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Abstract

Traditional Statistical Machine Translation (SMT) systems heuristically extract synchronous
structures from word alignments, while synchronous grammar induction provides better so-
lutions that can discard heuristic method and directly obtain statistically sound bilingual syn-
chronous structures. This paper proposes Synchronous Constituent Context Model (SCCM) for
synchronous grammar induction. The SCCM is different to all previous synchronous grammar
induction systems in that the SCCM does not use the Context Free Grammars to model the bilin-
gual parallel corpus, but models bilingual constituents and contexts directly. The experiments
show that valuable synchronous structures can be found by the SCCM, and the end-to-end ma-
chine translation experiment shows that the SCCM improves the quality of SMT results.

1 Introduction

Traditional Statistical Machine Translation (SMT) learns translation model from bilingual corpus that
is sentence aligned. No large-scale hand aligned structures inside the parallel sentences are usually
available to the SMT community, while the aligned structures are essential for training the translation
model. Thus, various unsupervised methods had been explored to automatically obtain aligned structures
inside the parallel sentences. Currently, the dominant method is a two step pipeline that obtains word
alignments by unsupervised learning (Brown et al., 1993) at the first step, then obtains aligned structures
at the second step by heuristically extracting all bilingual structures that are consistent with the word
alignments.

The second step in this two step pipeline is problematic due to its obtained aligned structures, whose
counts are heuristically collected and violate valid translation derivations, while most SMT decoders
perform translation via valid translation derivations. This problem leads to researches on synchronous
grammar induction that discards the heuristic method and the two separate steps pipeline.

Synchronous grammar induction aims to directly obtain aligned structures by using one statistically
sound model. The aligned structures in synchronous grammar induction are hierarchical/syntax level
(Cohn and Blunsom, 2009) synchronous structures, which can be modeled by Synchronous Context Free
Grammars (SCFGs) (Cohn and Blunsom, 2009; Levenberg et al., 2012; Xiao et al., 2012; Xiao and
Xiong, 2013) or a kind of SCFGs variant - Inversion Transduction Grammars (ITGs) (Neubig et al.,
2011; Cohn and Haffari, 2013). Both SCFGs and ITGs are studied in recent years by using generative or
discriminative modeling.

This paper departs from using the above two traditional CFGs-based grammars, and proposes Syn-
chronous Constituent Context Model (SCCM) which models synchronous constituents and contexts
directly so that bilingual translational equivalences can be directly modeled. The proposed SCCM is
inspired by researches on monolingual grammar induction, whose experience is valuable to the syn-
chronous grammar induction community due to its standard evaluation on released monolingual tree-
banks, while no hand annotated bilingual synchronous treebank is available for evaluating synchronous

∗Corresponding Author
This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/

1865



grammar induction. According to the evaluation results, the state-of-the-art monolingual grammar induc-
tion was achieved by Bayesian modeling of the Constituent Context Model (CCM) (Duan et al., 2013;
Klein and Manning, 2002), while traditional CFGs based monolingual grammar induction methods per-
form well below the CCM.

In view of the significant achievements of the CCM in monolingual grammar induction, we propose
the SCCM to apply the CCM to the bilingual case. The tremendous possible constituents and contexts
incurred in this bilingual case put a challenge for the SCCM to model such kind of sparse variables. We
further propose a non-parametric Bayesian Modeling of the SCCM to cope with the sparse variables.
Experiments on Chinese-English machine translation show that meaningful synchronous phrases can be
detected by our SCCM, and the performance of the end-to-end SMT is significantly improved.

The rest of the paper is structured as follows: we propose the SCCM in Section 2. The non-parametric
Bayesian modeling of the SCCM is presented in Section 3, followed by the presentation of posterior
inference for the Bayesian SCCM. Then experiments and results are presented. Conclusion are presented
in the final section.

2 Synchronous Constituent Context Model (SCCM)

We propose the SCCM to model synchronous structures explicitly. Unlike Synchronous Context Free
Grammars (SCFGs) which are defined on latent production rules of parallel corpus, the SCCM deals
with both synchronous tree spans (syn spans) and non-synchronous spans (non-syn spans). All spans
are represented by two kinds of strings: bilingual constituents and bilingual contexts. The SCCM is a
generative model defined over such representations.

2.1 Bilingual Constituents and Contexts

By extending the concept of constituents and contexts introduced in (Klein and Manning, 2002), we
define bilingual constituents and contexts as follows. Bilingual constituents are pairs of contiguous
surface strings of sentence spans (bilingual subsequences), bilingual contexts are tokens preceding and
following the bilingual constituents. In the SCCM, each bi-span in a sentence pair, either a syn span or
a non-syn span, is represented by a bilingual constituent and a bilingual context.

Fig. 1 gives an illustration of the bilingual constituents and contexts. In Fig. 1-(a), a latent syn-
chronous tree over the example sentence pair is illustrated. With the word alignments shown in the
sentence pair, the latent tree over the target sentence “e1 e2 e3” can be inferred. For the ease of presen-
tation, the latent target side tree is neglected in Fig. 1-(a).

Given the synchronous tree, two sets of bilingual constituents and contexts can be extracted as shown
in the two tables of Fig. 1. One is about syn spans, the other is about non-syn spans. 3 appearing in
the contexts denotes a sentence boundary. nil appearing in the constituents of the non-tree spans denotes
an empty span, which is actually a space between two terminals (or between a terminal and 3).

2.2 Generative Model

The SCCM computes the joint probability of a sentence pair S and its synchronous tree T as below:

P (S, T ) = P (S|T )P (T ) = P (S|T )P (B)P (T |B) (1)

= P (S|T )P (B)
∏

0≤i≤j≤m
0≤p≤q≤n

P (αij,pq|Bij,pq)P (βij,pq|Bij,pq)

where B denotes a synchronous bracketing skeleton, in which no words are populated. Fig. 1-(b) shows
the skeleton of Fig. 1-(a). The skeleton B is considered being filled by the synchronous tree T , and
P (T |B) is decomposed into conditional probabilities of bilingual constituents α and contexts β condi-
tioning on Bij,pq, a Boolean variable indicating whether the under-consideration bi-span <i, j><p, q>
is a syn span or not. In particular, αij,pq denotes the bilingual constituent spanning from i to j on source
side sentence, and spanning from p to q on target side sentence. βij,pq denotes the context of αij,pq.
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f1 f2 f3 
0 1 2 3 

e1 e2 e3 
0 1 2 3 

syn span <0,1><2,3> <1,2> <1,2> <2,3><0,1> <0,2><1,3> <0,3><0,3> 

constituent (f1)(e3) (f2)(e2) (f3)(e1) (f1 f2)(e2 e3) (f1 f2 f3)(e1 e2 e3) 

context (�-f2)(e2-�) (f 1-f3)(e1- e3) (f2-�)(�- e2) (�-f3)(e1-�) (�-�)(�-�) 

 

non-syn span <1,3><0,1> <1,1><1,2>       … 

constituent (f2 f3)(e1) (nil)(e2)         … 

context (f1-�)(�-e2) (f 1-f2)(e1- e3)      … 

� � � 

� � � 

(a) (b)

Figure 1: Illustration of bilingual constituents and contexts over a sentence pair which consists of a
source side sentence “f1 f2 f3” and a target side sentence “e1 e2 e3”. In (a), the bottom numbers around
each word are indexes for denoting spans. A synchronous tree is illustrated in (a), based on which two
sets of bilingual constituents and contexts are extracted as shown in the two tables below the tree. Take a
syn span <1,2><1,2> for example, the source side span <1,2> is ”f2” and the target side span <1,2>
is ”e2”. They constitutes a bilingual constituent ”(f2)(e2)”, whose context is ”(f1-f3)(e1-e3)” that is
preceding and following the bilingual constituent. Figure (b) shows the skeleton of figure (a).

Bij,pq is defined as below:

Bij,pq =

{
1 if bispan < i, j >< p, q > is a syn span

0 otherwise

In the SCCM, skeletons Bs are restricted to be binary branching and are distributed uniformly. Fur-
thermore, since T and S are consistent, P (S|T ) is always equal to 1 in Eq. (1). Therefore, we can infer
(with the expansion of the continued multiplication operator of Eq. (1) ):

P (S, T ) ∝
∏

<i,j><p,q>∈T

(P (αij,pq|Bij,pq = 1)P (βij,pq|Bij,pq = 1)) (2)

∏
<i,j><p,q> ̸∈T

(P (αij,pq|Bij,pq = 0)P (βij,pq|Bij,pq = 0))

where <i, j><p, q> ∈ T indicates that bi-span <i, j><p, q> is a syn span contained in T ,
<i, j><p, q> ̸∈ T indicates otherwise case. Formula (2) is the basis for Bayesian modeling of the
SCCM and the posterior inference that are proposed in the following sections.

3 Bayesian Modeling for the SCCM

For the SCCM, the posterior of a synchronous tree T given the observation of a sentence pair S is:
P (T |S) ∝ P (S, T ). As shown in formula (2), it turns out that the posterior P (T |S) depends on the four
kinds of distributions:

P (αij,pq|Bij,pq = 1) P (βij,pq|Bij,pq = 1)
P (αij,pq|Bij,pq = 0) P (βij,pq|Bij,pq = 0)
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We propose to define two kinds of Bayesian priors over the constituents related variables αij,pq|Bij,pq

and the contexts related variables βij,pq|Bij,pq respectively. Since constituents exhibits richer appear-
ances than contexts, the proposed Bayesian prior over αij,pq|Bij,pq is more complicate than that over
βij,pq|Bij,pq.

Specifically, one of the non-parametric Bayesian priors, the Pitman-Yor-Process (PYP) prior, is defined
on αij,pq|Bij,pq. The PYP prior can produce the power-law distribution (Goldwater et al., 2009) that is
commonly observed in natural languages, and can flexibly model distributions on layer structures due to
its defined distribution on distribution hierarchy. The PYP prior had been successfully applied on many
NLP tasks such as language modeling (YeeWhye, 2006), word segmentation (Johnson et al., 2007b;
Goldwater et al., 2011), dependency grammar induction (Cohen et al., 2008; Cohn et al., 2010), grammar
refinement (Liang et al., 2007; Finkel et al., 2007) and Tree-Substitution Grammar induction (Cohn et
al., 2010). We use the PYP to model the constituents’ layered structure by using the PYP’s distribution
hierarchy. On βij,pq|Bij,pq, we use the Dirichlet distribution for its simplicity because contexts appear in
much fewer kinds of surface strings than those of constituents.

3.1 The PYP Prior over Bilingual Constituents

Constituents consist of both words and POS tags. Though in much monolingual grammar induction
works, only POS tag sequences were used as the observed constituents for their significant hints of
phrases (Klein and Manning, 2002; Cohn et al., 2010), our work needs considering raw words as obser-
vation data too because word alignments encode the important translation correspondence and contribute
to synchronous bi-spans. But it causes severe data sparse problem due to the quite large number of unique
constituents consisting of both words and POS tags. Besides, constituents can be extremely long which
intensify the data sparse problem. So, solely using the surface strings of constituents is impractical.

In this section, we propose a hierarchical representation of constituents to overcome the data sparse
problem and use the PYP prior on this kind of representation. From top to bottom, the hierarchical rep-
resentation encodes the information of a bilingual constituent from fine-grained level to coarse-grained
levels. The probability of a fine-grained level can be backed-off to the probabilities of coarse-grained
levels.

The first (top) level of the hierarchical representation is the bilingual constituent itself. The second
level is composed of two sequences: one is word sequence, the other is POS tags sequence. The third
level mainly decomposes the second level into boundaries and middle words/POSs. Since the target of
inducing synchronous structures in this paper is to induce the latent phrasal equivalences of a parallel
sentence, boundaries of bilingual constituents play the key role of identifying phrasal equivalences. The
third level is the function to make use of boundaries. Fig. 2 gives an illustration of the hierarchical
representation.

w1p1 w2p2 w3p3 w4p4

w1 w2 w3 w4 p1 p2 p3 p4

w1 w2 w4 w3
p1 p2 p4 p3

Figure 2: Illustration of the hierarchical representation of a bilingual constituent ”w1p1 w2p2 w3p3

w4p4”. Here w and p denote word and POS respectively, and the suffixes denote positions. Note that
both w and p are composite, w denotes a source side word and a target side word, and p denotes the
POS case. The second level decomposes the first level into a word sequence and a POS sequence, and
the third level decomposes further into boundaries and middle words/POSs. The boundary width in this
figure is two for left side boundary and one for right side boundary.
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The PYP prior encodes distribution on distribution. Recursively using the PYP prior can create a
distribution hierarchy, which is appropriate for modeling the distribution over the hierarchical repre-
sentations of constituents. Smoothing is fulfilled through backing-off fine-grained level distributions to
coarse-grained level distributions.

3.1.1 The PYP Hierarchy

We define the PYP hierarchy over the hierarchical representation of bilingual constituents in a top-down
manner. For the topmost (first) level:

αij,pq|Bij,pq = b ∼ Gfirst
b

Gfirst
b ∼ PY P (dfirst

b , θfirst
b , Pword−pos(.|Bij,pq = b))

The PYP has three parameters: (dfirst
b , θfirst

b , Pword−pos). Pword−pos(.|Bij,pq = b) is a base
distribution over infinite space of bilingual constituents conditioned on span type b, which provides
the back-off probability of P (αij,pq|Bij,pq = b). The remaining parameters dfirst

b and θfirst
b control the

strength of the base distribution.
The back-off probability Pword−pos(αij,pq = x|Bij,pq = b) is defined as below:

Pword−pos(αij,pq = x|Bij,pq = b)) = Pword(Rw(x)|b)× Ppos(Rp(x)|b)

where Rw(x) is the function returning a word sequence of a bilingual constituent x, Rp(x) returning
the correspondent POS sequence. This is the second level of the hierarchical representation of bilingual
constituents as illustrated in Fig. 2. Further, Rw(x) and Rp(x) are decomposed into the third level of
the hierarchy. Taking Rw(x) for example:

Pword(Rw(x)|Bij,pq = b)) = Pword−bound(Rwb(x)|b)× 1
|W ||Rw(x)|−|Rwb(x)|

where Rwb is a function returning a word sequence’s boundary representation, |W | is the vocabulary
size, |Rw(x)| − |Rwb(x)| is the number of the words in Rw(x) excluding those in the boundary rep-
resentation. The above equation models the generation of a word sequence with surface string Rw(x)
(given b) by first generating its boundary representation Rwb(x), then generating its middle words from
a uniform distribution over the vocabulary. Ppos(Rp(x)|Bij,pq = b)) is defined similarly.

We put the Dirichlet prior over Pword−bound(Rwb(x)|b):

Rwb(x)|b ∼ Discrete(GRwb
b )

GRwb
b ∼ Dirichlet(τb)

For Ppos−bound(Rpb(x)|b), similar definition to Pword−bound(Rwb(x)|b) is applied.

3.2 The Dirichlet Prior over Bilingual Contexts

The Dirichlet prior is defined as below:

βij,pq|Bij,pq = b ∼ Discrete(GDir
b )

GDir
b ∼ Dirichlet(τb)

A context βij,pq (given the specific span type b) is drawn i.i.d according to a multinomial parameter
GDir

b , which is drawn from the Dirichlet distribution with a real value parameter τb.
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4 MCMC Sampling for Inferring the Latent Synchronous Trees

We approximate the distribution over latent synchronous trees by sampling them from the posterior
P (T |S), where T is a latent synchronous tree of a sentence pair S. As presented in the beginning of
section 3, the posterior depends on P (αij,pq|Bij,pq = b) and P (βij,pq|Bij,pq = b), on which we put
the PYP prior and the Dirichlet prior respectively. Because of integrating out all Gs in all of the priors,
interdependency between samples of αij,pq|Bij,pq = b or βij,pq|Bij,pq = b is introduced, resulting in
simultaneously obtaining multiple samples impractical. On the other hand, blocked sampling, which ob-
tains sentence-level samples simultaneously (Blunsom and Cohn, 2010; Cohn et al., 2010; Johnson et al.,
2007a) is attractive for the fast mixing speed and the easy application of standard dynamic programming
algorithms.

4.1 Metropolis-Hastings (MH) Sampler

We apply a MH sampler similar to (Johnson et al., 2007a) to overcome the difficulty of obtaining multi-
ple samples simultaneously from posterior. The MH sampler is a MCMC technique that draws samples
from a true distribution by first drawing samples simultaneously from a proposal distribution, and then
correcting the samples to the true distribution by using an accept/reject test. In practical, the proposal
distribution is designed to facilitate the use of blocked sampling that applies standard dynamic program-
ming, and the resulting samples are corrected by the accept/reject test to the true distribution.

In our case, the proposal distribution is the Maximum-a-Posteriori (MAP) estimate of P (αi,j |Bi,j = b)
and P (βi,j |Bi,j = b), and the blocked sampling of T applies a dynamic programming algorithm that is
based on the inside chart derived from a transformation of Eq. (1):

P (S, T ) = K(S)
∏

<i,j><p,q>∈T

ϕ(ij, pq)

where ϕ(ij, pq) =
P (αij,pq|Bij,pq = 1)P (βij,pq|Bij,pq = 1)
P (αij,pq|Bij,pq = 0)P (βij,pq|Bij,pq = 0)

K(S) is a constant given S. The inside chart I can be constructed recursively as below:

Iij,pq =


ϕ(ij, pq) if j − i ≤ 1 and q − p ≤ 1

ϕ(ij, pq)
∑

i≤u≤j
p≤v≤q

(Iiu,pvIuj,vq + Iiu,vqIuj,pv) otherwise

Based on this inside chart, a synchronous tree can be top-down sampled (Johnson et al., 2007a), then
is accepted or rejected by the MH-test to correct to the true distribution.

5 Experiments

The experiments were conducted on both a pilot word alignment task and an end-to-end Chinese-to-
English machine translation task to test the quality of the learned synchronous structures by the SCCM.
The bi-side monolingual gold bracketings contained in Penn treebanks were not used for evaluating the
quality of the learned synchronous structures because of great syntactic divergence between source tree
and target tree, which results in that gold monolingual syntactic trees on both sides are asynchronous
(large number of tree nodes can not be aligned). The synchronous grammar induction community as-
sumes the existence of synchronous grammar for MT, and do not evaluate synchronous grammar induc-
tion on monolingual gold treebanks because of their asynchronous property. The synchronous grammar
induction community is not the same with the multilingual grammar induction community, which targets
at inducing bi-side monolingual syntactic trees. Due to the same reason, our synchronous bracketing
induction method was not evaluated on bi-side monolingual bracketing trees which are asynchronous.
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5.1 Sampler Configuration

Our sampler was initialised with trees through a random split process. Firstly, we used GIZA++ mod-
el 4 to get source-to-target and target-to-source word alignments, and used grow-diag-final-and (gdfa)
heuristic to extract reliable word alignments for each sentence pair. Secondly, we randomly split each
sentence pair in a top-down manner, and make sure that each split is consistent with the GIZA++ gdfa
word alignments. For example, given a sentence pair of m source words and n target words, we random-
ly choose a split point at each side and the alignment type (straight alignment or inverted alignment),
then recursively build bi-spans further on each new split. Finally, a synchronous binary tree is built at
the end of this process 1. Note that all splits must be consistent with the GIZA++ gdfa word alignments.
When a piece of word alignments (such as non-ITG alignment structure) do not permit binary split, we
keep this structure unsplitted and continue split only on its sub-structures that are ITG derivable.

Our sampler ran 200 iterations for all data. After each sampling iteration, we resample all the hyper-
parameters using slice-sampling, with the following priors: d ∼ Beta(1, 1), θ ∼ Gamma(10, 0.1).

The time complexity of our inference algorithm is O(n6), which is not practical in applications. We
reduce the time complexity by only considering bi-spans that do not violate GIZA++ intersection word
alignments (intersection of source-to-target and target-to-source word alignments) (Cohn and Haffari,
2013).

5.2 Word Alignment Task

5.2.1 Experimental Setting
Since there are no annotated synchronous treebanks, we evaluate the SCCM indirectly by evaluating its
output word alignments on a gold standard English Chinese parallel tree bank with hand aligned word
alignments referred as HIT corpus2. The HIT corpus, which was collected from English learning text
books in China as well as example sentences in dictionaries, was originally designed for annotating
bilingual tree node alignments. The annotation strictly reserves the semantic equivalence of the aligned
sub-tree pair. The byproduct of this corpus is the hand aligned word alignments, which was utilized
to evaluate word alignment performance3. The word segmentation, tokenization and parse-tree in the
corpus were manually constructed or checked. The statistics of the HIT corpus are shown in table 1.

Table 1: Corpus statistics of the HIT corpus.
ch en

sent 16131
word 210k 209k

avg. len. 13.06 13.0

5.2.2 Results
We adopt the commonly used metric: the alignment error rate (AER) to evaluate our proposed align-
ments (a) against hand-annotated alignments, which are marked with sure (s) and possible (p) align-
ments. The AER is given by (the lower the better):

AER(a, s, p) = 1− |a ∩ s|+ |a ∩ p|
|a|+ |s|

In the HIT corpus, only sure alignments were annotated, possible alignments were bypassed because
of the strict annotation standard of semantic equivalence.

The word alignments evaluation results are reported in Table 2. The baseline was GIZA++ model
4 in both directions with symmetrization by the grow-diag-final-and heuristic (Koehn et al., 2003). A

1The initialization with different random split bi-trees results in marginal variance of performances.
2HIT corpus is designed and constructed by HIT-MITLAB. http://mitlab.hit.edu.cn/index.php/resources.html
3We did not use annotated tree node alignments for synchronous structure evaluation because the coverage of tree nodes

that can be aligned is quite low. The reason of low coverage is that Chinese and English exhibit great syntax divergences from
monolingual treebank point of view.
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released induction system - PIALIGN (Neubig et al., 2011)4 was also experimented to compare with our
proposed induction system - SCCM.

PIALIGN is a model that generalizes adaptor grammars for machine translation (MT), while our mod-
el is to generalize CCM for MT. Adaptor grammars has been successfully applied on shallow unsuper-
vised tasks such as morphlogical/word analysis, while CCM has obtained state-of-the-art performance
on the more complex unsupervised task - inducing syntactic trees. In view of CCM’s successful mono-
lingual application, we generalize it to bilingual case. In depth comparison: our SCCM deals with both
consituents and distituents, and contexts of them, while PIALIGN only deals with constituents. Fur-
thermore, SCCM does not model non-terminal rewriting rules, while PIALIGN model those rules which
can rewrite a non-terminal into a complete subtree as adaptor grammars does. In addition, PIALIGN
adopts a beam search algorithm of (Saers et al., 2009). Through setting small beam size, PIALIGN’s
time complexity is almost O(n3). But as critisized by (Cohn and Haffari, 2013), their heuristic beam
search algorithm does not meet either of the Markov Chain Monte Carlo (MCMC) criteria of ergodic-
ity or detailed balance. Our method adopts MCMC sampling (Johnson et al., 2007a) which meets the
MCMC criteria.

We can see that the two induction systems perform significantly better than GIZA++, and our proposed
SCCM performs better than PIALIGN. Manual evaluation for the quality of the phrase pairs generated
from word alignments is also reported in Table 2. We considered the top-100 high frequency phrase pairs
that are beyond word level and less than six words on both sides, and report the proportion of reasonably
well phrase pairs through manual check. We found that more good phrase pairs can be derived from the
SCCM’s word alignments than from others.

Table 2: Quality of word alignments and their generated phrase pairs.
AER good phrase pairs proportion

GIZA++ 0.322 0.493
PIALIGN 0.263 0.531

SCCM 0.255 0.534

5.3 Machine Translation Task
5.3.1 Experimental Setting
A released tourism-related domain machine translation data was used in our experiment. It consists of a
parallel corpus extracted from the Basic Travel Expression Corpus (BTEC), which had been used in
evaluation campaigns of the yearly International Workshop on Spoken Language Translation (IWSLT).
Table 3 lists statistics of the corpus used in the experiment.

Table 3: Statistics of the corpus used by IWSLT
ch en

sent 23k
word 190k 213k

avg. len. 8.3 9.2

We used CSTAR03 as development set, used IWSLT04 and IWSLT05 official test set for test. A
4-gram language model with modified Kneser-Ney smoothing was trained on English side of parallel
corpus. We use minimum error rate training (Och, 2003) with nbest list size 100 to optimize the fea-
ture weights for maximum development BLEU. Experimental results were evaluated by case-insensitive
BLEU-4 (Papineni et al., 2001). Closest reference sentence length was used for brevity penalty.

5.3.2 Results
Following (Levenberg et al., 2012; Neubig et al., 2011; Cohn and Haffari, 2013), we evaluate our model
by using the SCCM’s output word alignments to construct a phrase table. As a baseline, we train a
phrase-based model using the moses toolkit 5 based on the word alignments obtained using GIZA++

4http://www.phontron.com/pialign/
5http://www.statmt.org/moses
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model 4 in both directions and symmetrized using the grow-diag-final-and heuristic (Koehn et al., 2003).
For comparison with CFG-based induction systems, word alignments generated by the PIALIGN were
also used to train a phrase-based model.

In the end-to-end MT evaluation, we used the standard set of features: relative-frequency and lexical
translation model probabilities in both directions; distance-based distortion model; language model and
word count. The evaluation results are reported in table 4. Word alignments derived by the two induction
systems can be more helpful to obtain better translations than GIZA++ derived word alignments. The
SCCM, while departing from traditional CFG-based methods, achieves comparable translation perfor-
mance to the PIALIGN.

Table 4: BLEU on both the development set: CSTAR03, and the two test sets: IWSLT04 and IWSLT05.
CSTAR03 IWSLT04 IWSLT05

GIZA++ 0.4304 0.4190 0.4866
PIALIGN 0.4661 0.4556 0.5248

SCCM 0.4560 0.4469 0.5193

6 Conclusion

A new model for synchronous structure induction is proposed in this paper. Different to all the previous
works that are based on Context Free Grammars, our proposed SCCM deals with bilingual constituents
and contexts explicitely so that bilingual translational equivalences can be directly modeled. A non-
parametric Bayesian modeling of the SCCM is applied to cope with the sparse representations of bilin-
gual constituents and contexts. Both intrinsic evaluation on word alignments and extrinsic evaluation on
end-to-end machine translation were conducted. The intrinsic evaluation show that the highest quality
word alignments were obtained by our proposed SCCM. Such statistically sound word alignments of
the SCCM were used in the extrinsic evaluation on machine translation, showing that significantly better
translations were achieved than those obtained by using the word alignments of GIZA++, the widely
used word aligner in the two-step pipeline.
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