assumption that wi’s history can be estimated through the few
tokens that precede wi:

P (wi|h) ≈ P (wi|wi−1
i−n+1) (2)

Above, wj
i is a string of tokens wi, ..., wj and n is the order of ngram (i.e., n = 2 for bigrams, n = 3 for

trigrams, etc.). We can calculate P (wi|wi−1
i−n+1) by dividing the frequency of wi

i−n+1 by the frequency
of wi−1

i−n+1 in a training corpus. This gives us a maximum likelihood estimate (MLE) of P (wi|h):

P (wi|wi−1
i−n+1) =

count(wi
i−n+1)

count(wi−1
i−n+1)

(3)

The probability of some sequence of tokens wL
1 is then estimated by taking the product of the MLE for

each ngram that appears in the sequence:

P (wL
1) =

L∏
i=1

count(wi
i−n+1)

count(wi−1
i−n+1)

(4)

Just as language modeling is used to estimate the likelihood of a sentence, it can be used to predict the
likelihood of a proposed compound. Instead of training ngram probabilities on sentences (i.e., sequences
of words), we can train them on words, wherein each word is a sequence of morphemes and morpheme
boundaries.

Thus, to continue with the English example lighting, the bigram-MLE of the candidate segmentation
*light=ing would be calculated as follows:

P (#light#ing#) = P (light|#) × P (#|light) × P (ing|#) × (#|ing) (5)

Since the bigram ‘X ing’ is far more frequent than ‘# ing’, P (#lightXing#) will receive a higher MLE
than P (#light#ing#). Simply put, P (lighting) > P (light=ing).

As the core component of this segmenter is a language model trained with morphemes, we consider
this a morpheme-driven approach to compound segmentation. This is in contrast to word-driven ap-
proaches, such as the approaches outlined in the previous section. Word-driven approaches can struggle
with accounting for compounds composed of constituent words that were unseen in their training lexicon
(see Owczarzak et al., 2014, which addresses this issue). Our segmenter faces this same challenge, but
attempts to overcome it by exploiting how, for any set of words, there is generally more information
about the distribution of morphemes in the language than the distribution of its words.

3.3 Phonotactic constraints
Using morpheme-based language modeling alone, this approach is vulnerable to predications that are
phonotactically ungrammatical, in that it can assert impossible word-internal sequences of sounds. For
example, analyzing bookworm as *bookw=orm produces the unpronounceable constituent *bookw.

To compensate for these ungrammaticalities, linguistic constraints can be posited to prune unsound
candidates from the candidate sets. Imagine that we imposed the constraint that all constituent words
have at least one vowel. This would discard the candidate compound *boobwo=rm because its con-
stituent *rm violates the constraint.

With a whittled-down candidate set, the segmenter selects the remaining candidate with the highest
language model score.

4 Experiment

We trained and evaluated this approach on an annotated subset of the Aamulehti-1999 Finnish daily
newspaper corpus (Aamulehti, 1999).

633

Data set Total Simplex
Complex

Total Open Closed
training set 18,079 14,489 3,590 312 3,278
test set 2,001 1,606 395 41 354

Table 1: Training-test set split.

4.1 The data
Aamulehti-1999 contains 16,608,843 words across 61,529 news articles. We extracted a subset com-
posed of 20,080 unique word types, including any word that appears one hundred or more times in the
corpus.

A single annotator hand-annotated unmarked word boundaries in this subset. The annotator identified
3,632 closed compounds among the 20,080 word types, giving the data the distribution in Table 1. This
gold standard underwent a 90-10 train-test split: We used 90% of the annotated data to train both a
morphological analyzer and morpheme-based language model. We then evaluated the segmenter on the
held-out 10%.

4.2 The segmenter
Morphological analyzer
We used a baseline Morfessor 2.0 model (Virpioja et al., 2013) to segment words into mor-
phemes. The Morfessor model was trained on raw text consisting of space-delimited data, in
which all marked and unmarked word boundaries were indicated with spaces. (E.g., ‘...runoja
raaka-aineen suomen=maassa...’ would have been represented as ‘...runoja raaka
aineen suomen maassa...’.) As needed for candidate generation and the language model, the
model’s viterbi_segment method was used to segment words along their predicted morpheme
boundaries.

Language model
To avoid zero-probabilities (i.e., where P (sequence) = 0), we used a simple trigram language model
with Stupid Backoff smoothing (Brants et al., 2007). The model ultimately backed off to a Laplace-
smoothed unigram count, assigning a score S to a morpheme/boundary mi accordingly:2

S(mi|mi
i−2) =

count(mi
i−2)

count(mi−1
i−2)

, if count(mi
i−2) > 0

α× count(mi
i−1)

count(mi−1)
, if count(mi

i−1) > 0

α2 × count(mi) + δ

N + δ|V | , otherwise

(6)

Above, N is the total number of unigrams seen during training, V is the vocabulary size (i.e., the number
of unique morphemes and boundaries), and the Laplace discount δ is 1.0. As in Brants et al. (2007), the
Stupid Backoff discounting parameter α is 0.4 — it was not tuned to the corpus.

The language model score (SLM) for a candidate ci is the product of the score for each morpheme and
boundary that appeared in ci; this sequence is defined as mL

1 :

SLM (ci) = SLM (mL
1) =

L∏
i=1

S(mi|mi
i−2) (7)

2Stupid Backoff dispenses with real probabilities, assigning a score S(x) instead of a probability P (x). Some, however,
attribute this S to stand for Stupid.

634

To predict the best segmentation ĉ for a word given its candidate set C, the segmenter selected the
candidate with the highest language model score:

ĉ = arg max
c∈C

SLM (c) (8)

Phonotactic constraints
We formulated four phonotactic constraints that are, in effect, unviolable in Finnish:

• Minimal Word (MINWRD): A candidate incurs a MINWRD violation for each constituent word that
contains fewer than two vowels. (Cf. Suomi et al., 2008). E.g., *a=asian ∼ aasian, *jun=tunen ∼
juntunen, *kä=väisi ∼ käväisi, *n=uotio ∼ nuotio, *mat=ala=vaahtoisen ∼ matala=vaahtoisen,
and *ta=lutus=nuorasta ∼ talutus=nuorasta.

• Sonority Sequencing (SONSEQ): A candidate incurs a SONSEQ violation for each constituent word
that begins in a consonant cluster not in /pl, pr, tr, kl, kr, sp, st, sk, spr, str/ or that ends in any
consonant cluster. (Cf. Sulkala and Karjalainen, 1992; Suomi et al., 2008). E.g., *luonn=ehti ∼
luonnehti, *ehtoisa=mpaa ∼ ehtoisampaa, and *jukola=ntupien ∼ jukolan=tupien.

• Vowel Harmony (V-HARMONY): A candidate incurs a V-HARMONY violation for each constituent
word that contains both front vowels /ä, ö, y/ and back vowels /a, o, u/. (Cf. Sulkala and Kar-
jalainen, 1992; Suomi et al., 2008; Ringen and Heinamaki, 1999; Karlsson, 2015). E.g., *kesäillan
∼ kesä=illan, *taaksepäin ∼ taakse=päin, and *muutostöitä ∼ muutos=töitä.

• Word-Final Consonants (WRDFINAL): A candidate incurs a WRDFINAL violation for each con-
stituent word that ends in a consonant that is not /t, s, n, l, r/. (Cf. Sulkala and Karjalainen, 1992;
Suomi et al., 2008). E.g., *pitem=pään ∼ pitempään, *sulok=kuutta ∼ sulokkuutta, and *hyp=pää
∼ hyp=pää.

Since these constraints are largely unviolable in Finnish, we designed the segmenter to discard candi-
dates that violate the constraints. Given a set of candidates for an input, for each phonotactic constraint,
the segmenter discarded any candidates that violated the constraint, unless it was the case that every
candidate violated the constraint. If every candidate violated it, the number of shared violations was
subtracted from the number of violations incurred by each candidate. Any candidates that still violated
the constraint were then discarded. This is the notion of wiping out shared violations found in Optimality
Theory (Prince and Smolensky, 1993/2004).

After using the constraints to pare down the candidate set, the segmenter selected the remaining can-
didate with the highest language model score. If no candidates remained, it defaulted to the simplex
candidate;3 this meant that all of the candidates violated some phonotactic constraint, but not the same
constraint equally.

4.3 Evaluation
We evaluated our approach by comparing the segmentations produced by the segmenter to the held-
out gold standard. This was done by tallying true and false positives and negatives according to the
definitions below. These metrics mirror those used by Koehn and Knight (2003), Alfonseca et al. (2008),
Aussems et al. (2013), and Clouet and Daille (2014).

• True positives (TP): Closed compounds that are correctly segmented.

• False positives (FP): Simplex words that are mistakenly segmented.
3Motivations to default to the simplex candidate were twofold. First, the dataset’s high simplex rate renders a word more

likely to be simplex than complex. (However, it is important to recall that the dataset is skewed towards more frequent words,
and that compound frequency likely has an inverse correlation with word frequency.) In addition, as we learned from a devel-
opment set, it is generally only with loanwords that every candidate violates a constraint. Since the language model is trained
predominantly on core Finnish, it stands to reason that it will make poorer predictions with loanwords, resulting in a greater
number of false positives with loanwords. Hence, in these cases, we had the segmenter default to the simplex candidate.

635

• True negatives (TN): Simplex words or open compounds that are appropriately left unsegmented.

• False negatives (FN): Closed compounds that the segmenter fails to segment altogether.

• Bad segmentations (Bad): Closed compounds that the segmenter segments, but improperly so.

Using these classifications, precision, recall, and accuracy were calculated, with both precision and
recall penalized for bad segmentations:

• Precision =
TP

TP + FP +Bad

• Recall =
TP

TP + FN +Bad

• Accuracy =
TP + TN

TP + TN + FP + FN +Bad

As a probabilistic morphological analyzer, Morfessor predicts slightly different segmentations for the
same set of data each time a model is trained. These segmentations consequently impact the ngrams
stored in the language model, as well as the constraint interactions further down the pipeline. Due to
this variation, we trained a Morfessor model and subsequent language model 50 times on the training
set. This was done to ascertain the average performance of each segmenter given the training set and
variation from Morfessor. Table 2 portrays the mean precision, recall, and accuracy for using language
modeling alone and language modeling with constraints to segment compounds.

Segmenter P R Acc.
Baseline (no segmentation) - 0.0 0.8230
Language model 0.7493 0.8970 0.9373
Language model + constraints 0.8855 0.9201 0.9690

Table 2: Mean performance from training the Morfessor and language models for 50 iterations.

On average, language modeling alone achieved an accuracy of ∼94%. In contrast, a language model
coupled with linguistic constraints achieved a much higher accuracy, hovering around 97%. Both meth-
ods substantially surpassed a baseline of leaving all inputs unsegmented.

Error analysis
To examine specific errors from a representative iteration, we found the iteration that produced accuracies
most similar to the mean accuracies depicted in Table 2. The results from this average iteration are shown
in Table 3.

Segmenter TP TN FP FN Bad P R Acc.
Baseline (no segmentation) 0 1,647 0 354 0 - 0.0 0.8230
Language model 322 1,553 92 16 18 0.7454 0.9045 0.9370
Language model + constraints 328 1,611 36 18 8 0.8817 0.9266 0.9690

Table 3: Performance from the average iteration.

The 62 errors made by the constraint-based (i.e., “language model + constraints”) segmenter fell under
one of three types: constraint errors, Morfessor errors, and language modeling errors. The distribution
of these errors is summarized in Table 4.

Constraint errors. A constraint error occurred when one of the phonotactic constraints was the cause
of the correct segmentation losing. The constraint-based segmenter encountered only three such errors
(4.8%), the false negatives *mäkicup ‘ski jump cup’ and *bruttokansantuote ‘gross domestic product’,
and the false positive *yksin=omaan ‘only’.

636

Error type FP FN Bad Total
Constraint errors 1 2 0 3 (4.8%)
Morfessor errors 0 4 3 7 (11.3%)
Language modeling errors 35 12 5 52 (83.9%)
All errors 36 18 8 62

Table 4: Distribution of errors from the “language model + constraints” segmenter.

The correct segmentation mäki=cup was ruled out due to the loanword cup violating MINWRD. And,
brutto=kansan=tuote was eliminated because the /br/ onset of the Swedish stem brutto ‘gross’ violated
SONSEQ. In these two cases, all of the candidates violated some constraint and the segmenter conse-
quently defaulted to the simplex candidate. Had the correct segmentation not violated a phonotactic
constraint, it would have been uniquely identified as the winner.

In the third case, the simplex candidate yksinomaan violated V-HARMONY, as it contains the front
vowel /y/ and back vowels /o, a/.4 This led *yksin=omaan to be selected, as it violated none of the
phonotactic constraints.

The presence of constraint errors cautions us that a segmentation approach that uses phonotactic con-
straints is sensitive to loanwords. However, it was only with loanwords where each candidate violated a
constraint. This, to some extent, offers loanword detection that falls naturally out of the architecture of
the segmenter. This might render it possible to make special considerations for core-periphery structure
in the future.

Morfessor errors. The most serious error this segmenter faced was one that stemmed from the mor-
phological analyzer. If the morphological analyzer failed to segment a word into its correct constituent
morphemes and, in doing so, did not insert a morpheme boundary that also constituted a true word bound-
ary, that word’s candidate set did not include the correct segmentation. 11.3% (7/62) of the errors made
were Morfessor errors. For example, the segmenter was unable to predict the compound oheis=krääsän
‘extraneous junk’, since Morfessor split the input oheiskrääsän into the constituents {o, hei, sk, rä, ä, sä,
n}. Here, the constituent sk subsumes the compound break.

The non-trivial frequency of these errors emphasizes the importance of having a well-trained morpho-
logical analyzer.5 One way to possibly minimize these errors would be to train the analyzer on words
annotated for morpheme boundaries instead of word boundaries. (However, morpheme annotation would
require more specialized knowledge than compound annotation.) As always, training the morphological
analyzer on more data would also likely lead to some improvement.

Language modeling errors. By far the most rampant errors were language modeling errors, totaling
83.9% of the errors (52/62). Language modeling errors arose when, given a refined set of grammatical
candidates, the language model favored the incorrect segmentation. Their prevalence is telling about
the compound segmentation problem: It highlights the difference between predicting possible nonword
compounds and predicting actual compounds. It also indicates that the language model is the paramount
site for improvement with this approach.

Comparison to frequency-based approaches
We also implemented two versions of Koehn and Knight’s (2003) frequency-based segmenter. Both im-
plementations scored candidates solely according to the geometric means of their constituents’ frequen-
cies, as in (1). Frequency information and part-of-speech (POS) tags were provided by Aamulehti-1999.

4Although yksinomaan is left simplex in the gold standard, yksin=omaan is quite arguably the correct segmentation. Yksi-
nomaan is composed of the stems yksin ‘alone’ and oma-an ‘own-ILL’. While the word is semantically noncompositional,
evidence from syllabification suggests that it is a compound. Were yksinomaan truly simplex, its syllabification would be
*yk.si.no.maan. However, it syllabifies as if it were a compound, with a syllable boundary falling in between the two stems:
yk.sin.o.maan.

5As an aside, we used Morfessor’s own built-in evaluation suite to evaluate this iteration’s Morfessor model. Like Virpioja
et al. (2013), we used the morpheme-annotated Finnish gold standard from Morpho Challenge 2010 (Kurimo et al., 2010). Our
Morfessor model received 0.548 and 0.614 on precision and recall, respectively. We find it promising that language modeling
alone achieved a 0.937 accuracy, despite our Morfessor model’s performance.

637

Segmenter TP TN FP FN Bad P R Acc.
Baseline (no segmentation) 0 1,647 0 354 0 - 0.0 0.8230
Frequency-based 252 1.389 251 34 75 0.4360 0.6981 0.8201
Frequency-based + POS 287 1,554 92 46 22 0.7157 0.8085 0.9200
Language model 322 1,553 92 16 18 0.7454 0.9045 0.9370
Language model + constraints 328 1,611 36 18 8 0.8817 0.9266 0.9690

Table 5: Performance of the frequency-based and language model segmenters.

The two implementations differed with respect to their candidate sets. The first implementation al-
lowed splits into any words found in the corpus; the second implementation employed POS-filtering,
only permitting splits into content words (but not proper nouns). Candidate sets for both implementa-
tions were restricted to constituents of at least three characters in length.

Table 5 displays the results from evaluating the frequency-based segmenters on the test set; the lan-
guage modeling results from the average iteration are repeated for easy comparison. As the table shows,
the pure frequency-based approached received 43.60% on precision and 69.81% on recall, culminating
in an accuracy comparable to the baseline’s accuracy (∼82%). Both the baseline and frequency-based
segmenters were surpassed by the POS-filtered approach, which achieved an accuracy of 92.00%. The
language modeling approach achieved a slightly higher accuracy of 93.70%. And, overall, the constraint-
based approach achieved the highest precision (88.17%), recall (92.66%), and accuracy (96.95%).

Most notably, the language modeling segmenters earned far fewer false negatives (i.e., higher re-
call) than the frequency-based segmenters. This returns us to the issue mentioned in Section 3.2. As
word-driven segmenters, the frequency-based approaches struggled with capturing compounds whose
constituents did not appear on their own in the corpus. Out of the 46 false negatives produced by the
POS-filtered segmenter, 32 occurred because, in each case, one or more of the correct segmentation’s
constituents did not appear in Aamulehti-1999 (or did not appear as a content word), precluding it from
the candidate set.

On the other hand, as morpheme-driven approaches, the language modeling segmenters largely
avoided these errors. (They produced only 3 of the aforementioned 32 errors.) For instance, the
frequency-based approaches failed to segment the compound yli=määräistä ‘extra’ (i.e., yli=määrä-is-tä
‘over=amount-Adj.-PAR’), since the corpus did not contain määräistä as a standalone word. In contrast,
the language modeling approaches were able to insert a word boundary in between yli and määräistä,
since the bigram ‘yli #’ surfaced 58 times in the training set, and ‘yli X’ only 17 times.

5 Conclusion

We have proposed a language modeling and constraint-based approach to compound segmentation. This
approach was demonstrated with Finnish, a highly agglutinative language. We showed that, by using a
morphological analyzer to split words annotated for compound-medial word boundaries into constituent
morphemes, we can train a language model that scores different configurations of morphemes, morpheme
boundaries, and word boundaries.

Our implementation of this approach used the off-the-shelf morphological analyzer Morfessor 2.0
(Virpioja et al., 2013) and a simple trigram language model with Stupid Backoff smoothing (Brants et
al., 2007). This achieved a segmentation accuracy of ∼94%. Then, by layering linguistic constraints
on top of the language model, we rooted out phonotactically ill-formed segmentations, allowing the
language model to select only grammatical segmentations. This boosted the segmentation accuracy to
∼97%.

In sum, using imperfect morphological analysis with language modeling can achieve impressive re-
sults in compound segmentation. This suggests that using a better trained morphological analyzer in
conjunction with a more sophisticated language model will lead to further traction in the compound
segmentation problem. Furthermore, the better the language model performs, the more the need for
phonotactic constraints is obviated.

638

Lastly, while this approach was specifically designed to identify word boundary sites in the realm of
computational phonology, perhaps it can be adapted for machine translation and information retrieval.
For instance, a LEMMA constraint could be added: A candidate segmentation could incur a LEMMA

violation for each constituent whose lemmatized form cannot be found in a dictionary or translation
lexicon.

Acknowledgements

I am grateful to Arto Anttila for his mentorship throughout this project and to Christopher Manning and
the anonymous reviewers for their constructive feedback. In addition, many thanks to Kati Kiiskinen for
providing swift and thoughtful annotations of Finnish compounds.

References
Aamulehti. 1999. An electronic Finnish newspaper containing 16,608,843 words. Gatherers: Research Institute

for Languages of Finland, the Department of General Linguistics at the University of Helsinki, and the Finnish
IT Center for Sciences.

Enrique Alfonseca, Slaven Bilac, and Stefan Paries. 2008. German decompounding in a difficult corpus. In Lec-
ture Notes in Computer Science: Proceedings of the 9th International Conference on Intelligent Text Processing
and Computational Linguistics, volume 4149, pages 128–139.

Suzanne Aussems, Bas Goris, Vincent Lichtenberg, Nanne van Noord, Rick Smetsers, and Menno van Zaanen.
2013. Unsupervised identification of compounds. In Proceedings of the 22nd Annual Belgian-Dutch Confer-
ence on Machine Learning, pages 18–25, Nijmegen, Netherlands.

Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J. Och, and Jeffrey Dean. 2007. Large language models in
machine translation. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning, pages 858—-867, Prague, Czech Republic.

Ralf D. Brown. 2002. Corpus-driven splitting of compound words. In Proceedings of the 9th International
Conference on Theoretical and Methodological Issues in Machine Translation, pages 12–21, Keihanna, Japan.

Elizaveta Clouet and Béatrice Daille. 2014. Splitting of compound terms in non-prototypical compounding lan-
guages. In Proceedings of the First Workshop on Computational Approaches to Compound Analysis, pages
11–19, Dublin, Ireland.

Gerhard B. Van Huyssteen and Menno M. Van Zaanen. 2004. Learning compound boundaries for Afrikaans spell
checking. In Proceedings of First Workshop on International Proofing Tools and Language Technologies, pages
101–108, Patras, Greece.

Fred Karlsson. 2015. Finnish: An essential grammar. Routledge, London, United Kingdom, 3 edition.

Philipp Koehn and Kevin Knight. 2003. Empirical methods for compound splitting. In Proceedings of the 10th
conference on European chapter of the Association for Computational Linguistics, pages 187–193, Budapest,
Hungary.

Mikko Kurimo, Sami Virpioja, and Ville T. Turunen. 2010. Overview and results of Morpho Challenge 2010. In
Proceedings of the Morpho Challenge 2010 Workshop, pages 7–24, Espoo, Finland. Aalto University School of
Science and Technology, Department of Information and Computer Science. Technical Report TKK-ICS-R37.

Klaus Macherey, Andrew M. Dai, David Talbot, Ashok C. Popat, and Franz Och. 2011. Language-independent
compound splitting with morphological operations. In Proceedings of the 49th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 1395–1404, Portland, Oregon.

Karolina Owczarzak, Ferdinand de Haan, George Krupka, and Don Hindle. 2014. Wordsyoudontknow: Eval-
uation of lexicon-based decompounding with unknown handling. In Proceedings of the First Workshop on
Computational Approaches to Compound Analysis, pages 63–71, Dublin, Ireland.

Alan Prince and Paul Smolensky. 1993/2004. Optimality Theory: Constraint interaction in generative grammar.
Technical report, Rutgers University and University of Colorado at Boulder, 1993. Revised version published
by Blackwell, 2004.

639

Catherine O. Ringen and Orvokki Heinämäki. 1999. Variation in Finnish vowel harmony: An OT account.
Natural Language & Linguistic Theory, 17(2):303–337.

Helena Sulkala and Merja Karjalainen. 1992. Finnish. Routledge, London, United Kingdom.

Kari Suomi, Juhani Toivanen, and Riikka Ylitalo. 2008. Finnish sound structure: Phonetics, phonology, phono-
tactics and prosody. Oulu University Press, Oulu, Finland.

Sami Virpioja, Peter Smit, Stig-Arne Grönroos, and Mikko Kurimo. 2013. Morfessor 2.0: Python implementation
and extensions for Morfessor baseline. Technical report, Department of Signal Processing and Acoustics, Aalto
University.

640

