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Abstract

We present a dependency to constituent tree conversion technique that aims to improve con-
stituent parsing accuracies by leveraging dependency treebanks available in a wide variety in
many languages. The technique works in two steps. First, a partial constituent tree is derived
from a dependency tree with a very simple deterministic algorithm that is both language and de-
pendency type independent. Second, a complete high accuracy constituent tree is derived with a
constraint-based parser, which uses the partial constituent tree as external constraints. Evaluated
on Section 22 of the WSJ Treebank, the technique achieves the state-of-the-art conversion F-
score 95.6. When applied to English Universal Dependency treebank and German CoNLL2006
treebank, the converted treebanks added to the human-annotated constituent parser training cor-
pus improve parsing F-scores significantly for both languages.

1 Introduction

State-of-the-art parsers require human annotation of a training corpus in a specific representation, e.g.
constituent structure in Penn Treebank (Charniak and Johnson, 2005; Petrov and Klein, 2007) or de-
pendency relations in a dependency treebank (Yamada and Matsumoto, 2003; McDonald et al., 2005) .
Creation of human-annotated treebanks, however, is knowledge and labor intensive and it is desired that
one can improve parsing performance by leveraging treebanks annotated in representations of a wide
variety.

While there have been quite a few papers on automatic conversion from dependency to constituent
trees and vice versa (Wang et al., 1994; Collins et al., 1999; Forst, 2003; de Marneffe et al., 2006; Jo-
hansson and Nugues, 2007; Xia et al., 2008; Hall and Nivre, 2008; Rambow, 2010; Wang and Zong,
2010; Zhang et al., 2013; Simkó et al., 2014; Kong et al., 2015) , very few papers address the issue
of whether or not the converted treebank actually improves the performance of the target parser when
added to the human-annotated gold treebanks for parser training. In addition, much of the work on de-
pendency to constituency conversion relies on dependency trees automatically derived from the Penn
Treebank (Marcus et al., 1993) via head rules and assumes that the head-modifier definitions are consis-
tent between the constituent and dependency trees (Xia et al., 2008). However, such techniques cannot
easily generalize to dependencies that diverge from the Penn Treebank in head-modifier definitions and
dependency labels, e.g. Universal Dependency (Nivre et al., 2015) in Figure 1(b), and the dependencies
of a wide variety available in CoNLL shared tasks.

In this paper, we propose a very simple dependency to constituent tree conversion technique which
is applicable to any languages and any dependencies, e.g. Universal Dependency (UD), CoNLL de-
pendencies (CoNLL), Stanford dependencies (Stanford), while achieving the state-of-the-art conversion
accuracy. The technique works in two steps. We first derive a partial constituent tree from a dependency
tree according to a simple deterministic algorithm without any external knowledge sources such as head
rules. The partial constituent tree retains the gold part-of-speech tags (POStags) and partial contituent
brackets inferred from the dependency tree (in Section 2). We then recover the complete constituent
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Figure 1: Penn Treebank Constituent Tree (a), Universal Dependency (b), CoNLL Dependency (c) and
Stanford Dependency (d) representations for Retailers see pitfalls in environmental push. The preposition
in is the head of push in the Penn Treebank, CoNLL and Stanford Dependency, whereas it is the modifier
of push in the Universal Dependency. None of the dependency labels overlap with the Penn Treebank
phrase labels. A dependency arrow goes from a head to its modifier.

structure and labels by a constraint-based parsing which uses the gold POStags and partial brackets as
parsing constraints (in Section 3).

Evaluated on WSJ-22 for conversion accuracy, the proposed technique achieves the labeled F-score of
95.62 for conversion from the Stanford (de Marneffe et al., 2006) basic dependency (in Section 4). When
applied to the English Universal Dependency (UD) treebank and German CoNLL2006 treebank, the con-
verted treebanks added to the human-annotated constituent parser training corpus improve the F-scores
of BerkeleyParser 1 (Petrov and Klein, 2007) and Maximum Entropy (MaxEnt) parsers significantly for
both languages (in Section 5). While most of the previous work applies dependency to constituent tree
conversion on the dependencies automatically derived from the Penn Treebank, the current work applies
the technique to human-annotated English UD treebank as well. The constituent parser performance
improvement due to the addition of converted treebanks is the first reported for English and German (in
Section 6).

Throughout the paper, we use the notation CTree for a constituent tree, DTree for a dependency tree
and UDTree for a universal dependency tree. We use the term ‘constituent’ and ‘phrase’ interchangeably.
Conversion and parsing accuracies are reported in labeled F-scores.

2 Dependency to Partial Constituent Tree Conversion

We first derive a partial constituent tree from the source dependency tree. The partial constituent tree
retains all of the human annotated part-of-speech tags and partial constituent brackets inferred from the
source dependencies. Figure 2 is the deterministic algorithm that derives a partial CTree from any given
DTree, where the dependency span of a word is a consecutive word sequence reachable from the word
by head modifier relations.

Note that the algorithm in Figure 2 does not require any external knowledge sources such as head rules
learned from the target CTrees. It applies to any DTrees that make a reasonable linguistic assumption on
head-modifier relations regardless of languages and dependency types. This simplicity sets the current
proposal apart from all of the previous proposals that rely on linguistic rules, as in (Xia et al., 2008),
statistical model utilizing manually acquired head rules and the phrase labels of the target constituent
treebank, as in (Kong et al., 2015), or a scoring function that computes the similarity between the source
DTree and the nbest parsing output of the DTree sentences by the target constituent parser, as in (Niu et
al., 2009).

1https://github.com/slavpetrov/berkeleyparser
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input: DTree (labeled or unlabeled) with n input words
output: Unlabeled CTree with gold POStags and partial constituent brackets
Step 1: Identify the dependency span Di of each word wi
if the word wi does not have any dependent then

Di is length 1, containing only wi itself;
else

Di subsumes all of its dependents recursively;
Step 2: Convert a dependency span Di to a constituent Ci
Vertex of Ci dominates the immediate dependents of the head word and the head word itself.

Step 3: Remove all constituent brackets containing only one word.

Figure 2: DTree to unlabeled partial CTree Conversion Algorithm
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Figure 3: Partial CTrees derived from the DTrees in Figure 1 according to the algorithm in Figure 2

The UDTree in Figure 1(b) is converted to the partial CTree in Figure 3(a) and the DTrees in Figure 1(c,
d) are converted to the partial CTree in Figure 3(b) according to the algorithm in Figure 2. The head word
of each constituent is in bold-face. Similarity of the head-modifier definitions between the target CTree
and the source DTree is reflected on the partial CTrees. The partial CTree in Figure 3(a) derived from the
UDTree leaves more ambiguity within the prepositional phrase covered by in environmental push than
the one derived from CoNLL or Stanford DTrees. Similarity between a given DTree representation and
the Penn Treebank CTree is reflected on the conversion accuracy reported in Section 4.

3 Constraint-based Maximum Entropy Parsing

To derive the fully specified labeled CTree from a partial CTree, we parse the input sentence with a
constraint-based constituent parser that utilizes the gold POStags and partial brackets as model external
constraints.

We implement the constraint-based parsing algorithm on the maximum entropy parser of (Ratna-
parkhi, 1997; Ratnaparkhi, 1999), which works robustly regardless of the grammar coverage of the
baseline parsing model and therefore well-suited for constraint-based parsing of partial CTrees derived
from out-of-domain as well as in-domain DTrees.

3.1 Baseline Maximum Entropy Parser

The baseline MaxEnt parser takes one of the four actions to parse an input sentence: tag , chunk , extend
and reduce. Four models corresponding to each action are built separately during training.

The model score in (1) is integrated into the parser scoring function (2). In (1) and (2), ai is an action
from tag, chunk, extend or reduce, and bi is the context for ai.

q(ai|bi) = pai(ai|bi) (1)
score(T ) =

∏
ai∈deriv(T )

q(ai|bi) (2)

deriv(T) in (2) is the derivation of a parse T, which may not be complete. Given the scoring function
(2), a beam search heuristic attempts to find the best parse T ∗, defined in (3) where trees(S) are all the
complete parses for an input sentence S.
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input: Input sentence with partial CTree
output: Complete labeled CTree
Parser Initialization;
M = 20 & K = 80 & Q = 0.95;
C = ¡empty heap¿ h0 = ¡input sentence¿;

while —C— ¡ M do
if (∀i , hi is empty) then

break
else

i = max {i — hi is non-empty};
sz = min (K, |hi|) ;
for j = 1 to sz do

if ∃ hc then
dc=advance(extract (hc))

else
d1dp = advance( extract (hi),
Q )

for q = 1 to p do
if completed (dq) then

insert (dq , C)
else

insert (dq , hi+1)

Figure 4: Constraint-based parsing algorithm

Constraints WSJ-22 BOLT-DF
Baseline w/o constraints 88.57 82.43
Gold POStag 89.50 85.09
Gold bracket 98.52 96.88
Gold POStag+bracket 98.74 98.02

Table 1: Impact of model external constraints on
parsing F-scores. The constraints Gold POStag,
Gold bracket denote the POStags and constituent
brackets read off from the human annotated gold
CTrees. Combination of gold brackets and gold la-
bels are equivalent to gold CTrees.

T ∗ = arg max
T∈trees(S)

score(T ) (3)

The parser explores the top K scoring parses and terminates when M complete parses are found or all
hypotheses are exhausted. Possible actions a1an on a derivation are sorted according to the model score
q(ai|bi). Only the actions a1am with the highest probabilities are considered.

3.2 Constraint-based Maximum Entropy Parsing

In constraint-based parsing, the parser actions are based not only on the trained model scores but also on
external constraints, which aim to improve the parsing qualities not achievable by parsing models alone.

The model external constraints include gold (i.e. human annotated) POStags, gold constituent brackets
and/or gold labels. We enforce the parser to choose the gold tags, gold constituent brackets and labels
over those selections made by the parsing model scores. When gold tags are provided as constraints,
the tag action accepts the gold tag as the output. When gold constituent brackets (and labels) are given,
the parser chunk, extend and reduce actions accept the gold constituent spans and their labels over the
highest scoring model hypotheses. Figure 4 shows the constraint-based parsing algorithm.

The parameters M , K are described in Section 3.1. C denotes the heap of completed parses. hi

contains the derivations of length i. hc contains the derivation with a constraint. Q is the probability
pruning threshold. Advance applies relevant actions to a derivation d and returns a list of new derivations
d1dn . If there is a model external constraint for an action, it returns the derivation with the constraint
dc. Otherwise, it returns the derivations with the highest probabilities until the probability mass of the
actions is greater than the threshold Q. Insert inserts a derivation d in heap h. Extract returns a derivation
in h. Completed returns true if and only if d is a complete derivation.

Applying the constraint-based parsing algorithm in Figure 4 to the input sentence Retailers see pitfalls
in environmental push with the partial CTrees in Figure 3 as the constraints, the parser produces the
labeled CTree in Figure 1(a). Impact of model external constraints on parsing F-scores is shown in
Table 1. The constraints Gold POStag, Gold bracket denote the POStags and constituent brackets read
off from the human annotated gold CTrees. Combination of gold brackets and gold labels are equivalent
to gold CTrees. Note that gold constituent brackets alone lead to very high F-scores for WSJ-22, 98.52
and BOLT-DF, 96.88. Our proposal capitalizes on the effectiveness of human annotated gold POStags
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Techniques Dependencies F-score
(Xia et al., 2008) CoNLL 89.4
(Niu et al., 2009) Unlabeled 93.8
Current 2-stage CoNLL 95.5
Current 2-stage Stanford-v1.6.8 95.6

Table 2: DTree to CTree conversion F-scores
on WSJ-22

Dependencies DevSet EvalSet
Stanford-v1.6.8 92.88 92.06
CoNLL 92.50 91.74
Universal Dependency 91.22 90.48

Table 3: DTree to CTree conversion F-scores on
EWT according to various dependencies

and constituent brackets on parsing even when they are provided only partially, and utilize the partial
CTrees derived from human annotated DTrees to recover the complete CTrees.

4 Conversion Accuracy

To compare the performance of the current conversion technique (Current 2-stage) with the previous
work, all of which use the DTrees automatically derived from the Penn Treebank as the source depen-
dency, we show the conversion accuracy on WSJ-22 in Table 2. The proposed 2-stage technique achieves
the state-of-the-art conversion F-score 95.6 without relying on language and/or target treebank specific
head rules. The constraint-based MaxEnt parser is trained on WSJ02-21.2

We also show the conversion accuracy of the current technique on English Web Treebank (EWT,
LDC2012T13) from three types of dependencies in Table 3: Stanford basic dependency converted from
the Penn Treebank by Stanford parser v1.6.8, CoNLL dependency converted from the Penn Treebank by
pennconverter.jar3, and human-annotated UD of (Nivre et al., 2015)4. MaxEnt parser for the constraint-
based parsing is trained on English Ontonotes-5 treebank. The EWT train/development/evaluation data
partitions are the same as those available from the UD.5 Conversion F-scores are computed with evalb,
excluding punctuations.

5 Parsing Experimental Results

Our ultimate goal is to improve constituent parsing accuracy by leveraging dependency treebanks avail-
able in a wide variety. To achieve this objective, we first convert dependency treebanks into constituent
representations using the proposed conversion technique. Then we merge the converted treebanks with
the human-annotated constituent treebank to enlarge the training set of constituent parser. We finally
re-train the constituent parsers with the enlarged training set. We report the parsing experimental results
for English and German.

English parser training and evaluation data sets from Ontonotes-5 (LDC2013T19) and EWT are shown
in Table 4. Ontonotes-5 is the biggest constituent treebank available in English and includes sub-corpora
from 7 genres. German parser training and evaluation data sets are shown in Table 5.

We experiment with two constituent parsers. The MaxEnt parser which we adapted for the constraint-
based parsing and the BerkeleyParser. We measure the labeled F-scores including punctuations so that all
sentences are scored correctly even when there is a mismatch of punctuation tags between the reference
and machine parses.6

5.1 English Results
We train the baseline parser on the Ontonotes-5 training corpus only (Baseline in Tables 6 and 7).
UD treebank corresponding to the training portion of EWT is converted to CTrees, using the proposed
conversion technique with the constraint-based MaxEnt parser, and the converted treebank is added to
the Ontotnotes-5 treebank for parser training (+Converted in Tables 6 and 7). We also train parsers on
both Ontonotes-5 treebank and the EWT training corpus (+Gold in Tables 6 and 7).

2 (Niu et al., 2009) automatically derive their dependencies from the Penn Trees using head percolation table.
3Downloaded from http://nlp.cs.lth.se/coftware/treebank-converter
4v1.1 downloaded from http://universaldependencies.org
5The gold stanford English UD was built over the source material of the EWT. That is, UD and EWT are parallel.
6Ontonotes-5 and EWT are quite noisy and quite a few sentences contain punctuation tag mismatches.
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Training Data Development Data Evaluation Data
Genre sent # token # sent # token # sent # token #
WB ˜14k ˜323k 800 ˜18k 800 ˜18k
MZ ˜6.7k ˜159k 800 ˜19k 800 ˜19k
NW ˜42k ˜1m 800 ˜20k 800 ˜19k
BN ˜12k ˜229k 800 ˜15k 800 ˜15k
BC ˜15k ˜221k 800 ˜12k 800 ˜12k
TC ˜14k ˜109k 800 ˜6.2k 800 ˜6k
PT ˜24k ˜326k 800 ˜11k 800 ˜11k
EWT ˜125k ˜205k 2,002 ˜25k 2,077 ˜25k

Table 4: English Ontonotes (WB, MZ, NW, BN, BC, TC, PT)
and English Web Treebank (EWT) data partition into baseline
parser train (Ontonotes), converted train (EWT), development
and evaluation data sets

Data Sets sent # token #
Baseline train ˜18.5k ˜332k
Converted train ˜18.5k ˜328k
Development 1,061 ˜18.5k
Evaluation 1,060 ˜18k

Table 5: German Tiger Treebank
data partition into baseline parser
train, converted train, development
and evaluation data sets

Eval Set Baseline +Converted +Gold
EWT 79.30 80.78 82.22
WB 82.94 83.50 83.67
MZ 85.01 85.64 85.96
NW 86.82 87.01 87.35
BN 87.25 87.31 87.43
BC 82.21 81.72 82.14
TC 81.45 81.41 81.23
PT 94.72 94.78 95.11

Table 6: English MaxEnt parser F-scores

Eval Set Baseline +Converted +Gold
EWT 78.34 79.12 80.21
WB 83.48 82.94 83.15
MZ 86.10 86.48 86.35
NW 86.17 86.46 86.64
BN 85.49 85.73 86.31
BC 81.67 81.34 81.64
TC 77.40 76.65 76.12
PT 91.92 91.79 91.91

Table 7: English BerkeleyParser F-scores

For both MaxEnt and Berkeley parsers, addition of the converted treebank improves the F-scores of
the EWT evaluation data much more than other evaluation data sets from the Ontnotes-5 treebank, as
expected. The converted treebank also improves the F-scores of WB, MZ, NW, BN and PT for the
MaxEnt parser and MZ, NW and BN for BerkeleyParser. Not surprisingly, addition of the gold EWT
improves the parser performance more than addition of the converted treebank. When the addition of
the converted treebank hurts the parser performance, we see that the same downward pattern holds even
with the addition of the gold EWT, as indicated by italics in Tables 6 and 7.

5.2 German Results

Tiger constituent treebank has the corresponding CoNLL2006 dependency treebank. We split the Tiger
treebank training data into two parts, one for the baseline constituent parser training, and the other for
conversion from the CoNLL dependency treebank. Experimental results are shown in Table 8. We
observe the same pattern of improvement as English in a bigger margin.

6 Related Work and Conclusions

In the famility of DTree to CTree conversion technique, the current work is closest in spirit to (Niu et al.,
2009). They generate N-best parses of the dependency treebank sentences using the constituent parser
and compare the similarity between N-best constituent parses and the source dependencies by converting
the N-best parses back to dependencies. They show that addition of converted Chinese dependency
treebank to CTB, (Xue et al., 2005), improves the Chinese constituent parsing accuracy modestly. (Xia

parser
training data Baseline + Converted Treebank + Gold Treebank

MaxEnt parser 75.74 76.88 78.01
BerkeleyParser 71.88 73.42 76.12

Table 8: Contituent parsing improvement due to the DTree-to-CTree converted treebank and the gold
constituent treebank
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et al., 2008) propose a rule-based DTree to CTree conversion technique, assuming that the input DTree
is identical to a flattened version of the desired CTree. They decompose the input DTree into multiple
DTree segments, replacing each segment with the CTree counterparts and glue the CTree segments to
form a complete CTree. The idea of utilizing dependency boundaries as constraints on constituent parsing
has been explored in (Wang and Zong, 2010).

In the family of bi-directional conversion between CTrees and DTrees, (Hall and Nivre, 2008) present
a dependency driven parser that parses both dependency and constituent structures. They automatically
transform constituent representations into complex dependency representations so that they can recover
the constituent structure. (Kong et al., 2015) propose a statistical model to transform DTrees into CTrees.
They first convert CTrees to DTrees, which encode the rich head-modifier and phrase label information
from the CTrees.7 They train a statistical model to restore the CTrees from the feature-rich DTrees.
While they report their DTree to CTree conversion accuracy on WSJ-22, their accuracy is not directly
comparable to those we report in Tables 2 and 3 since their DTrees encodes head-modifier relations
and phrase labels read off from the corresponding gold CTrees. (Fernández-Golzález and Martins,
2015) derive head-ordered DTrees from CTrees, train an off-the-shelf dependency parser on the DTrees,
and recover the constituent information from the head-ordered DTrees. These bi-directional techniques
practically reduce constituent parsing to dependency parsing and are applied to DTrees that encode the
same complex information as the corresponding CTrees in order to easily recover the phrase structures.

We presented a simple DTree to CTree conversion technique that aims to improve constituent parsing
accuracies by leveraging dependency treebanks available in a wide variety in many languages. Evaluated
on WSJ-22, the technique achieves the state-of-the-art conversion F-score 95.6. When applied to English
and German, the converted treebanks added to the constituent parser training corpus improve parsing F-
scores significantly for both languages.
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