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Abstract

When assessing child language development, researchers have traditionally had to choose be-
tween easily computable metrics focused on superficial aspects of language, and more expressive
metrics that are carefully designed to cover specific syntactic structures and require substantial
and tedious labor. Recent work has shown that existing expressive metrics for child language
development can be automated and produce accurate results. We go a step further and pro-
pose that measurement of syntactic development can be performed automatically in a completely
data-driven way without the need for definition of language-specific inventories of grammatical
structures. As a crucial step in that direction, we show that four simple feature templates are
as expressive of language development as a carefully crafted standard inventory of grammatical
structures that is commonly used and has been validated empirically.

1 Introduction

Although child language has been the focus of much study, our understanding of first language acquisi-
tion is still limited. In attempts to measure child language development over time, several metrics have
been proposed. The most commonly used metric is Mean Length of Utterance, or MLU (Brown, 1973),
which is based on the number of morphemes per utterance. The main appeal of MLU is that it can be
easily computed automatically, given machine-readable transcripts. Although MLU values may not be
meaningful across languages, the general approach is suitable for analysis within different languages.
However, MLU’s ability to track language development from age four has been questioned (Klee and
Fitzgerald, 1985; Scarborough, 1990), and its usefulness is still the subject of debate (Rice et al., 2010).

Several metrics based on the usage of grammatical structure have been proposed as more sensitive to
changes in language over a wider range of ages (Scarborough, 1990; Lee and Canter, 1971; Fletcher and
Garman, 1988). These metrics continue to show score increases where MLU plateaus, but their increased
expressivity is typically associated with two severe drawbacks. The first is that their use for computa-
tion of language development scores involves identification of several specific grammatical structures in
child language transcripts, a process that requires linguistic expertise and is both time-consuming and
error-prone. This issue has been addressed by recent work that shows that current natural language pro-
cessing techniques can be applied to automate the computation of these metrics, removing the bottleneck
of manual labor (Sagae et al., 2005; Roark et al., 2007; Sahakian and Snyder, 2012). The second draw-
back is that these measures are language-specific, and development of a measure for a specific language
requires deep expertise and careful design of an inventory of grammatical structures that researchers be-
lieve to be indicative of language development. Going beyond previous work, which addressed the first
drawback of traditional metrics for child language development, we address the second, paving the way
for a language-independent methodology for tracking child language development that is as expressive
as current language-specific alternatives, but without the need for carefully constructed inventories of
grammatical structures.
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The specific hypothesis we address in this paper is whether a fully-data driven approach that uses only
a few simple feature templates applied to syntactic dependency trees can capture the same information as
the well-known Index of Productive Syntax, or IPSyn (Scarborough, 1990). In contrast to previous work
that showed that the computation of IPSyn scores can be performed automatically by encoding each of
the 60 language structures in a language-specific inventory (e.g. wh-questions with auxiliary inversion,
propositional complements, conjoined sentences) as complex patterns over parse trees, we propose that
child language development can instead be measured automatically in a way that is fully data-driven and
can be applied to many languages for which accurate dependency parsers are available, without relying
on carefully constructed lists of grammatical structures or complex syntactic patterns in each language.
Specifically, we examine two hypotheses: (1) counts of features extracted from syntactic parse trees
using only simple templates are at least as expressive of changes in language development as the Index
of Productive Syntax (Scarborough, 1990), an empirically validated metric based on an inventory of
grammatical structures derived from the child language literature; and (2) these parse tree features can
be used to model language development without the use of an inventory of specific structures, assuming
only the knowledge that in typically developing children the level of language development is correlated
with age. We emphasize that the goal of this work is not to develop yet one more way to compute IPSyn
scores automatically, but to show empirically that lists of grammatical structures such as those used to
compute IPSyn are not essential to measure syntactic development in children.

In this paper, we start by reviewing IPSyn and previous work on automatic IPSyn scoring based on
manually crafted syntactic patterns in section 2. Using a similar approach, we validate the language
development curves observed by Scarborough (1990) in the original IPSyn study. In section 3 we show
how IPSyn scores can be computed in an entirely different, fully data-driven way, using a support vector
regression. In section 4 we examine how this data-driven framework can be used to track language
development in the absence of a metric such as IPSyn, which allows for application of this approach to
languages other than English. We discuss related work in section 5, and conclude in section 6.

2 Index of Productive Syntax (IPSyn)

The Index of Productive Syntax (Scarborough, 1990) evaluates a child’s linguistic development by ana-
lyzing a transcript of utterances and awarding points when certain syntactic and morphological structures
are encountered. The end result is a number score ranging from 0 to 120, with a higher score correspond-
ing to the presence of more complex grammatical structures, and thus further linguistic development.
IPSyn was designed to be more sensitive to language changes after age 3 than the more common Mean
Length of Utterance (MLU) (Brown, 1973), which fails to account for the fact that children’s speech
increases in complexity even after utterances stop increasing in length.

IPSyn scores are calculated by analyzing a transcript of 100 utterances of a child’s speech, and award-
ing points to specific language structures encountered. There are 60 forms in total from four categories
of noun phrases, verb phrases, questions and negations, and sentence structures. Each form is awarded
0 points if not encountered, 1 point if found once in a transcript, and 2 points if found at least twice.
This sums to a total ranging between 0 and 120 points. Scarborough (1990) motivates the use of this
specific inventory of 60 forms by stating that they “have been shown to occur in preschool language
production in innumerable studies of language acquisition during the past 25 years,” highlighting that
the task of generating such an inventory and performing empirical validation for additional languages
requires considerable expertise and is far from trivial.

2.1 Automating IPSyn

In support of empirical testing of our first hypothesis–that features extracted from parse trees using only
simple feature templates are as expressive of child language development as the carefully constructed
inventory of grammatical structures in IPSyn–we first implemented an automated version of IPSyn fol-
lowing Sagae et al. (2005), who showed that this task can be performed nearly at the level of trained
human experts. This allows us to generate IPSyn scores for a large set of child language transcripts. Our
implementation differs from previous work mainly in that it uses only the tools provided in the CLAN
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software suite (MacWhinney, 2000), which were designed specifically for analysis of child language
transcripts, instead of the Charniak (2000) parser, which was used by Sagae et al. and later by Hassanali
et al. (2014) in a more recent implementation of the same general approach.

We evaluated our implementation using the set of 20 manually scored transcripts described by Sagae
et al. as Set A, and subsequently used to evaluate the implementation of Hassanali et al. Three transcripts
were used as development data, following Sagae et al. The mean absolute difference between manually
generated and automatically generated scores was 3.6, which is very similar to what has been reported
by Hassanali et al. and by Sagae et al. (3.05 and 3.7, respectively) for the same set of transcripts.
Given the possible score differences in manual scoring reported by Scarborough (1990) and the small
number of transcripts used for testing, the differences observed among the automatic systems are not
meaningful. In fact, in examining our development data, we found multiple errors in the manual coding,
causing point discrepancies when our system produced correct results. This highlights the difficulty of
performing this scoring task manually, and raises the question of whether automatic scoring has in fact
surpassed the reliability of manual scoring. That three different implementations of IPSyn appear to
perform comparably suggests this might be the case. We leave an empirical investigation of this question
to future work.

3 From automatic IPSyn to data-driven IPSyn

The fully automatic way of computing IPSyn scores described above in section 2.1, paired with a suffi-
ciently large amount of child language transcript data, gives us a way to test the hypothesis mentioned in
the beginning of section 2.1, that simple features of parse trees are as expressive as the hand-crafted IPSyn
language structure inventory. We did this by first creating several 100-utterance transcripts from existing
child language transcripts, then automatically assigning them IPSyn scores, and using these scores as
targets to be learned from features extracted from the corresponding 100-utterance transcripts. Details of
the data and learning approach used for this experiment, as well as empirical results, are described in the
remainder of this section.

3.1 Generating IPSyn data

To obtain enough child language transcripts in a wide range of ages to test our hypothesis, we turned
to the CHILDES database. To generate training and development sets for our experiments, we used
transcripts from CHILDES of 14 different children with ages ranging from 1 year 1 month to 8 years.
Because each application of IPSyn requires only 100 child utterances, transcripts were split, producing
a total of 593 transcripts, each containing 100 utterances. The 14 children in our dataset came from the
following CHILDES corpora: Brown, MacWhinney, Sachs and Warren. The reason for choosing these
corpora is that they were quickly identified as containing spontaneous natural interactions, as opposed
to reading or specific games and activities designed to elicit a certain kind of language production. It is
likely that other corpora in CHILDES would also suit our purposes, but the data in these four corpora was
sufficient for our experiments. Each of the 593 transcripts was assigned an IPSyn score automatically.
From the Brown, MacWhinney and Sachs corpora, we used transcripts from a total of four children
(Adam from Brown, Mark and Ross from MacWhinney, and Naomi from Sachs), from whom language
data was collected over several years. Transcripts from these three corpora, 572 in total, served as our
training set. The Warren corpus includes data from ten children with ages ranging from 1;6 to 6;2 (that
is, 1 year and 6 months to 6 years and 2 months, using the commonly accepted age notation for this type
of data), from which we created 21 transcripts that served as our development set.

The complete set of 593 transcripts with IPSyn scores gives us the opportunity to verify whether the
language development curves observed by Scarborough (1990) averaged over 75 transcripts in the orig-
inal IPSyn study matches curves produced from averaging results from 593 transcripts from entirely
different subjects. Figure 1 shows a side-by-side comparison between the original figure from (Scarbor-
ough, 1990) and a corresponding figure generated with our automatically scored transcripts. Although
not identical, the two figures are remarkably similar, reflecting that aspects of the emergence of grammar
in child language development are shared across children, and that IPSyn captures some of these aspects.

2153



(a) Original IPSyn study. (b) Automatically generated.

Figure 1: Comparison between the IPSyn development curves for the four subscales in (a) the 75 tran-
scripts in the original IPSyn study (reproduced from (Scarborough, 1990)), and (b) our set of 593 tran-
scripts scored automatically.

Finally, we used the Garvey corpus to generate a test set. This corpus includes data from 48 different
children with ages ranging from 2;10 to 5;7, from which we extracted 60 transcripts covering all 48
children and the full range of ages in the corpus. No data from the 48 children in the Garvey corpus,
which we used as a test set, were used for training or development of the models used in our experiments.

3.2 A regression model for IPSyn

Given 593 pairs of transcript and IPSyn score, we approached the task of learning a data-driven model
for IPSyn scoring as one of regression. For each transcript, a set of features is extracted, and the IPSyn
score is associated with that feature vector. The features extracted from the transcripts followed four
templates, described in the next subsection. If an accurate function for predicting IPSyn scores from
these feature vectors can be learned, our hypothesis that these features are at least expressive enough to
track child language development as well as the inventory of IPSyn structures is confirmed. To learn our
model, we used the SVM Light1 implementation of support vector regression (Drucker et al., 1997).

3.3 Features

An important step in learning a regression model for IPSyn is choosing what features to use. To support
our goal of language independence, we decided not to consider language specific features that have been
shown to be useful in this task but are language dependent2, and opted instead to see whether the use of
only simple parse tree features would be sufficient. The only prerequisite for extraction of our feature set
is that each transcript must be parsed to produce a syntactic dependency tree. We used the CLAN tools
for morphology analysis (MOR), part-of-speech tagging (POST) and parsing (MEGRASP)3, since it is
straightforward to process CHILDES transcripts using those, and they provide high-accuracy analyses
for child language transcripts. The accuracy of the MEGRASP dependency parser for child utterances in
English is estimated to be close to 93% (Sagae et al., 2010).

All of the features used in our model are extracted from parse trees according to four simple classes
that target the following information:

1http://svmlight.joachims.org/
2This is in contrast to, for example, the related work of Sahakian and Snyder (2012), which we discuss in section 5.
3Models for MOR and POST are available for a wide variety of languages. Models for MEGRASP are available only for

English and Japanese, but our data-driven approach is not tied to any specific tagger or parser.
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n:prop v n n

Eve eat dust mop.

SUBJ
OBJ

MOD

Figure 2: A dependency tree generated with part-of-speech and grammatical relation information.

Part-of-speech tags: The first type of feature we used is simply the part-of-speech tag of each word. This
can be thought of as a bag of part-of-speech tags. We intentionally avoided the commonly used bag-
of-words, because our goal is to obtain a model that tracks changes in syntax structure, not content.
Although it is highly likely that lexical features would be very informative in this learning task, they
would be useful for the wrong reason: our model is intended to target the emergence of syntax, and
not what children talk about at different ages. We note, however, that as with the Penn Treebank
tagset, the tags used by MOR and POST also reflect morphology, so that information is accounted
for. The full tag set is listed in (MacWhinney, 2000).

Grammatical relations: The second feature class in our model is a bag of dependency labels, where each
label correspond to a grammatical relation that holds between two words in the dependency tree (the
head word and the dependent word). The full set of grammatical relations is listed in (Sagae et al.,
2010).

Head-dependent part-of-speech pairs: Our third feature class is based on pairs of part-of-speech tags,
where each pair corresponds to a bilexical dependency relation in the parse tree, and one of the tags
comes from the head in the dependency, and the other tag comes from the dependent.

Head-relation-dependent triples: The last feature class is similar to the head-dependent pairs described
above, but also including the dependency label that indicates the grammatical relation that holds
between the head and dependent words. Features in this class are then triples composed of a head
part-of-speech tag, a dependent part-of-speech tag, and a dependency label.

As an example, given the parse tree shown in Figure 2, the following features would be extracted:

n:prop v n n
SUBJ OBJ MOD
v_n:prop v_n n_n
v_n:prop_SUBJ v_n_OBJ n_n_MOD

Features are extracted for every tree in each transcript. Because our goal is to measure grammatical
development in child language, these four feature templates were designed to capture the grammatical
relations represented in dependency trees, while leaving out the content reflected in specific lexical items.
While the content of what is said may be related to language development, our features are intended to
focus on syntactic information, covering exactly each of the labeled arcs and the part-of-speech tags in
a dependency tree (Figure 2) with the words removed. We also experimented with part-of-speech tag
bigrams (pairs of adjacent part-of-speech tags), and dependency chains formed by two dependency arcs.
The final choice of the four templates described above was based on results obtained on development
data.

3.4 Data-driven IPSyn evaluation

We trained a support vector regression model using our training set of 572 transcripts, using a polynomial
kernel and tuning the degree d and the regularization metaparameter C on the development set. While
the default C and d values resulted in a mean absolute error of 6.6 points in the score predictions in the
development set, setting C = 1 and d = 3 resulted in a mean absolute error of 4.1 on the development
set. We used these values for the rest of our experiments. The mean absolute error obtained on our
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test set of 48 children (60 transcripts) not used in training or tuning of the system was 3.9. When
applying our regression model to the manually scored set of 20 transcripts used by Sagae et al. (2005),
the mean absolute difference was 4.2 from the scores computed automatically using the approach in
section 2.1, and 5.4 from the manually computed scores, which we consider our gold standard target.
Compared to these manually computed scores, the absolute difference of 5.4 is higher than what we
obtained using carefully designed templates based on the IPSyn inventory, but still within the range of
variability expected for trained human scorers (Scarborough, 1990). It is important to keep in mind that
the goal of this experiment was not to improve on the accuracy of previous automatic scoring programs,
which work quite differently by listing manually crafted patterns over parse trees, but to show that a
scoring function can be learned in a data-driven way, without manually crafted patterns. The results
obtained with our regression model do confirm our hypothesis that simple features extracted from parse
trees are enough for tracking child language development in the same way as the much more complex
patterns included in IPSyn.

4 Age prediction

Given the ability of our data-driven approach to approximate IPSyn scores, confirming that a regression
approach with parse tree features is capable of capturing the progression of language development, we
now turn to the question of whether the same type of data-driven framework can be used to track child
language development without the need for a metric such as IPSyn.

Assuming only that language acquisition progresses monotonically over time, we can apply the same
data-driven regression approach to predict a child’s age given a language sample. This task was ap-
proached recently by Sahakian and Snyder (2012), who used an ensemble of existing metrics with a few
additional features. Unlike in our approach, Sahakian and Snyder do include lexical features and hand-
selected patterns in the form of an existing metric (D-level). They make the reasonable argument that
the task of age prediction is child-dependent, and that prediction across children would not make sense
due to individual variation in the rate of language development. Following Sahakian and Snyder, we first
approach age prediction as a child-specific task, but then discuss the application of our regression models
for other children than those used for training.

4.1 Child-specific age prediction
To determine whether our data-driven regression approach can model the development of individual
children at the level where accurate age predictions can be made, we used the same feature templates
described in section 3.3, but trained a regression model to predict age in months, rather than IPSyn scores.
Because this is a child-specific prediction task, we train separate regression models for each child. We
tested our age predictions using 10-fold cross-validation for three children from three different CHILDES
corpora (Adam from Brown, Ross from MacWhinney and Naomi from Sachs) for whom enough data
was available over a wide enough range of ages. In each case the regression approach performed well.
Table 1 shows the mean absolute error in months for each child, and the Pearson r for the correlation
between predicted age and actual age.

Child (corpus) Mean Abs Err Pearson (r)
Adam (Brown) 2.5 0.93
Ross (MacWhinney) 3.7 0.84
Naomi (Sachs) 3.1 0.91

Table 1: Regression results for single corpus age prediction (p < 0.0001 for all r values.)

Perhaps more interesting than the strong correlations between actual age and predicted age for each of
the individual corpora is a comparison of these correlations to correlations between age and MLU, and
age and IPSyn score. One main general criticism of MLU is that it fails to correlate well with age for
older children (around three to four years old). More detailed metrics such as IPSyn are believed to have
better correlation with age after that point. We do observe this situation in our data. Interestingly, our
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predicted age scores have much stronger correlations to actual age for older children, which suggests that
our regression approach with simple syntactic features is more expressive in tracking syntactic develop-
ment in older children than either MLU or IPSyn. This is shown in Table 2, which contains Pearson r
correlation coefficients for age and MLU, age and IPSyn, and age and predicted age using our regression
approach.

Child (corpus) MLU r IPSyn r Regression r

Adam (Brown) 0.37† 0.53† 0.85†

Ross (MacW) 0.19 0.34∗ 0.79†

Naomi (Sachs) 0.27 0.52 0.82†

Table 2: Pearson correlation coefficients between actual age and MLU, actual age and IPSyn score,
and actual age and predicted age, for children at least three years and four months old. †p < 0.0001.
∗p < 0.05.

The results shown in Table 2 confirm that features extracted from parse trees alone can offer sub-
stantially better prediction of age for individual children than MLU or even IPSyn scores. This is not
surprising, given that weights for these features are optimized to predict age using data from the specific
child and discriminative learning, but it does show that these features offer enough resolution to track
syntactic development in child language, confirming our second hypothesis.

4.2 Pilot experiment with Japanese language data
A great advantage of using a data-driven framework based on simple feature templates rather than a
traditional approach for measuring syntactic development with manually crafted lists of grammatical
structures is that the data-driven approach is, in principle, language-independent. The same features de-
scribed in section 2.1 could be extracted from dependency parse trees in any language, assuming only that
these dependency trees can be produced automatically. Syntactic dependency parsers and treebanks are
in fact available for a variety of languages (Buchholz and Marsi, 2006; Nivre et al., 2007). Although the
availability of treebanks that include child language samples is certainly desirable, it is not clear whether
it is strictly required in order to generate the syntactic structures used in our approach. While Sagae et
al. (2005) and Hassanali et al. (2014) obtained high levels of accuracy in IPSyn scoring using the Char-
niak (2000) parser with a model trained on the Wall Street Journal portion of the Penn Treebank (Marcus
et al., 1993), we have not verified the effects of parser errors in our data-driven approach. Of course, the
language independence claim applies only to the ability to measure syntactic development within differ-
ent languages, and direct numerical comparisons across languages are not meaningful, since the available
syntactic annotations for different languages follow different conventions and syntactic theories.

Although a full empirical validation of our regression approach in other languages is left as future
work, we performed a pilot experiment with a single Japanese child that suggests our findings may be
robust across languages. We used transcripts from the child Ryo, from the Miyata corpus of the Japanese
section of the CHILDES database4. We extracted 80 transcripts of 100 utterances each, covering ages
1;10 (22 months) to 3;0 (36 months). These transcripts were analyzed with the Japanese version of
the MEGRASP parser for CHILDES transcripts at an estimated accuracy of 93% (Miyata et al., 2013).
Using the exact same experimental settings and feature templates as for English, we performed a 10-fold
cross-validation for age prediction using the Japanese data. We obtained a strong correlation between
predicted age and actual age, with r = 0.82 (p < 0.0001). Although this value is slightly lower than the
values in Table 1 for English, the range of target values (age in months) is more compressed. Although
this experiment included only one child, it does suggest that our approach may work well for Japanese.

5 Related work

Within the literature on assessment of child language development, the metric most closely related to
our work is the Index of Productive Syntax (Scarborough, 1990), which we discussed in more detail in

4http://childes.psy.cmu.edu/data/EastAsian/Japanese/Miyata/
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section 2, and used as a target for data-driven learning. Other traditional metrics include Developmental
Sentence Scoring (Lee and Canter, 1971), Language Assessment Remediation and Screening Proce-
dure (Fletcher and Garman, 1988), and D-level (Parisse and Le Normand, 1987) all of which share with
IPSyn the reliance on a hand-crafted inventory of grammatical structures meant to be identified manually
in transcribed child language samples.

Each of these metrics for child language development, along with the Mean Length of Utter-
ance (Brown, 1973), can be computed semi-automatically using the Computerized Profiling sys-
tem (Long et al., 2004). Although fully automatic computation with Computerized Profiling produces
levels of reliability lower than that of manual scoring, the system can be used with human intervention to
produce results of higher quality. More closely related is the work of Sagae et al. (2005) on automating
IPSyn using patterns extracted from automatic parse trees. The work we describe in section 2.1 is closely
based on that of Sagae et al., which we use as a way to validate our data-driven approach.

Roark et al. (2007) examined the ability of several automatically computed syntactic complexity met-
rics to discriminate between healthy and language impaired subjects. Among other metrics, Roark et al.
used Frazier scoring (Frazier, 1985) and Yngve scoring (Yngve, 1960), which are more commonly asso-
ciated with processing difficulty than with emergence of syntax in child language development, but are
related to our approach in that they are based on straightforward generic features of parse trees (depth,
node count), like our counts of grammatical relation labels. Finally, Sahakian and Snyder (Sahakian
and Snyder, 2012) have also approached the problem of learning automatic metrics for child language
development using a regression approach. Their focus, however, was on the combination of the existing
metrics MLU, mean depth of tree (similar to Yngve scoring mentioned above) and D-level, along with a
few hand-picked features (counts of certain closed-class words, ratio of function words to content words,
and average word frequency), to achieve better discrimination than any of these metrics or features alone.
A key difference between our approach and that of Sahakian and Snyder is that their approach builds on
and assumes the existence of a metric such as D-level, which, like IPSyn, includes a carefully designed
language-dependent inventory of language structures, while we use only simple feature templates applied
to parse trees. In addition, they include vocabulary-centric features, while we explicitly avoid vocabu-
lary features, focusing on structural features. It is possible that Sahakian and Snyder’s approach would
benefit from the parse tree features of our approach, either by using the features directly, or by taking a
score obtained by our approach as an additional feature in theirs.

6 Conclusion and future work

We presented a framework for assessment of syntactic development in child language that is com-
pletely data-driven, and unlike traditional metrics such as IPSyn, LARSP and D-level, does not rely
on a language-dependent inventory of language structures chosen specifically for the task. Instead, our
approach is based on the application of support vector regression with simple features extracted from
syntactic parse trees. In our experiments we used dependency parses produced by the MEGRASP parser
for CHILDES transcripts, but it is likely that other modern dependency and constituent parsers would
provide similar results. We showed that our framework is capable of learning IPSyn scores, and that for
individual children it can model syntactic development well after MLU and IPSyn scores fail to correlate
with age.

Having shown that the feature templates described in section 2.1 are as expressive as the inventory
of grammatical structures in IPSyn at tracking language development, and that syntactic development of
individual children can be modeled using our data-driven framework in complete absence of an existing
metric such as IPSyn, it is interesting to consider the applicability of this framework to different lan-
guages for which child language development metrics have not been developed or are not widely used.
One possible way to do this is to train several age regression models representing different development
profiles. In most practical scenarios, the child’s age is known and would not need to be predicted by a
model. By predicting age with several different models and selecting the one that most closely predicts
the child’s actual age, a language development profile matching the child can be found. This could be
used, for example, in diagnosis of language impairment. In this paper we established only the expressive
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power of regression using simple syntactic features, and the application of this approach to practical tasks
is left as an interesting direction for future work.

A related direction for future work is the application of this method for assessment of syntactic
development in languages other than English. Given the availability of child language data in vari-
ous languages (MacWhinney, 2000) and recent progress in syntactic analysis for many of these lan-
guages (Buchholz and Marsi, 2006; Nivre et al., 2007), we are optimistic about the applicability of our
approach to other languages. Preliminary results using data from one Japanese child suggest that the
same set of simple feature templates can be used to track language development in Japanese.
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