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Abstract

Grammar induction is the task of learning syntactic structure in a setting where that structure is
hidden. Grammar induction from words alone is interesting because it is similiar to the problem
that a child learning a language faces. Previous work has typically assumed richer but cognitively
implausible input, such as POS tag annotated data, which makes that work less relevant to human
language acquisition. We show that grammar induction from words alone is in fact feasible
when the model is provided with sufficient training data, and present two new streaming or
mini-batch algorithms for PCFG inference that can learn from millions of words of training
data. We compare the performance of these algorithms to a batch algorithm that learns from less
data. The minibatch algorithms outperform the batch algorithm, showing that cheap inference
with more data is better than intensive inference with less data. Additionally, we show that the
harmonic initialiser, which previous work identified as essential when learning from small POS-
tag annotated corpora (Klein and Manning, 2004), is not superior to a uniform initialisation.

1 Introduction

How children acquire the syntax of the languages they ultimately speak is a deep scientific question of
fundamental importance to linguistics and cognitive science (Chomsky, 1986). The natural language pro-
cessing task of grammar induction in principle should provide models for how children do this. However,
previous work on grammar induction has learned from small datasets, and has dealt with the resulting
data sparsity by modifying the input and using careful search heuristics. While these techniques are use-
ful from an engineering perspective, they make the models less relevant to human language acquisition.

In this paper, we use scalable algorithms for Probabilistic Context Free Grammar (PCFG) inference
to perform grammar induction from millions of words of speech transcripts, and show that grammar
induction from words alone is both feasible and insensitive to initialization. To ensure the robustness of
our results, we use two algorithms for Variational Bayesian PCFG inference, and adapt two algorithms
that have been proposed for Latent Dirichlet Allocation (LDA) topic models. Most importantly, we find
that the three algorithms that scale to large datasets improve steadily over training to about the same
predictive probability and parsing performance.

Moreover, while grammar induction from small datasets of POS-tagged newswire text fails without
careful ‘harmonic’ initialization, we find that initialization is much less important when learning directly
from larger datasets consisting of words alone. Of the algorithms in this paper, one does 2.5% better with
harmonic initialization, another does 5% worse, and the other two are insensitive to initialization.

The rest of the paper is organized as follows. In Section 2, we discuss previous grammar induction
research, in Section 3 we present the particular model grammar we will use, in Section 4 we describe the
inference algorithms, and in Section 5 we present our experimental results.

This work is licenced under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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2 Background

Previous grammar induction work has used datasets with at most 50, 000 sentences. Fully-lexicalized
models would struggle with data sparsity on such small datasets, so previous work has assumed input
in either the form of part-of-speech (POS) tags (Klein and Manning, 2004; Headden III et al., 2009) or
word representations trained on a large external corpus (Spitkovsky et al., 2011; Le and Zuidema, 2015).

Some previous work has moved towards learning from word strings directly. Bisk and Hockenmaier
(2013) used combinatory categorial grammar (CCG) to learn syntactic dependencies from word strings.
However, they initialise their model by annotating nouns, verbs, and conjunctions in the training set with
atomic CCG categories using a dictionary, and so do not learn from words alone. Pate and Goldwater
(2013) learned syntactic dependencies from word strings alone, but used sentences from the Switchboard
corpus of telephone speech that had been selected for prosodic annotation and so were unusually fluent.

Kim and Mooney (2010), Börschinger et al. (2011), and Kwiatkowski et al. (2012), learned from word
strings together with logical form representations of sentence meanings. While children have situational
cues to sentence meaning, these cues are ambiguous, and it is difficult to represent these cues in a way that
is not biased towards the actual sentences under consideration. We focus on the evidence for syntactic
structure that can be obtained from word strings themselves.

Grammar induction directly from word strings is interesting for two reasons. First, this problem setting
more closely matches the language acquisition task faced by an infant, who will not have access to
POS tags or a corpus external to her experience. Second, this setting allows us to attribute behavior of
grammar induction systems to the underlying model itself, rather than additional annotations made to the
input. Approaches to grammar induction that involve replacing words with POS tags or other lexical or
syntactic observed labels make the process significantly more difficult to understand or compare across
genres or languages, as the results will depend on exactly how these labels are assigned. Models that
only require words alone as input do not suffer from this weakness.

3 PCFGs and the Dependency Model with Valence

3.1 Probabilistic Context Free Grammars

A Probabilistic Context Free Grammar is a tuple (W ,N , S,R,θ), whereW andN are sets of terminal
and non-terminal symbols, S ∈ N is a distinguished start symbol, and R is a set of production rules.
θ is a vector of multinomial parameters of length |R| indexed by production rules A → β, so θA→β
is the probability of the production A → β. We use RA to denote all rules with left-hand side A, and
use θA to denote the subvector of θ indexed by the rules in RA. We require for all rules, θA→β ≥ 0,
and for all A ∈ N ,

∑
A→β∈RA θA→β = 1, and use ∆ to denote the probability simplex satisfying these

constraints. The yield y(t) of a tree t is the string of terminals of t, and the yield of a vector of trees
T = (t1, . . . , t|T |) is the vector of yields of each tree: y(T ) = (y(t1), . . . , y(t|T |)). The probability of
generating a tree t given parameters θ is:

PG(t|θ) =
∏

A→β∈R
θf(t,A→β)
r

where f(t, A→ β) is the number of times rule A→ β is used in the derivation of t.
To model uncertainty in the parameters, we draw the parameters of each multinomial θA from a

prior distribution P (θA|αA), where the vector of hyperparameters αA defines the shape of this prior
distribution (and α is just the concatenation of each αA). The joint probability of a vector of trees T
with one tree ti for each sentence si, and parameters θ is then:

P (T ,θ|α) = P (T |θ)P (θ|α) =
∏

A→β∈R
θ
f(T ,A→β)
A→β

[ ∏
A∈N

P (θA|αA)

]

where f(T , r) is the number of times rule r is used in the derivation of the trees in T .
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Dirichlet priors for these multinomials are both standard and convenient:

PD(θA|αA) =
Γ
(∑

A→β∈RA αA→β
)

∏
A→β∈RA Γ(αA→β)

∏
A→β∈RA

θ
αA→β−1
A→β

where the Gamma function Γ generalizes the factorial function from integers to real numbers. Dirichlet
distributions are convenient priors because they are conjugate to multinomial distributions: the product
of a Dirichlet distribution and a multinomial distribution is itself a Dirichlet distribution:

P (T ,θ|α) = PG(T |θ)PD(θ|α) ∝
∏

A→β∈R
θ
f(T ,A→β)+αA→β−1
A→β (1)

For grammar induction, we observe only the corpus of sentences C, and modify Equation 1 to
marginalize over trees and rule probabilities.

P (C|α) =
∑

T :y(T )=C

∫
∆
P (T ,θ|α)dθ (2)

This sum over trees introduces dependencies that make exact inference intractable.
We assessed grammar induction from words alone using the Dependency Model with Valence (DMV)

(Klein and Manning, 2004). In the original presentation, it first draws the root of the sentence from aProot

distribution over words, and then generates the dependents of head h in each direction dir ∈ {←,→}
in a recursive two-step process. First, it decides whether to stop generating (a Stop decision) according
to Pstop(·|h, dir , v), where v indicates whether or not h has any dependents in the direction of dir . If
it does not stop (a ¬Stop decision), it draws the dependent word d from Pchoose(d|h, dir). Generation
ceases when all words stop in both directions.

Johnson (2007) and Headden III et al. (2009) reformulated this generative process as a split-head
bilexical PCFG (Eisner and Satta, 2001) so that the rule probabilities are DMV parameters. Such a
PCFG represents each token of the string with two ‘directed’ terminals that handle leftward and rightward
decisions independently, and defines rules and non-terminal symbols schematically in terms of terminals.
Minimally, we need rightward-looking Rw, leftward-looking Lw, and undirected Yw non-terminal labels
for each word w. The grammar has a rule for each dependent word d of a head word h from the left
(Lh → Yd Lh) and from the right (Rh → Rh Yd), a rule for each a word w to be the sentence root
(S → Yw), and a rule for each undirected symbol to split into directed symbols (Yw → Lw Rw).

To incorporate Stop decisions into the grammar, we distinguished non-terminals that dominate a Stop
decision from those that dominate a Choose decision by decorating Choose non-terminals with ′ (so a
left attachment rule is L′h → Yd Lh), and introduced unary rules that rewrite to terminals (Lh → hl) for
Stop decisions, and to Choose non-terminals (Lh → L′h) for ¬Stop decisions. We implemented valence
with a superscript decoration on each non-terminal label: L0

h indicates h has no dependents to the left,
and Lh indicates that h has at least one dependent to the left. Figure 1 presents PCFG rule schemas
with their DMV parameters, and dependency and split-head PCFG trees for “dogs bark.” We use several
inference algorithms to learn production weights for this PCFG, and study how the parsing accuracy
varies with algorithm and computational effort.

4 Inference1

One central challenge of learning from words alone is data sparsity. Data sparsity is most naturally
addressed by learning from large amounts of data, which is easily available when learning from words
alone, so we use algorithms that scale to large datasets. To ensure that our system reflects the underlying
relationship between the model and the data, we explore three such algorithms. These algorithms are ex-
tensions of the batch algorithm for variational Bayesian (batch VB) inference of PCFGs due to Kurihara

1Implementations and pre-processing software are available at http://github.com/jkpate/streamingDMV
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PCFG Rule DMV parameter
S → Yh Proot(h)
Yh → L0

h R0
h 1

L0
h → hl Pstop(Stop|h,←, no dep)

L0
h → L

′
h Pstop(¬Stop|h,←, no dep)

L
′
h → Yd Lh Pchoose(d|h,←)

Lh → hl Pstop(Stop|h,←, one dep)
Lh → L

′
h Pstop(¬Stop|h,←, one dep)

(a) Split-head rule schemas and corresponding probabilities for
the DMV. The rules expanding L0

h and Lh symbols encode
Stop decisions with no dependents and at least one dependent,
respectively, and the the rules expanding L′h symbols encode
Choose decisions.

S

Ybark

L0
bark

L
′
bark

Ydogs

L0
dogs

dogs l

R0
dogs

dogsr

Lbark

bark l

R0
bark

bark r

(b) Tree for “dogs bark” using the grammar in Figure 1a.

dogs bark

ROOT

(c) Example dependency tree with one root and left arc.

Figure 1: The DMV as a PCFG, and dependency and split-head bilexical CFG trees for “dogs bark.”

and Sato (2004), so we first review batch VB. Inspired by the reduction of LDA inference to PCFG in-
ference presented in Johnson (2010), we then develop new streaming on-line PCFG inference algorithms
by generalising the streaming VB (Broderick et al., 2013) and stochastic VB (Hoffman et al., 2010) al-
gorithms for Latent Dirichlet Allocation (LDA) to PCFG inference. We finally review the collapsed VB
algorithm due to Wang and Blunsom (2013) for PCFGs that we compare to the other algorithms.

Figure 2 summarizes the four algorithms for PCFG inference.

4.1 Batch VB

Kurihara and Sato’s (2004) batch algorithm for variational Bayesian inference approximates the pos-
terior P (T ,θ|C,α) by maximizing a lower bound on the log marginal likelihood of the observations
lnP (C|α). This lower bound L involves a variational distribution Q(T ,θ) over unobserved variables
T and θ. By Jensen’s inequality, for any distribution Q(T ,θ), we have:

lnP (C|α) = ln
∑
T

∫
Q(T ,θ)

P (C,T ,θ|α)
Q(T ,θ)

dθ ≥
∑
T

∫
Q(T ,θ) ln

P (C,T ,θ|α)
Q(T ,θ)

dθ = L

lnP (C|α)−L is the Kullback-Leibler divergence KL (Q(T ,θ)||P (T ,θ|C,α)). Variational inference
adjusts the parameters of the variational distribution to maximizeL, which minimizes the KL divergence.

VB makes inference tractable by factorizing the variational posterior. The mean-field factorization
assumes parameters and trees are independent: Q(T ,θ) = Qθ(θ)

∏|T |
i=1QT (ti). Kurihara and Sato

showed that Qθ(θ) is also a product of Dirichlet distributions, whose hyperparameters α̂A are a sum of
the prior hyperparameters αA→β and the expected count of A→ β across the corpus under QT :

α̂A→β = αA→β +
|C|∑
i=1

f̂(si, A→ β)

f̂(s,A→ β) = EQT
[f(t, A→ β)]

f(t, A→ β) is the number of times rule A → β is used in the derivation of tree t. f̂(si, A→ β) is the
expected number of times A→ β is used in the derivation of sentence si, and can be computed using the
Inside Outside algorithm (Lari and Young, 1990). Batch VB alternates between optimizing Qθ, using
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expected counts, and QT , using the hyperparameters α̂ of Qθ to compute probability-like ratios πA→β:

QT (t) =
∏

A→β∈R
π
f(t,A→β)
A→β πA→β =

exp (Ψ (α̂A→β))

exp
(

Ψ
(∑

A→β′∈RA α̂A→β′
))

where the digamma function Ψ(·) is the derivative of the log Gamma function. Algorithm 1 presents the
full algorithm.

4.2 Scalable VB algorithms
Batch VB requires a complete parse of the training data before parameter updates, which is computation-
ally intensive. We explore three algorithms that divide the data into minibatchesC =

{
C(1), . . . ,C(n)

}
and update parameters after parsing each minibatch.

Streaming VB: Broderick et al. (2013) proposed a ‘streaming VB’ algorithm for LDA that approxi-
mates Bayesian Belief Updates (BBU) to make a single pass through the training data. A BBU uses the
current posterior as a prior to compute the next posterior without reanalyzing previous minibatches:

P
(
θ|C(1), . . . ,C(n)

)
∝ P

(
C(n)|θ

)
P
(
θ|C(1), . . . ,C(n−1)

)
However, the normalization constant involves an intractable marginalization. Broderick et al. suggested
approximating each posterior with some algorithmA that computes an approximate posteriorQ(n) given
a minibatch C(n) and the previous posterior Q(n−1):

P
(
θ|C(1), . . . ,C(n)

)
≈ Q(n)(θ) = A

(
C(n), Q(n−1)(θ)

)
where Q(0) is the true prior. By using a mean-field VB algorithm for LDA inference for A, they ap-
proximate each subsequent Q(n) as a product of Dirichlets, whose hyperparameters are a running sum of
expected counts from previous minibatches and prior hyperparameters. We used the batch VB algorithm
for A to generalise this algorithm to PCFG inference. Algorithm 2 presents the full algorithm.

Stochastic VB: Hoffman et al. (2010) proposed a ‘stochastic VB’ algorithm for LDA that uses each
minibatch to compute the maximum of an estimate of the natural gradient of L. This maximum is
obtained by computing expected counts for C(i), and scaling the counts as though they were gathered
from the full dataset. The new hyperparameters are obtained by taking a step toward the maximum:

α
(en+i)
A→β = (1− η)α(en+i−1)

A→β + ηl
(i)
A→β f̂

(en+i) (A→ β)

where η is the step size, f̂ (en+i) (A→ β) is the expected count of rule A → β in minibatch i of epoch
e, and l(i)A→β is the scaling term for rule A → β. In their LDA inference procedure, each word has one
topic, so the scaling term is the number of words in the full dataset divided by the number of words
in the minibatch. For the DMV, a string s with |s| terminals has one root, |s| − 1 choose rules, and
2|s|+ (|s| − 1) stop decisions (two Stops and one ¬Stop rule for each arc). The scaling terms are then:

root rules choose rules stop rules

l
(i)
S→Yh = |C|

|C(i)| l
(i)
A→β =

∑|C|
j=1 |sj |−1∑|C(i)|

j′=1
|sj′ |−1

l
(i)
A→β =

∑|C|
j=1 2|sj |+|sj |−1∑|C(i)|

j′=1
2|sj′ |+|sj′ |−1

Collapsed VB: Teh et al. (2007) proposed, and Asuncion et al. (2009) simplified, a ‘collapsed VB’
algorithm for LDA that integrates out model parameters and so achieves a tighter lower bound on the
marginal likelihood. This algorithm cycled through the training set and optimized variational distribu-
tions over the topic assignment of each word given all the other words.

Wang and Blunsom (2013) generalized this algorithm to PCFGs. The variational distribution for each
sentence is parameterized by expected rule counts for that sentence, and they optimize each sentence-
specific distribution by cycling through the corpus and optimizing the distribution over trees for sentence
si using counts from all the other sentencesC(¬i). The exact optimization, marginalizing over rule prob-
abilities, is intractable, so they instead use the posterior mean. Algorithm 4 presents the full algorithm.
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Data: a corpus of strings C
Initialization: prior hyperparameters α

1 α̂(0) = α
2 for j = 1 to m do

3 πA→β =
exp
(

Ψ
(
α̂

(j−1)
A→β

))
exp
(

Ψ
(∑

A→β′∈RA α̂
(j−1)

A→β′
))

4 for i = 1 to |C| do
5 f̂ (j)(si, A→ β) =

Eπ [f(t, A→ β)]
6 end
7 α̂(j) = α+ f̂ (j)

8 end
output: α̂(m)

Algorithm 1: Batch VB. Here, α̂(j) are the pos-
terior counts after iteration j, which define rule
weights π for the next iteration.

Data: n minibatches
{
C(1), . . . ,C(n)

}
Initialization: prior hyperparameters α

1 α̂(0) = α
2 for i = 1 to n do
3 ∀A→ β ∈ R f̂ (0) (A→ β) = 0
4 for j = 1 to m do
5 πA→β =

exp(Ψ(f̂(C(i),A→β)+α̂A→β))
exp
(

Ψ
(∑

A→β′∈RA f̂(C
(i),A→β′)+α̂A→β′

))
6 f̂ (i,j) (A→ β) = Eπ [f(t, A→ β)]
7 end
8 α̂(i) = f̂ (i,m) + α̂(i−1)

9 end
output: α̂(n)

Algorithm 2: Streaming VB with m steps of
VB per minibatch. f̂ (j) (A→ β) is the ex-
pected count of ruleA→ β in the ith minibatch
after j iterations.

Data: n minibatches
{
C(1), . . . ,C(n)

}
Initialization: prior hyperparameters α,

step size schedule parameters
τ , κ, epoch count E

1 α̂(0) = α
2 for e = 0 to E − 1 do
3 for i = 1 to n do
4 πA→β =

exp
(

Ψ
(
α̂

(en+i−1)
A→β

))
exp
(

Ψ
(∑

A→β′∈RA α̂
(en+i−1)

A→β′
))

5 f̂ (en+i) (A→ β) =
Eπ [f(t, A→ β)]

6 η = (τ + i)−κ

7 for A→ β ∈ R do
8 α̂

(en+i)
A→β = (1− η) α̂(en+i−1)

A→β +

ηl
(i)
A→β f̂

(en+i) (A→ β)
9 end

10 end
11 end

output: α̂(n)

Algorithm 3: Stochastic VB. f̂ (en+i) (A→ β)
is the expected count of rule A→ β in the ith

minibatch in the eth epoch, and l(i)A→β is the scal-
ing parameter for rule A → β for the ith mini-
batch, as described in the text.

Data: n single-string minibatches{
C(1), . . . ,C(n)

}
Initialization: prior hyperparameters α,

epoch count E, initial
sentence-specific expected
counts f̂

1 α̂ = α+
∑n

i=1 f̂
(i)

2 for e = 0 to E − 1 do
3 for i = 1 to n do
4 α̂ = α̂− f̂ (i)

5 πA→β = α̂A→β∑
A→β′∈RA α̂A→β′

6 f̂ (i) (A→ β) = Eπ [f(t, A→ β)]
7 α̂ = α̂+ f̂ (i)

8 end
9 end

output: sentence-specific expected counts f̂ ,
global hyperparameters α̂

Algorithm 4: Collapsed VB. f̂ (i) (A→ β) is
the expected count of rule A→ β for the ith

sentence, and the global hyperparameters α̂ are
the sum of the expected counts for each sen-
tence and prior hyperparameters.

Figure 2: The four variational Bayes algorithms for PCFG inference that are evaluated in this paper.
Algorithm 1 is from Kurihara and Sato (2004), and Algorithm 4 is from Wang and Blunsom (2013). Al-
gorithms 2 and 3 are novel PCFG inference algorithms developed here that generalise the LDA inference
algorithms of Broderick et al. (2013) and Hoffman et al. (2010).
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train dev test

Sw
bd Words 363,902 24,015 23,872

Sentences 43,577 2,951 2,956

Fi
sh

erWords 5,576,173 – –
Sentences 664,346 – –

Table 1: Data set sizes. Fisher is only for training.

5 Experiments

We evaluate how millions of words of training data affects grammar induction from words alone by
examining learning curves. We ran each algorithm 5 times, each with a different random shuffle of the
training data on each run, and evaluated on the test set at logarithmically-spaced numbers of training
sentences. Stochastic, collapsed, and batch VB used more than one pass over the training corpus, while
streaming VB makes one pass over the training corpus. To obtain a consistent horizontal axis in our
learning curves, we plot learning curves as a function of computational effort, which we measure by the
number of sentences parsed, since almost all the computational effort of all the algorithms is in parsing.

Stochastic, collapsed, and streaming VB can learn from the full training corpus (although collapsed
VB requires more RAM – 60GB rather than 6GB for us – as it stores expected rule counts for each
sentence). Batch VB required about 50 iterations for convergence for large training sets, and so cannot
be applied to the full training set due to long training times. We used batch VB with training sets of up
to 100, 000 strings.

5.1 Hyperparameters and initialization

We use Dirichlet priors with symmetric hyperparameter α = 1 for all algorithms (preliminary experi-
ments showed that the algorithms are generally insensitive to hyper-parameter settings). We ran batch
VB until the log probability of the training set changed less than 0.001%. For stochastic VB, we used
κ = 0.9, τ = 1, and minibatches of 10,000 sentences. To investigate convergence and overfitting, we ran
stochastic and collapsed VB for 15 epochs of random orderings of the training corpus. For streaming VB,
the first minibatch had 10, 000 sentences, the rest had 1, and we used one iteration of VB per minibatch.

Klein and Manning (2004) showed that initialization strongly influences the quality of the induced
grammar when training from POS-tagged WSJ10 data, and they proposed a harmonic initialization pro-
cedure that puts more weight on rules that involve terminals that frequently appear close to each other
in the training data. We present results both for a uniform initialization, where the only counts initially
are the uninformative Dirichlet priors (plus, for collapsed VB, random sentence-specific counts), and a
harmonic initialization. For streaming VB, harmonic counts are gathered from each minibatch, and for
the others, harmonic counts are gathered from the entire training set.

5.2 Data

We present experiments on two corpora of words from spontaneous speech transcripts. Our first corpus is
drawn from the Switchboard portion of the Penn Treebank (Calhoun et al., 2010; Marcus et al., 1993). We
used the version produced by Honnibal and Johnson (2014), who used the Stanford dependency converter
to convert the constituency annotations to dependency annotations (Catherine de Marneffe et al., 2006).
We used Honnibal and Johnson’s train/dev/test partition, and ignored their second dev partition. We
discarded sentences shorter than four words from all partitions, as they tend to be formulaic backchannel
responses (Bell et al., 2009), and sentences with more than 15 words (long sentences did not improve
accuracy on the dev set).

We augmented the Switchboard training set with the Fisher corpus of telephone transcripts. We again
used only sentences with 4 to 15 words. Unlike the words-only evaluation of Pate and Goldwater (2013),
which used only the fluent sentences from Switchboard that had been prosodically annotated, both of
these corpora contain disfluencies. These corpora have a vocabulary of 40, 597 word types. The gram-
mars have one Root rule for each word type, four Stop rules (two directions x two Stop decisions) for

29



Harmonic Init Non-harmonic Init

0.20

0.25

0.30

0.35

0.40

-400000

-350000

-300000

D
irected

accuracy
L

og
probability

1e+02 1e+04 1e+06 1e+02 1e+04 1e+06
Computational effort (total number of sentences parsed)

Inference Batch VB Collapsed VB Stochastic VB Streaming VB

Figure 3: Directed accuracy (top) and predictive log probability (bottom) of test-set sentences from
Switchboard with 4-15 words. The horizontal axis is the number of sentences parsed (all algorithms
except streaming VB re-parse sentences multiple times). The left column presents inference with a
harmonic initialization, and the right column presents inference with a uniform initialization (and, for
collapsed VB, random sentence-specific counts). The black line is a uniform-branching baseline.

each word type, and 5, 381, 644 Choose rules. Table 1 presents data set sizes.

5.3 Evaluation measures

We evaluated all algorithms in terms of predictive log probability and directed attachment accuracy.
We computed the log probability of the evaluation set under posterior mean parameters, obtained by
normalizing counts. Directed accuracy is the proportion of arcs in the Viterbi parse that match the gold
standard, including the root. We also compared with a left-branching baseline, since it outperformed a
right-branching baseline. A left-branching (right-branching) baseline sets the last (first) word of each
sentence to be the root, and assigns each word to be the head of the word to its left (right). The left-
branching baseline on this dataset is about 0.29, while on the traditional wsj10 dataset of Klein and
Manning (2004) it is 0.336, suggesting our dataset, with longer sentences, is somewhat more difficult.

5.4 Results

The bottom row of Figure 3 presents the predictive log probability of the test set under the posterior mean
parameter vector as training proceeds. The figure contains one point per evaluation per run, and a loess-
smoothed curve for each inference type. We see among all algorithms that the log probability of the test
set constantly increases, regardless of initialization, with one exception. The sole exception is streaming
VB with harmonic initialization, where predictive log probability drops after the initial minibatch of
10,000 sentences. Streaming VB with harmonic init parses each sentence of the initial minibatch using
prior pseudocounts and harmonic counts. We will return to this drop when we discuss accuracy.

Batch VB learns more slowly (as a function of computational effort) than the online and minibatch
algorithms, but the online and minibatch algorithms all ultimately obtain similar performance. Collapsed
VB obtains the best predictive log probability, which, as it integrates out parameters and therefore has a
tighter bound, is to be expected (Teh et al., 2007). There is no clear advantage to the harmonic initial-
ization except early in training for streaming and stochastic VB, so it may be that earlier results showing
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the importance of harmonic initialisation reflect the small training data sets used in those experiments.
The top row of Figure 3 presents directed accuracy on the test set as training proceeds. As in the pre-

dictive probability evaluation, there is no clear advantage to a harmonic initialization across algorithms.
Batch VB and collapsed VB perform identically with both initializations, and streaming VB ultimately
does 5% better while stochastic VB does 2.5% worse. While streaming VB showed a drop in predictive
probability after the initial 10,000 sentence minibatch with harmonic initialization, it obtains a small but
sharp improvement in parse accuracy at the same point. These two results suggest that the harmonic
initialization, applied to words, captures regularities that are not syntactic but still explain data well.

The inference algorithms differ most obviously when they have parsed few sentences, indicating that
each algorithm’s bias is strongest in the face of small data. Streaming VB learns slowly initially because,
throughout the large initial minibatch, it gathers counts using only the uninformative prior or only the
uninformative prior plus harmonic counts. Collapsed VB, on the other hand, has sentence-specific counts
for the entire training corpus even in the random case. These counts provide a rough estimate of how
many opportunities there are for an arc to exist between each word in each direction at each valence,
and therefore provide a stronger starting point that takes more time to overcome. Finally, the good
performance of stochastic VB with small datasets, compared to streaming VB and batch VB, may reflect
the conservatism of only taking a step in the direction of the gradient rather than always maximizing.

Regardless of the details of the different algorithms’ performance, we see that they all steadily im-
prove or stabilize as inference proceeds over a large dataset, and that initialization is not important when
learning from large numbers of words.

6 Conclusion

Grammar induction from words alone has the potential to address important questions about how children
learn and represent linguistic structure, but previous work has struggled to learn from words alone in
a principled way. Our experiments show that grammar induction from words alone is feasible with
a simple and well-known model if the dataset is large enough, and that heuristic initialization is not
necessary (and may even interfere). Future computational work on child language acquisition should take
advantage of this finding by applying richer models of syntax to large datasets, and learning distributed
word representations jointly with syntactic structure.
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