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Abstract

Much previous research on multiword expressions (MWEs) has focused on the token- and type-
level tasks of MWE identification and extraction, respectively. Such studies typically target
known prevalent MWE types in a given language. This paper describes the first attempt to learn
the MWE inventory of a “surprise” language for which we have no explicit prior knowledge of
MWE patterns, certainly no annotated MWE data, and not even a parallel corpus. Our proposed
model is trained on a treebank with MWE relations of a source language, and can be applied to
the monolingual corpus of the surprise language to identify its MWE construction types.

1 Introduction

Multiword expressions (“MWEs”) are word combinations which have idiosyncratic properties relative
to their component words (Sag et al., 2002; Baldwin and Kim, 2010), such as taken aback or red tape.
The need for an explicit model of MWEs has been shown to be important in NLP tasks including ma-
chine translation (Venkatapathy and Joshi, 2006), parsing (Constant et al., 2012), and keyphrase/index
term extraction (Newman et al., 2012). However, existing approaches to MWE identification/extraction
typically target specific MWE types that are known to be prevalent in a given language, such as: (a) com-
pound nouns in languages such as English (Copestake, 2003; Ó Séaghdha, 2008), German (Schulte im
Walde et al., 2013) and Japanese (Tanaka and Baldwin, 2003); (b) light verb constructions (LVCs) in
languages such as English (Butt, 2003), Persian (Karimi-Doostan, 1997) and Italian (Alba-Salas, 2002);
and (c) compound verbs in languages such as Japanese (Uchiyama et al., 2005). Note here that the
combination of highly-productive MWE types can vary greatly across languages: English is rich with
compound nouns and LVCs are also common, but lacks compound verbs; Persian is rich with LVCs and
adjective–noun compounds, but has very few compound nouns and compound verbs; and Japanese is rich
with LVCs and compound nouns and verbs, but adjective–noun MWEs are rarer. Even for collocation
extraction, this knowledge is generally assumed for a given language, in targeting only highly productive
constructions such as adjective–noun or verb–noun collocations (Krenn and Evert, 2001; Pecina, 2008).

But what if the language of interest is one where no such prior knowledge exists, e.g. because it
is a “surprise” language where rapid deployment of language technologies is required and there is no
access to an informant with sufficient linguistic training to be able to inventorise the MWE types in the
language (Oard, 2003; Maynard et al., 2003)? Here, there is little expectation of success without an
automatic method for determining the inventory and relative frequency of MWEs in a given language.
This provides the motivation for this paper: can we develop a method for automatically profiling the
MWE inventory of a novel language based simply on a monolingual corpus of that language, and a
treebank in a second language such as English?

We carry out this research in the Universal Dependency (“UD”) framework (Nivre et al., 2016), using
the method of Duong et al. (2015) to induce a delexicalised dependency parser for the surprise language,
based on a supervised parsing model for a language such as English where we have a well-developed
treebank in the UD. Given the parser output over a monolingual corpus in the surprise language, we
then apply one of two methods to extract our MWE profile: (1) a baseline method, where we simply
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extract out delexicalised dependency tuples of relation type mwe or compound (including the POS
tags), aggregate the counts of the pos–relation–pos triples, and extract the most frequent triples; and (2)
a supervised reranker over the delexicalised dependency tuples, to better deal with noise in the output of
the delexicalised dependency parser.

One additional contribution of this paper is analysis of MWE annotation across different languages
in the UD. We find that there are a number of competing styles of annotation, and very different levels
of thoroughness in the annotation of MWEs. As part of this, we perform an “oracle” analysis of MWE
extraction based on the gold-standard treebank annotations for a given language, and find that the results
vary greatly between languages, due to annotation divergences. Using the supervised reranking method,
however, and incorporating more and more languages for training (but holding out the surprise language),
we find that we are able to “smooth” annotation differences between languages.

2 Related Work

There is a wealth of research on MWE identification (i.e. distinguishing MWEs from non-idiosyncratic
combinations at the token level) and extraction (i.e. determining at the type level which word combina-
tions in a corpus are MWEs). Many of these methods are customised to particular MWE constructions
which are known to exist in a given corpus, e.g. noun compounds (Lapata and Lascarides, 2003; Tanaka
and Baldwin, 2003), verb particle constructions (“VPCs”: Baldwin and Villavicencio (2002; Baldwin
(2005)), determinerless prepositional phrases (Baldwin et al., 2004; van der Beek, 2005), or compound
verbs (Breen and Baldwin, 2009). There is also a significant body of work on general-purpose MWE
extraction, often based on statistical association measures applied to either a monolingual corpus (Ev-
ert and Krenn, 2005; Pecina, 2008; Ramisch, 2012) or a parallel corpus (Melamed, 1997; Moirón and
Tiedemann, 2006). Even here, however, POS-based constraints are generally applied on the types of
MWE that are extracted (e.g. noun–noun or verb–noun bigrams). There are also methods for identifying
MWEs in context using supervised models (Diab and Bhutada, 2009; Li and Sporleder, 2010; Schneider
et al., 2014), which require exhaustive annotation of MWE token occurrences in a corpus. All of this
research differs from our work in that it either assumes knowledge of the type(s) of MWE to extract for
a given language, or requires explicitly annotated MWE data in that language.

Closer to home, there has recently been work on general-purpose, unsupervised approaches to MWE
extraction, making no assumptions about the types of MWE that exist in a given language (Newman et
al., 2012; Brooke et al., 2014). Here, however, the definition of MWE tends to be blurred somewhat
to focus on index terms or “formulaic language”, i.e. idiomatic expressions with statistically-marked
properties in a given corpus — blurred in the sense that many MWEs are not statistically marked, and
also that they include formulaic expressions such as in this paper that are not formally MWEs.

Also related is recent work on resource development for low-resource languages, such as dependency
parsing based on transfer learning from a higher-density language (Naseem et al., 2012; Täckström et
al., 2013; Duong et al., 2015). For example, Duong et al. (2015) proposed a neural network-based parser
that transfers dependency relations across languages without requiring a parallel corpus. They learn
syntactic cross-lingual word embeddings by training the skip-gram model (Mikolov et al., 2013) on a
representation of the original text in which the context of each token is represented by its universal POS
tags (Petrov et al., 2012). They then incorporate these word embeddings in a transition-based neural
network dependency parser (Chen and Manning, 2014).

Our proposed method is the first attempt to learn the MWE profile of a language with no knowledge
of the target language except for POS tags (which themselves can be induced automatically, with little or
no annotated data: Garrette and Baldridge (2013), Duong et al. (2014)), and no parallel corpus. We train
a delexicalised dependency parser based on transfer learning (involving no syntactic annotations for the
target language), and train a reranking model based on observed MWEs in only the source language(s).
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Figure 1: Cross-lingual similarity of MWE pattern distributions using JSD

3 Resources

The Universal Dependency Treebank1 (“UD”) is a universal annotation scheme for dependency parsing
that is consistent among languages with the goal of cross-lingual learning (Nivre et al., 2016). It is made
up of a universal part-of-speech (POS) tag set (Petrov et al., 2012) and universal dependency relation set,
and a set of treebanks.

In this paper, we use v1.2 of UD. MWEs are labeled as either name (for named entities), compound
(for binary compound expressions) or mwe (for fixed expressions). In this work, we focus specifically on
mwe and compound, as named entity recognition is a specialised subtask of MWE identification with
its own dedicated literature (Maynard et al., 2003; Huang et al., 2003; Steinberger and Pouliquen, 2007),
and there is every expectation that all languages contain named entities. Although the documentation for
UD provides definitions of how to distinguish mwe and compound in labelling MWEs, there seem to
be major inconsistencies in how they have been interpreted for particular languages: some languages do
not use these relations at all, while others only annotate a subset of MWE types with these relations.

The languages examined in this paper are as follows, in descending order of prevalence2 of MWE
annotations in UD (as indicated in parentheses):

Hindi (14.0%), Indonesian (9.2%), Persian (7.5%), Croatian (6.7%), English (6.2%),
Swedish (5.4%), Estonian (4.9%), Irish (4.7%), Finnish (4.4%), Basque (3.7%), Hungarian
(2.7%), Dutch (2.2%), Norwegian (1.6%), Danish (1.5%), French (1.5%), Italian (0.8%), Span-
ish (0.8%), Hebrew (0.7%), Bulgarian (0.6%), German (0.4%)

These were selected based on the fact that they have at least 100 individual occurrences of the mwe or
compound relation. The 5 languages in bold were selected as our test languages, based on the high
prevalence of MWE annotations and diversity of MWE patterns.3 Here and for the remainder of the
paper, we define “MWE pattern” to be an ordered tuple of the form 〈posh, rel, posd〉, where posh is the
POS of the head, and posd is the POS of the dependent in the triple. Based on this definition, English has
56 distinct MWE patterns, Croatian 49, Persian 48, Swedish 45, and Indonesian 26.

4 MWE Patterns

This paper investigates the profile of MWE patterns in a given language, in the form of delexicalised
dependency tuples. The most frequent patterns in our 5 target languages with the compound relation

1https://universaldependencies.github.io/docs/
2the proportion of MWE tokens
3We discarded Hindi despite the high proportion of MWEs because: (1) it only covered compound relations, and has no

mwe relations, and (2) it has a low number of distinct MWE patterns (23), and as such appeared skewed in its annotation.
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are: NOUN–NOUN; PROPN–PROPN (i.e. proper noun dependencies, which should be annotated
with the name relation rather than compound, according to the annotation guidelines); and VERB–
NOUN, which includes LVCs. There are also other noticeable patterns such as VERB–ADV(erb) and
VERB–ADP(osition), corresponding to VPCs (Schulte im Walde, 2004; Baldwin, 2005).
mwe patterns are more diverse than compound patterns: compound patterns mostly involve nouns

and verbs, while mwe patterns involve a diverse range of POS types, such as ADP–ADP or ADV–ADV,
and pairings including CONJ(unctions) or SCONJ (subordinating conjunctions).

We additionally measured the similarity between the MWE pattern probability distribution of the
different languages using Jensen–Shannon divergence, as shown in Figure 1 for all languages in UD.
To make comparison between related languages easier, we clustered the languages by language family.
According to Figure 1, there is no clear indication that languages of the same family have similar MWE
patterns, which is something that we might have expected.

These results suggest that although the ultimate goal of the UD project is to have compatible annota-
tions, the MWE annotations are not, at present, consistent. In fact, annotation divergences would appear
to be more noticeable than linguistic differences. For example, the Norwegian treebank annotates only
VPCs (and not multiword compound nouns, e.g.), and the mwe relation is not used at all. That is, the
observed differences in MWE patterns certainly reflect differences between languages, but greater than
this, they capture differences in the annotation process between different languages.

We also examined the annotation consistency of MWEs between the Train+Dev sets and Test set of
each language (based on the provided splits), and observed high consistency (low JSD) between the
existing patterns in these sets for the same language. The JSD on compound patterns are all below
0.10, except for Spanish (0.23) and French (0.18). Due to the diversity of mwe patterns, the JSD is less
consistent within each language, with Croatian (0.64) and German (0.44) being notably high, and the
rest of the languages below 0.25. This shows that annotation is quite consistent within each language.

Therefore, despite the cross-lingual annotation inconsistency, our corpora appear to be internally con-
sistent enough to train a model over, based on the observed MWEs in a language.

5 Methodology

In this work, we measure the likelihood of the triple 〈posh, rel, posd〉 being an MWE pattern in the
target language. The scores are measured according to the respective lexical instances of each triple in
the source language, aggregated to compute scores for each triple, and used to train a support vector
regression (SVR: Joachims (2006)) model.

The gold-standard labels to train the model are based on the dependency relations: the value is set to
1 if the dependency is compound or mwe, and 0, otherwise.

We use 8 features in our proposed method: pointwise mutual information (PMI), φ-square, the Dice
coefficient, student’s t test, log-likelihood ratio, pattern fixedness, token/type ratio for a given triple, and
token/token ratio across all relations.

PMI(x, y) = log
p(x, y)
p(x)p(y)

φ2 =
(n(x, y)n(x̄, ȳ)− n(x, ȳ)n(x̄, y))2

n(x)n(x̄)n(ȳ)n(y)

Dice coefficient =
2n(x, y)

n(x) + n(y)

t(x, y) =
n(x,y)−(n(x)∗n(y))

total words√
n(x, y)

where n(.) is the number of occurrences, and x̄ is the number of all instances except x. Pattern fixedness
is measured via entropy as H(Pr(D(x, y))), where D(x, y) is the difference between the linear position
of the head and dependent, binned as follows: posdiff ∈ {(−∞,−2),−2,−1, 1, 2, (2,∞)}.
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Figure 2: Selecting a language as a source language

1 3 5 7 9 11 13 15 17 19
Number of Source Languages

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

Target Language = En

(a) English

1 3 5 7 9 11 13 15 17 19
Number of Source Languages

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

Target Language = Fa

(b) Persian

1 3 5 7 9 11 13 15 17 19
Number of Source Languages

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

Target Language = Hr

(c) Croatian

1 3 5 7 9 11 13 15 17 19
Number of Source Languages

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

Target Language = Sv

(d) Swedish

1 3 5 7 9 11 13 15 17 19
Number of Source Languages

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

Target Language = Id

(e) Indonesian

Figure 3: Distribution of ROC AUC scores when combining source languages

These features are first computed for each lexical instance of a given pattern, and then aggregated
to calculate the overall feature values for each triple, using either: (a) the mean (in the case of pattern
fixedness); or (b) the median (in the case of the other measures).4

After computing the features, we train an SVR model based on the dependency triples in the source
language, and then apply the model to rank the triples in the target language. To avoid noisy annotations,
we consider only those triples that occur at least twice in each corpus.

We further experiment with a simple ensemble method to combine source languages, in order to
smooth over annotation and linguistic differences between languages: we combine the trained rerankers
from multiple source languages by calculating the average of the predicted scores from each language.

4MWEs components are usually seen in a fixed order and with fixed gap size. We use mean to aggregate the pattern fixedness
scores in order to capture any lexical instances which are not used in a fixed order. However, we use the median for the other
measures to suppress the impact of outliers. Our preliminary results also confirm that this is the best way to aggregate the
scores.
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Score Pattern Example
0.327 〈NOUN, ccomp,ADJ〉 sure place
0.306 〈X, compound,PROPN〉 Indo Lanka
0.301 〈NOUN,appos,SYM〉 $ value
0.298 〈ADJ,nmod:npmod,ADV〉 little more
0.295 〈NOUN,punct,NUM〉 5 ”
0.285 〈SYM,punct,SYM〉 — —
0.283 〈AUX,advcl,ADV〉 as can
0.277 〈NOUN,mwe,SCONJ〉 in case
0.270 〈SCONJ,mwe,ADP〉 due to
0.268 〈NOUN,mwe,ADP〉 in order

Table 1: The top predicted MWE patterns in English, by combing all other languages.

6 Results

We report on two experiments. First, we train a model using features extracted from the gold-standard
treebank in a given source language, and apply it to features extracted from the gold-standard treebank
in a target language. We investigate how well our model is able to find the annotated MWE triples when
gold-standard dependency relations are provided. This experiment also shows how our model can be
used to find new MWE patterns in existing annotated treebanks (missing certain MWE types). Second,
we investigate how our model performs in the more realistic scenario of no annotated treebank being
available in the target language.

6.1 Experiment I: Learning given the gold standard treebank

In our first experiment, we assume access to gold standard annotations of POS tags and relation edges in
both source and target languages, to determine the tractability of the task, assuming perfect parses.

Since the output of our model is a score in the range [0, 1], we evaluate based on the area under the
curve (AUC) from a ROC curve. Figure 2 shows the ROC curve for predicting MWEs when English
and Norwegian are the source languages. English is among our 5 selected languages — i.e., one of the
languages with the highest number of multiword expression patterns — while for Norwegian, the mwe
relation is not used at all and only compound:prt is annotated. According to these results, the average
AUC for predicting MWE patterns is 0.63 when English is the source language (averaged across all target
languages, excluding English), while it is 0.50 when Norwegian is the source language. This shows that
a source language with less annotated patterns makes for a weaker model. The average scores when our
5 selected languages are used as the source language are remarkably similar: English = 0.63, Persian =
0.64, Croatian = 0.64, Indonesian = 0.61 and Swedish = 0.65.

To investigate further, Figure 3 shows how adding more source languages affects the results for MWE
pattern extraction over our 5 selected languages. According to these results, using more than one lan-
guage can increase the AUC, however, using more than 3 languages does not improve the average AUC
greatly.

Finally, we show the top-predicted MWE patterns in English in Table 1. We observe errors such as
〈NOUN,punct,NUM〉 and 〈SYM,punct,SYM〉, because of their idiosyncratic properties across token
instances. However, our model also predicts that 〈NOUN, ccomp,ADJ〉 is an MWE.

6.2 Experiment II: Learning without gold standard dependency relations

In our second experiment, we evaluate under the more realistic task setting of there being no gold stan-
dard treebank in the target language. Instead, we use the cross-lingual parser proposed by Duong et al.
(2015) to parse the corpus in the target language (see Section 2). Note that we still use gold-standard
POS tags, but this isn’t entirely unrealistic given the relative maturity of methods for inducing universal
POS taggers (Das and Petrov, 2011; Täckström et al., 2013; Duong et al., 2014).

Obviously, due to the fact that the parser has no access to dependency annotations in the target lan-
guage, the parser output will be noisy. However, this emulates a true surprise language setup, where we
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Language De Sv Da It Es Fr Hr Bg Hu Fa Ga Eu Id He
Baseline 0.816 0.511 0.481 0.637 0.546 0.656 0.487 0.554 0.406 0.467 0.586 0.497 0.473 0.472
Reranker 0.736 0.514 0.428 0.631 0.610 0.684 0.461 0.645 0.470 0.549 0.673 0.578 0.513 0.622
PMI 0.804 0.512 0.567 0.803 0.494 0.634 0.575 0.471 0.588 0.521 0.687 0.595 0.756 0.476
Baseline + gold 0.797 0.750 0.846 0.885 0.879 0.799 0.696 0.917 0.457 0.919 0.799 0.891 0.931 0.788

Table 2: AUC scores when English is used as the source language to transfer dependency links and
to train our reranker model. In “Baseline + gold”, the trained model is applied to the gold-standard
annotation of the target language rather than the parsed corpus.

have no prior knowledge of MWEs or dependency structure in the target language.
In order to evaluate our proposed method and compare it with the gold standard treebank, we change

the evaluation method slightly in order to better reflect the expected inconsistencies in the parser output.
In terms of gold-standard labeling, we exhaustively consider every edge between all pairs of tokens in
each sentence, and consider an edge to be a positive instance if there is an MWE dependency between
its token pairs in the gold-standard treebank, and a negative instance otherwise. To evaluate the parser
output, which is the baseline in this experiment, we use the generated dependency edges and labels, and
evaluate this against the exhaustively-generated gold-standard. To evaluate our system’s performance,
we use the dependency edges given by the parser and aggregate the reranker’s predicted scores at the
level of the delexicalised dependency triples, as per the first experiment. Unlike the first experiment, we
evaluate using ROC AUC over the token pairs instead of 〈posh, rel, posd〉 triples.

Table 2 shows the AUC scores when English is used as the source language to parse the target lan-
guage, and English is also used to train our reranking model. Our proposed model (“Reranker”) produces
above-baseline results for all target languages except German, Danish, Italian and Croatian. We observe a
very high percentage (63%) of compounds being predicted as noun–noun compounds in German, which
is a large part of the strong results for that language. In order to compare with a collocation extraction
methods, we contrast this with a ranking based on the average PMI score for each dependency relation
(“PMI”). The results show that for half of the languages simple PMI scores can lead to higher AUC
scores, while for the other half, the reranker model (which incorporates PMI scores but is trained on
another language), performs better.

The final row in Table 2 is the result of providing the baseline method with gold standard depen-
dency relations (with unknown label, to avoid trivialising the task) and applying the reranker to the
gold-standard tuples. Since one source of noise (i.e. the induced parser) is removed in this baseline,
we observe much higher scores than the other two approaches, except for Hungarian. For Hungarian,
90% of the annotated MWEs are NUM–NUM compounds, which is the reason that our second baseline
performs worse for Hungarian compared to other languages. This result suggests that, unsurprisingly
perhaps, the major cause of error in our method is the dependency parser.

Similar to the previous experiment, we also experimented with an ensemble of rerankers. We use
English and Swedish as the source language to parse Persian, Croatian and Indonesian. Figure 4 shows
how increasing the number of source languages and combining the trained models affects the AUC
scores. According to Figure 4, our proposed method on average beats the baseline, when using only
one language to train the reranker. However, unlike the previous experiment, combining multiple source
languages does not improve the reranker. Additionally, comparing English with Swedish, we observe
that the source language used to induce the dependency parser plays an important role.

7 Error Analysis

Finally, we perform error analysis to better understand the performance of the proposed method, focus-
ing on two languages: Persian and Croatian, with 322 and 225 patterns to rank, respectively. We selected
these two languages primarily because of the diversity of the MWE annotations in the treebanks (Sec-
tion 3), and we had access to expert native-speaker annotators. The most frequent annotated patterns
in the original treebanks are shown as “Gold standard” in Table 3 (the relation between posh and posd

are either mwe or compound or both). The dependency parser and reranker are trained on English and
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Figure 4: Combining source languages given the noisy dependency relations. In (a)–(c), the English
treebank is used as the source language for the cross-lingual parser, and in (d)–(f) Swedish is used.

Swedish as the source languages, individually. The top-10 most frequent patterns in the first quartile of
the output of the reranker are shown in Table 3. The patterns which match with the gold standard pattern
are marked with “†”.

When English is the source language, noun compounds are correctly selected as a very frequent pat-
tern in Persian. The pattern of 〈ADJ,amod,NOUN〉 is selected as the second most common pattern
in Persian, for which almost all token instances are also true MWEs, such as Islamic republic, Islamic
revolution, right wing and fundamental law.5 Instances of 〈NOUN,nmod,NOUN〉 are more institution-
alised, such as seminar presentation and Iftar time. Persian is rich with LVCs, which shows up in the
first column as 〈NOUN,nsubj,VERB〉, i.e. misanalysed as verb–subject rather than verb–object pairs,
but containing predominantly LVCs. In fact, among the top-20 most frequent token instances of this
pattern, 17 are LVCs. As we work our way down the list of dependency triples in Table 3, there are
fewer and fewer actual MWE token instances associated with the pattern. For example, the number of
MWE instances associated with 〈ADV,advmod,NOUN〉 is less than non-MWEs (MWE examples are
before Christ, and before revolution). The primary sources of error were parser errors or the triple being
a fragment of a larger MWE. Using Swedish as the source language, we observed a similar trend.

For Croatian, almost all of the tokens associated with the top-2 patterns for both English and Swedish
are MWE instances, with the tokens associated with 〈NOUN, compound,NOUN〉 based on English
corresponding very closely with 〈NOUN,nmod,NOUN〉 based on Swedish. As with Persian, as we
go down the list, the patterns become more noisy and the MWE tokens sparser, with the exception of
〈NOUN, compound/nmod,PROPN〉, for which almost all instances are MWEs (e.g. president Erdo-
gan) or part of a larger MWE. Also, the instances of 〈PROPN, compound,PROPN〉 are all named
entities. None of the token instances associated with 〈NOUN,nsubj,VERB〉 and 〈AUX,aux,VERB〉
were MWEs.

5Note that our model predicts the MWE patterns rather than MWE instances. Therefore, whether an individual MWE is
also an MWE in the target language or not, does not affect the final results.
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Source = English Source = Swedish Gold standard
Persian 〈NOUN, compound,NOUN〉 † 〈ADP, case,NOUN〉 〈NOUN, ∗,VERB〉

〈ADJ,amod,NOUN〉 † 〈NOUN,nsubj,VERB〉 † 〈ADP, ∗,ADP〉
〈NOUN,nmod,NOUN〉 † 〈NOUN,nmod:poss,NOUN〉 † 〈ADJ, ∗,VERB〉
〈NOUN,nsubj,VERB〉 † 〈NOUN,nmod,VERB〉 † 〈NOUN, ∗,NOUN〉
〈NOUN,nmod,ADJ〉 〈VERB,acl:relcl,NOUN〉 〈NUM, ∗,NOUN〉
〈DET,det,NOUN〉 〈ADJ,amod,NOUN〉 † 〈CONJ, ∗,PRON〉
〈ADV,advmod,NOUN〉 〈CONJ, cc,NOUN〉 † 〈CONJ, ∗,CONJ〉
〈NOUN, conj,VERB〉 † 〈ADJ,nsubj,VERB〉 † 〈ADJ, ∗,NOUN〉
〈NOUN,nmod,VERB〉 † 〈DET,det,NOUN〉 〈NOUN, ∗,ADP〉
〈NOUN, conj,SCONJ〉 〈NUM,nummod,NOUN〉 † 〈CONJ, ∗,NOUN〉

Croatian 〈ADJ,amod,NOUN〉 † 〈ADJ,amod,NOUN〉 † 〈PRON, ∗,VERB〉
〈NOUN, compound,NOUN〉 † 〈NOUN,nmod,NOUN〉 † 〈ADJ, ∗,NOUN〉
〈ADP, case,NOUN〉 † 〈ADP, case,NOUN〉 † 〈NOUN, ∗,NOUN〉
〈NOUN,nmod,NOUN〉 † 〈NOUN,dobj,VERB〉 〈PROPN, ∗,PROPN〉
〈NOUN,dobj,VERB〉 〈NOUN,nmod,PROPN〉 〈PROPN, ∗,NOUN〉
〈NOUN, compound,PROPN〉 〈NOUN,nmod:poss,NOUN〉 † 〈NUM, ∗,NOUN〉
〈NOUN,nmod,VERB〉 〈NOUN,nmod,VERB〉 〈ADP, ∗,NOUN〉
〈PROPN, compound,PROPN〉 † 〈NOUN,nsubj,VERB〉 〈X, ∗,X〉
〈NOUN,nsubj,VERB〉 〈AUX,aux,VERB〉 〈PRON, ∗,ADP〉
〈NOUN, conj,NOUN〉 † 〈PRON,nsubj,VERB〉 † 〈PRON, ∗,SCONJ〉

Table 3: Top-ranking Persian and Croatian MWE patterns extracted using English and Swedish as the
source language. Those patterns which match the top-ranking gold standard patterns are shown with “†”.

8 Conclusion

In this paper, we proposed a method for automatically determining the MWE composition of a novel lan-
guage, based on delexicalised universal dependency patterns of the form 〈posh, rel, posd〉. The method
is based on determination of MWEs in a source language from a dependency treebank, and training of a
model over delexicalised dependency patterns for that language. This is then applied to a target language
to rerank patterns, in terms of MWEhood. In our initial experiments, we used gold-standard dependency
information for a treebank for the target language, and found the method to be highly successful at rank-
ing dependency patterns. This both validated the method, as well as suggesting the potential for the use
of the method in cross-checking the consistency of the UD treebanks. We then applied our method under
the more realistic setting of having no gold-standard dependency data for the target language, but instead
the output of a dependency parser induced for the target language based only on a POS-tagged monolin-
gual corpus in the target language (and gold-standard data in the source language). We found the method
to produce above-baseline results for the majority of languages tested, and that for the false positives
associated with higher token frequencies, many of the associated tokens were actually true instances of
MWEs (with the wrong dependency relation).
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