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Abstract
With growing interest in the creation and search of linguistic annotations that form general graphs
(in contrast to formally simpler, rooted trees), there also is an increased need for infrastructures
that support the exploration of such representations, for example logical-form meaning represen-
tations or semantic dependency graphs. In this work, we lean heavily on semantic technologies
and in particular the data model of the Resource Description Framework (RDF) to represent,
store, and efficiently query very large collections of text annotated with graph-structured repre-
sentations of sentence meaning. Our full infrastructure is available under open-source licensing,
and through this system demonstration we hope to receive feedback on the general approach,
explore its application to additional types of meaning representation, and attract new users and
possibly co-developers.

1 Motivation: The Problem

Much work in the creation and use of language resources has focused on tree-shaped data structures,1

as are commonly used for the encoding of, for example, syntactic or discourse annotations. Conversely,
there has been less focus on supporting general graphs until recently, but there is growing interest in
graph-structured representations, for example to annotate and process natural language semantics. In
this work, we demonstrate how semantic technologies, and in particular the data model of the Resource
Description Framework (RDF) can be put to use for efficient indexing and search in (very) large-scale
collections of semantic graphs.

We develop a mapping to RDF graphs for a variety of semantic representations, ranging from un-
derspecified logical-form meaning representations to ‘pure’ bi-lexical semantic dependency graphs, as
exemplified in Figures 1 and 2 below, respectively. Against this uniform data model, we populate off-
the-shelf RDF triple stores with semantic networks comprising between tens of thousands and tens of
millions of analyzed sentences. To lower the technological barrier to exploration of our triple stores, we
implement a compact ‘designer’ query language for semantic graphs through on-the-fly expansion into
SPARQL. In sum, the combination of standard RDF technologies and specialized query and visualization
interfaces yields a versatile and highly scalable infrastructure for search (and in principle limited forms
of reasoning) over diverse types of graph-structured representations of sentence meaning.

In our view, there is little scientific innovation in this work, but our approach rather demonstrates sub-
stantial design and engineering creativity. Our semantic search infrastructure is built from the combina-
tion of industrial-grade standard technologies (Apache Jena, Lucene, and Tomcat) with an open-source
application for, among others, format conversion, query processing, and visualization implemented in
Java. Thus, the complete tool chain is available freely and across platforms. Its application to additional
types of meaning representation (and possibly other graph-structured layers of linguistic analysis) should
be relatively straightforward, and we thus believe that our infrastructure can be of immediate value to
both providers and consumers of large-scale linguistic annotations that transcend tree structures.

This work is licenced under a Creative Commons Attribution 4.0 International License; page numbers and the proceedings
footer are added by the organizers. http://creativecommons.org/licenses/by/4.0/

1Formally, trees are a restricted form of graphs, where every node is reachable from a distinguished root node by exactly
one directed path.
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〈 h1,
h4:_a_q(x6, h7, h5), h8:_similar_a_to(e9, x6), h8:comp(e11, e9, ), h8:_technique_n_1(x6),
h2:_almost_a_1(e12, h13), h14:_impossible_a_for(e3, h15, i16),
h17:_apply_v_to(e18, i19, x6, x20), h21:udef_q(x20, h22, h23), h24:_other_a_1(e25, x20), h24:_crop_n_1(x20),
h24:_such+as_p(e26, x20, x27), h40:implicit_conj(x27, x33, x38),
h31:udef_q(x33, h32, h34), h35:_cotton_n_1(x33), h46:_and_c(x38, x43, x47),
h41:udef_q(x43, h42, h44), h45:_soybean_u_unknown(x43), h48:udef_q(x47, h49, h50), h51:_rice_n_1(x47)

{ h49 =q h51, h42 =q h45, h32 =q h35, h22 =q h24, h15 =q h17, h13 =q h14, h7 =q h8, h1 =q h2 } 〉

Figure 1: Example logical form meaning representation (MRS; taken from DeepBank).

2 Technology: Core Components

Our system architecture comprises two core components, viz. (a) the RDF repository, a database storing
semantic networks in RDF triple form, and (b) the Web application, an interface for interactive search
and visualization over the RDF repository.

Representing Semantic Graphs in RDF The RDF data model is based on statements about resources
in the form of subject–predicate–object triples. The subject denotes the resource, and the predicate
denotes traits or aspects of the resource, thus expressing a relationship between the subject and the
object. A database that can store such expression and evaluate queries to them is called a triple store.

In Kouylekov and Oepen (2014), we describe the conversion of different types of semantic struc-
tures into RDF graphs. To date, we have addressed three types of meaning representations, viz. (in de-
creasing complexity) (a) scope-underspecified logical formulas in Minimal Recursion Semantics (MRS;
Copestake et al., 2005); (b) variable-free Elementary Dependency Structures (EDS; Oepen and Lønning,
2006); and (c) bi-lexical dependency graphs as used in Task 8 at SemEval 2014 on Broad-Coverage
Semantic Dependency Parsing (SDP; Oepen et al., 2014; Ivanova et al., 2012). For all three formats, we
draw on (a) gold-standard annotations from DeepBank (Flickinger et al., 2012), a re-annotation of the
venerable Penn Treebank WSJ Corpus (Marcus et al., 1993); and on (b) much larger collections of auto-
matically generated analyses over the full English Wikipedia from the WikiWoods Treecache (Flickinger
et al., 2010).

To store MRS, EDS, and SDP structures, we created small ontologies for each type of representation,
building on a common core of shared ontology elements. In a nutshell, the EDS and SDP ontologies
provide a generic representation of directed graphs with (potentially complex) node and edge labels;
the dependencies proper, i.e. labeled arcs of the graph, are encoded as RDF object properties. The
MRS ontology, on the other hand, distinguishes different types of nodes, corresponding to full predica-
tions vs. individual logical variables vs. hierarchically organized sub-properties of variables. Mapping
the (medium-complexity) EDS graphs from DeepBank and WikiWoods onto RDF, for example, yields
around 12 million and 4.3 billion triples, respectively (for the semantic dependencies of about 37 thou-
sand and 48 million sentences in the two resources).

Web Application The core of our Web application is a search engine that executes SPARQL queries
against the RDF repository. SPARQL is an RDF query language to search triple stores, allowing one to
retrieve and manipulate RDF data. It is fully standardized and considered one of the key technologies
of the Semantic Web. A SPARQL query can consist of triple patterns, conjunctions, disjunctions, and
optional filters and functions. The query processor searches for sets of triples that match the patterns
expressed in the query, binding variables in the query to the corresponding parts of each triple.

A similar technique is almost impossible to apply to other crops, such as cotton, soybeans and rice.
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Figure 2: Example bi-lexical semantic dependencies (SDP; taken from DeepBank).
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PREFIX sdp:<http://wesearch.delph-in.net/rdf/sdp#>
PREFIX dm:<http://wesearch.delph-in.net/rdf/sdp/dm#>
select ?graph
where {
GRAPH ?graph {
?101 sdp:form "quarterly"^^xsd:string .
?x dm:lemma "result"^^xsd:string .
{
?100 dm:pos "vbp"^^xsd:string
UNION ?100 dm:pos "vbg"^^xsd:string
UNION ...
}
?101 dm:arg1 ?x .
{
?100 dm:arg1 ?x UNION ?100 dm:arg2 ?x
UNION ?100 dm:arg3 ?x UNION ?100 dm:arg4
}
FILTER
((!bound(?101) || !bound(?100) || ?101 != ?100)
&& (!bound(?101) || !bound(?x) || ?101 != ?x)
&& (!bound(?100) || !bound(?x) || ?100 != ?x))

}
}
GROUP BY ?graph
ORDER BY ?graph

Figure 3: Core of the auto-generated SPARQL query corresponding to our running example.

Our infrastructure supports the definition of families of ‘meta’ query languages, to address semantic
structures in a form that is more compact and much better adapted to the specific target format than
SPARQL. An example of such a ‘designer’ language is the WeSearch Query Language (WQL), which
was used in the context of the SemEval 2014 SDP task.2 By way of informal introduction, consider the
following example query:

(1) /v*[ARG* x]
quarterly[ARG1 x]
x:+result

This example is comprised of three predications, one per line. The following characters have operator
status: ‘/’ (slash), ‘*’ (asterisk), ‘[’ and ‘]’ (left and right square bracket), ‘:’ (colon), and ‘+’ (plus
sign). This is a near-complete list of operator characters in WQL. Each predication can be composed of
(i) an identifier, followed by a colon if present; (ii) a form pattern; (iii) a lemma pattern, prefixed by a
plus sign, if present; (iv) a part-of-speech (PoS) pattern, prefixed by a slash, if present; and (v) a list of
arguments, enclosed in square brackets, if present. Patterns can make use of Lucene-style wildcards, with
the asterisk matching any number of characters, and a question mark (‘?’) to match a single character.

Thus, our example query searches for a verbal predicate (any PoS tag starting with ‘v’), that takes
any form of the lemma ‘result’ as its argument (in the range ARG1 . . . ARGn), where this argument is
further required to be the ARG1 of a node labeled ‘quaterly’.

The auto-generated SPARQL expression that corresponds to this example query is shown in Figure
3. The query generator replaces the wildcarded PoS pattern by the union of all matching tags (that start
with ‘v’, e.g. ‘?100 dm:pos "vbp" UNION ...’ Likewise, the underspecified argument relation
of this predication is replaced by the union of all possible argument types. Finally, the query processor
ensures a one-to-one correspondence between query elements and matching graph elements, i.e. multiple
distinct query components cannot match against the same target (graph component), or vice versa. This
is accomplished in SPARQL through the filter expressions towards the end of the generated query.

2See http://wesearch.delph-in.net/sdp/ for an on-line demonstration and additional documentation.
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Figure 4: Screenshot of the interactive search interface, querying (semantic) object control structures.

Figure 4 shows a screenshot from the SemEval SDP user interface, demonstrating how WQL facilitates
concise (and reasonably transparent) search for semantic ‘object’ control, i.e. a configuration involving
two predicates sharing an argument in a specific assignment of roles.

Within the capabilities of the SPARQL back-end, different dialects of the meta query language can be
implemented in a modular fashion, for example distinguishing different types of nodes and introducing
additional node properties, as in the more complex MRS universe. Our query front-end transforms ‘meta’
queries into equivalent SPARQL expressions, and the search interface allows users to inspect the result
of this transformation (and matching results), to possibly refine the search incrementally either at the
‘meta’ query layer or directly in SPARQL.

3 Demonstration: Indexing and Search

Our proposed interactive demonstration will seek to highlight (a) the flexibility of our infrastructure, i.e.
walk through a series of queries of increasing complexity against different target formats; (b) its scala-
bility, by comparing response times for different types of queries and different target formats over the
large DeepBank and the vast WikiWoods indexes; and (c) the ease of ‘behind the scenes’ functionality,
showing how additional semantic annotations in various formats can be ingested into the index. As part
of this latter aspect of the demonstration, we will optionally discuss how we apply string-level index-
ing (in Apache Lucene) and basic frequency statistics in query interpretation and optimization, which
jointly with parallelization over ‘striped’ RDF triple stores can yield greatly reduced response times for
common types of queries to the WikiWoods index. We envision that parts of the demonstration can be
organized in an audience-driven manner, for example taking as input the (possibly informal) charac-
terization of a semantic configuration, collectively transforming it into a query against our DeepBank
or WikiWoods stores, observing linguistic or technical properties of matching results, and refining the
search incrementally.

Our software infrastructure is entirely open-source and (increasingly) modularized and parameterized
to facilitate adaptation to additional types of annotation. Please see the project web page for licensing
and access information, as well as for pointers to a variety of existing on-line demonstrations:�



�
	http://wesearch.delph-in.net/
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