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Abstract

We test the Distributional Inclusion Hypothesis, which states that hypernyms tend to occur in
a superset of contexts in which their hyponyms are found. We find that this hypothesis only
holds when it is applied to relevant dimensions. We propose a robust supervised approach that
achieves accuracies of .84 and .85 on two existing datasets and that can be interpreted as selecting
the dimensions that are relevant for distributional inclusion.

1 Introduction

One of the main criticisms of distributional models has been that they fail to distinguish between semantic
relations: Typical nearest neighbors of dog are words like cat, animal, puppy, tail, or owner, all obviously
related to dog, but through very different types of semantic relations. On these grounds, Murphy (2002)
argues that distributional models cannot be a valid model of conceptual representation. Distinguishing
semantic relations are also crucial for drawing inferences from distributional data, as different semantic
relations lead to different inference rules (Lenci, 2008). This is of practical import for tasks such as
Recognizing Textual Entailment or RTE (Geffet and Dagan, 2004).

For these reasons, research has in recent years started to attempt the detection of specific semantic
relationships, and current results suggest that distributional models can, in fact, distinguish between
semantic relations, given the right similarity measures (Weeds et al., 2004; Kotlerman et al., 2010; Lenci
and Benotto, 2012; Herbelot and Ganesalingam, 2013; Santus, 2013). Because of its relevance for RTE
and other tasks, much of this work has focused on hypernymy. Hypernymy is the semantic relation
between a superordinate term in a taxonomy (e.g. animal) and a subordinate term (e.g. dog).

Distributional approaches to date for detecting hypernymy, and the related but broader relation of
lexical entailment, have been unsupervised (except for Baroni et al. (2012)) and have mostly been based
on the Distributional Inclusion Hypothesis (Zhitomirsky-Geffet and Dagan, 2005; Zhitomirsky-Geffet
and Dagan, 2009), which states that more specific terms appear in a subset of the distributional contexts
in which more general terms appear. So, animal can occur in all the contexts in which dog can occur,
plus some contexts in which dog cannot – for instance, rights can be a typical cooccurrence for animal
(e.g. “animal rights”), but not so much for dog (e.g. #“dog rights”).

This paper takes a closer look at the Distributional Inclusion Hypothesis for hypernymy detection. We
show that the current best unsupervised approach is brittle in that their performance depends on the space
they are applied to. This raises the question of whether the Distributional Inclusion Hypothesis is correct,
and if so, under what circumstances it holds. We use a simple supervised approach to relation detection
that has good performance (accuracy .84 on BLESS, .85 on the lexical entailment dataset of Baroni et
al. (2012)) and works well across different spaces.1 Furthermore, we show that it can be interpreted
as selecting dimensions for which the Distributional Inclusion Hypothesis does hold. So, our answer is
to propose the Selective Distributional Inclusion Hypothesis: The Distributional Inclusion Hypothesis
holds, but only for relevant dimensions.

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/

1Code and data are available at http://stephenroller.com/research/coling14.
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2 Background

Distributional models. Distributional models represent a word through the contexts in which it has
been observed, usually in the form of a vector representation (Turney and Pantel, 2010). A target word
is represented as a vector in a high-dimensional space in which the dimensions are context items (for
example, other words) and the coordinates of the vector indicate the target’s degree of association with
each context item. In this paper, we also use dimensionality reduced spaces in which dimensions do not
stand for individual context items anymore.

Pattern-based approaches to inducing semantic relations. Early work on automatically inducing se-
mantic relations between words, starting with Hearst (1992), uses textual patterns. For example, “[NP1]
and other [NP2]” implies that NP2 is a hypernym of NP1. Pattern-based approaches have been applied
to meronymy (Berland and Charniak, 1999; Girju et al., 2003; Girju et al., 2006), synonymy (Lin et al.,
2003), co-hyponymy (Snow et al., 2005), hypernymy (Cimiano et al., 2005), and several relations be-
tween verbs (Chklovski and Pantel, 2004). Pantel and Pennachiotti (2006) generalize the idea to a wide
variety of relations. Turney (2006) uses vectors of patterns to determine similarity of semantic relations.
A task related to semantic relation induction is the extension of an existing taxonomy (Buitelaar et al.,
2005). Snow et al. (2006) do this by using hypernymy and co-hyponymy detectors.

Lexical entailment, hypernymy, and the Distributional Inclusion Hypothesis. Weeds et al. (2004)
introduce the notion of distributional generality, where v is distributionally more general than u if u
appears in a subset of the contexts in which v is found, and speculate that hypernyms (v) should be more
distributionally general than hyponyms (u). Zhitomirsky-Geffet and Dagan (2005; 2009) introduce the
term Distributional Inclusion Hypothesis for the idea that distributional generality encodes hypernymy
or the more loosely defined relation of lexical entailment.

Weeds and Weir (2003) measure distributional generality using a notion of precision (eq. 1). Here and
in all equations below, u is the narrower term, and v the more general one. Abusing notation, we write u
for both a word and its associated vector 〈u1, . . . , un〉. Kotlerman et al. (2010) predict lexical entailment
with the balAPinc measure, a modification of the Average Precision (AP) measure (eq. 2). The general
notion is that scores should increase with the number of dimensions of v that u shares, and also give more
weight to the highly ranked dimensions (i.e. largest magnitude) of the narrower term u. This is captured
in APinc by computing precision P (r) at every rank r among u’s dimensions – where precision is the
fraction of dimensions shared with v –, and weighting by the rank of the same dimension in the broader
term, rel′(v, r, u). The final measure, balAPinc, smooths using the LIN similarity measure (Lin, 1998).
(We only sketch this measure here due to its complexity; details are given in Kotlerman et al. (2010).)

1(x) =

{
1 if x > 0;
0 otherwise

WeedsPrec(u, v) =
∑n

i=1 ui · 1(vi)∑n
i=1 ui

(1)

APinc(u, v) =
∑|1(u)|

r=1 P (r) · rel′(v, r, u))
|1(u)| (2)

balAPinc(u, v) =
√

APinc(u, v) · LIN(u, v)

The ClarkeDE measure (Clarke, 2009) computes degree of entailment as the degree to which the nar-
rower term u has lower values than v across all dimensions (eq. 3). Lenci and Benotto (2012) introduce
the invCL measure, which uses ClarkeDE to measure both distributional inclusion of u in v and distri-
butional non-inclusion of v in u (eq. 4). While all other measures interpret the Distributional Inclusion
Hypothesis as the degree to which a ⊆ relation holds, Lenci and Benotto test the degree to which proper
inclusion ( holds. They consider not only the degree to which the contexts of the narrower terms are
included in the contexts of the wider term, but also determine the degree to which the wider term has
contexts that the narrower term does not have.
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CL(u, v) =
∑n

i=1 min(ui, vi)∑n
i=1 ui

(3)

invCL(u, v) =
√

CL(u, v) · (1− CL(v, u)) (4)

Like Lenci and Benotto, we focus on the stricter hypernymy relation, rather than lexical entailment.
We believe that the different relations that make up lexical entailment have different distributional indi-
cations and that, for that reason, it will be easier to detect the relations separately than together.

Baroni et al. (2012) proposes a supervised approach to hypernymy detection that represents two words
as the concatenation of their vectors. They also mention in passing another supervised approach that
represents two words as the component-wise difference of their vectors. These are broadly the two
approaches that we test, though we introduce significant modifications.

3 Data

3.1 Distributional Vector Spaces

We use three standard types of distributional spaces.

U+W2: This space is based on a concatenation of the Gigaword, BNC, English Wackypedia and
ukWaC corpora (Baroni et al., 2009). The corpora are POS-tagged and lemmatized. We keep only
content words (nouns, proper nouns, adjectives and verbs) with a corpus frequency of 500 or larger. The
resulting U+ corpus has roughly 133K word types and 2.8B word tokens. We created a vector space by
counting co-occurrences of these word types within a window of two words on the left and the right,
using the top 20k most frequent content words as dimensions. The space was transformed using Positive
Pointwise Mutual Information (PPMI).

U+Sent: The U+Sent space is constructed the same way as U+W2, but uses full sentence contexts
instead of 2-word windows.

TypeDM: This space is extracted from the TypeDM tensors (Baroni and Lenci, 2011). TypeDM con-
tains a list of weighted tuples, 〈〈w1, l, w2〉, σ〉, where w1 and w2 are content words, l is a corpus-derived
syntagmatic relationship between the words, and σ is a weight estimating saliency of the relationship. We
construct vectors for every unique w1 using the set of 〈l, w2〉 pairs as dimensions and corresponding σ
values as dimension weights. We select TypeDM for its excellent performance in previous comparisons
of distributional hypernymy measures (Lenci and Benotto, 2012).

Reduced Spaces: In some experiments, we use dimensionality reduced spaces. We reduce all three
spaces to 300 dimensions using Singular Value Decomposition. We use a subscript to denote reduced
spaces, e.g. U+W2300. When necessary, we use the term original dimensions to refer to the vector
dimensions from the original, non-reduced spaces (e.g. U+W2); the term latent dimensions refers to the
dimensions in the reduced spaces (e.g. U+W2300).

3.2 Evaluation Data Sets

BLESS: The BLESS data set (Baroni and Lenci, 2011) covers 200 concepts, or concrete and unambigu-
ous terms (divided into 17 different general concept classes, including vehicle and ground mammal), and
their relationships to other nouns, called relata. Example concepts include van and horse. Each concept
is related to several relata through different semantic relations. Following Lenci and Benotto (2012), we
focus on the four semantic relations where both concepts and relata are nouns, for a total 14K data points:
Hypernymy, denoting a superset relationship (e.g. animal-dog); Co-hyponymy, denoting words that share
a common hypernym (e.g. dog-cat); Meronymy, denoting a part-whole relationship (e.g. tail-dog); and
Random, denoting no relationship between the words (e.g. dog-computer).
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Figure 1: Distributions of relata invCL scores for the U+W2, U+Sent, and TypeDM spaces for each of
the semantic relations, after per-concept z-normalization.

ENTAILMENT: (Baroni et al., 2012): The ENTAILMENT data set consists of 2,770 word pairs, bal-
anced between positive (house-building) and negative (leader-rider) examples of hypernymy, with 1376
unique hyponyms and 1016 unique hypernyms. The positive examples were generated by selecting direct
hypernym relationships from WordNet, the negative examples by randomly permuting the hypernyms of
the positive examples, and then manually checking correctness.

4 Distributional Inclusion across Spaces

We test several unsupervised distributional approaches to hypernymy detection from the literature, fo-
cusing on the underlying vector space representation as the main parameter that we vary. We use the
three spaces described in Section 3. We test four hypernymy detection approaches, all of them similarity
measures based on the Distributional Inclusion Hypothesis: WeedsPrec, balAPinc, ClarkeDE, and invCL.
Our baseline is the standard cosine measure. We evaluate on the BLESS dataset.

To evaluate on BLESS, we follow the evaluation scheme laid out in Baroni and Lenci (2011). Given a
space and similarity measure, we compute similarity for each concept and relatum. For each concept, we
select its nearest neighbors (according to the given similarity measure) in each of the four relations (CO-
HYP, HYPER, MERO, RANDOM), and transform the corresponding four similarities to z-scores. Across
all concepts, this yields four sets of z-normalized similarity scores, one for each relation. These four sets
describe the relative similarity of concepts to their nearest neighbors in different relations. Tukey’s Hon-
estly Significant Difference test is used for testing whether scores differ significantly between relations
(threshold: p < 0.05).

Figure 1 shows the distributions of z-scores for invCL for the four relations, with one graph for each
of the three spaces we consider. For this illustration, we focus on invCL because it shows the overall best
performance at identifying hypernymy. The rightmost plot in Figure 1 replicates the analysis of Lenci
and Benotto (2012), who used the TypeDM space. It confirms their finding that invCL gives significantly
higher values to hypernyms than co-hyponyms – at least on this space. However, in the U+W2 and
U+Sent spaces (leftmost and middle plot), invCL clearly loses any ability to rank hypernyms the highest;
indeed, in both spaces, co-hyponymy and meronymy both have significantly higher z-scores than hyper-
nymy. Concerning the other measures, we found that they patterned with invCL. On TypeDM, ClarkeDE
and WeedsPrec had significantly higher nearest-neighbor values for hypernyms than co-hyponyms.2 On
U+W2 and U+Sent, all measures ranked co-hyponyms significantly higher than hypernyms. With the
baseline measure, cosine, the similarity ratings for the CO-HYP relation are always the highest, no matter
the space, followed by HYPER, MERO, RANDOM in this order.

Following Kotlerman et al. (2010) and Lenci and Benotto (2012), we also report the performance of
the measures using Mean Average Precision (MAP). Average Precision (AP) is a measure often used in

2balAPinc could not be evaluated on TypeDM due to computational issues.
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Measure CO-HYP HYPER MERO RANDOM

U+W2
cosine .68 .20 .27 .27
ClarkeDE .66 .19 .28 .28
invCL .60 .18 .31 .28

U+Sent
cosine .66 .18 .28 .28
ClarkeDE .66 .15 .29 .28
invCL .59 .13 .34 .29

TypeDM
cosine .78 .19 .20 .29
ClarkeDE .45 .35 .25 .32
invCL .38 .36 .27 .33

Table 1: Mean Average Precision for the unsupervised measures on three spaces.

the Information Retrieval community with a maximal AP score of 1 when all relevant documents (relata
with the right relationship, in our case) are ranked at the top. We compute AP on a per-concept basis and
report the mean over all 200 AP values. An advantage of MAP is that, while the BLESS analysis method
focuses on nearest neighbors, MAP evaluates the ranking of all relata. A disadvantage of MAP is that it
does not test the degree to which a similarity measure separates different semantic relations, like Tukey
does, so it may overstate the discriminative power of a particular measure. However, it provides a more
intuitive accuracy-like number compared to the BLESS evaluation.

Table 1 shows the Mean Average Precision values for cosine, ClarkeDE, and invCL on all three spaces.
We also computed WeedsPrec and balAPinc results, obtaining the same picture; we focus on ClarkeDE
and invCL because ClarkeDE is a component of invCL, and invCL is the current best measure. The results
corresponding to Lenci and Benotto’s are shown in the lowest part of Table 1, where we report numbers
for TypeDM. Like Lenci and Benotto, we find that unsupervised measures other than invCL rank co-
hyponyms the highest, and obtain relatively low results for hypernyms. For invCL in TypeDM, Lenci
and Benotto obtain 0.38 MAP for co-hyponyms and a slightly higher 0.40 for hypernyms, though they
do not report significance testing results. We obtain 0.38 for co-hyponyms and 0.36 for hypernyms, and
the difference is not significant.3 Even though our results are slightly different from those in Lenci and
Benotto (2012), both our results and theirs point to at most a weak preference of invCL for hypernyms
over co-hyponyms. Moreover, in the U+W2 and U+Sent spaces we see that all three measures are very
poor at identifying hypernyms, and the co-hyponymy relation stubbornly persists as most relevant to all
three measures, by a large margin.

Our results thus constitute a puzzle for the Distributional Inclusion Hypothesis. It seems that there
must be some merit to the hypothesis: On one particular space, namely TypeDM, the nearest neighbors
in the hypernymy relation had higher similarity scores than any other relation by a significant margin.
This was true for all the hypernymy detectors we studied. But even on TypeDM, the MAP evaluation
showed at most a weak hypernymy signal, and when spaces other than TypeDM were used, the effect
vanished altogether. So how strong an indication for hypernymy can we expect from distributional
inclusion measures in general? We will return to this question below, where our answer will be: The
Distributional Inclusion Hypothesis seems to hold after all, but it needs to be applied to the right kind of
dimensions – and a supervised approach can help in picking the right dimensions.

As the unsupervised approaches struggle to detect hypernymy and do not seem robust to changes in
standard space parameters, we think it is time to consider supervised approaches. In the next section, we
explore two simple supervised approaches that show good performance and are robust to changes in the
underlying space.

3Wilcoxon signed-rank test.
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5 Supervised Hypernymy Detection

We use two simple, supervised models for predicting BLESS and ENTAILMENT relations. The first
(Concat) is a model previously proposed by Baroni et al. (2012). The second (Diff) takes up an idea
from a footnote in Baroni et al. (2012), but while that footnote stated that the approach in question did
not work, we find that, with a few modifications, it obtains the best performance – and can be interpreted
as a supervised version of the Distributional Inclusion Hypothesis. Note that while we used unreduced
spaces in the previous section, we now use reduced spaces throughout (these are the spaces with the 300

subscript), in order not to have more features than data points.

5.1 Models, Features, and Method

Concat: We use a standard Support Vector Machine (SVM) classifier with a concatenation of vectors as
input features. SVMs are binary classifiers which learn the maximum margin hyperplane separating the
two classes. SVMs employ kernel functions to find the hyperplanes in higher dimensional spaces which
are nonlinear in the original space. As feature vectors for the classifier, we follow Baroni et al. (2012)
and use the concatenation of the latent dimension vectors representing words. For the ENTAILMENT

dataset, we use the concatenation of the hyponym latent vector and the hypernym latent vector for each
word pair as training features, and the entails/doesn’t entail annotations as binary targets. For BLESS,
we use the concatenation of the concept latent vector and the relatum latent vector as training features,
and the four relationship classes as targets. We choose the four-way task rather than a “hypernymy vs.
other” classification because BLESS contains many more co-hyponymy and random than hypernymy
pairs, which would give a very high baseline in the two-way task. Additionally, the other relations in
BLESS, in particular meronymy, may be interesting in their own right.

Since SVMs are binary classifiers, we use SciKit-Learn’s default setting to train 6 pairwise-relation
one-vs-one classifiers which vote on the final answer. We use a polynomial kernel with a degree of 3
and a penalty term of C = 1.0, and all other hyperparameters are chosen using the SciKit-Learn default
values (Pedregosa et al., 2011). No hyperparameters are tuned in any experiment.

Diff: Our second classifier is a Logistic Regression (aka MaxEnt) model trained on difference vectors.
Logistic Regression is a statistical model for binary classification. It learns a linear hyperplane sepa-
rating the classes and estimates a probability for classes using a logistic function. We selected Logistic
Regression over other possible linear classifiers for its natural ability to give likelihood estimates, which
we believe will be useful in future work in an application of hypernymy classification to RTE.

As feature vectors, we use a Mikolov-inspired method of representing word pairs as the difference
vectors between the two words.4 Baroni et al. (2012) suggested the use of difference vectors as input
to a classifier, but reported them as unsuccessful. We found difference vectors to be excellent features,
with three important modifications: a linear classifier is better than a nonlinear one; vectors must be
normalized to have a magnitude of 1 before taking the difference; and squared difference vectors must
also be included as features. So, we represent each word pair with latent vectors (u, v) as a two part
vector 〈f ; g〉, where

fi =
ui

‖u‖ −
vi

‖v‖ ,

gi = f 2
i .

These differences features5 are analogous to a supervised distributional inclusion measure. The dif-
ference between two words on a particular dimension captures the degree of distributional inclusion on
that dimension. The primary distinction between the difference features and the unsupervised measures
is that the supervised classifier learns to weight the importance of different dimensions. The f features
encode directional aspects of distributional inclusion: that the hyponym contexts should be included in

4After recent work using subtraction to represent analogy in certain neural-network spaces (Mikolov et al., 2013).
5We also tried variations, such as not normalizing vectors and removing the difference squared vector, but found this setting

the best. We also tried the Diff features with an SVM and other nonlinear classifiers, but they performed worse.
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Data set BLESS ENTAILMENT

Baseline .46 .50
Classifier Concat Diff Concat Diff
U+W2300 .76 .84 .81 .85
U+Sent300 .73 .80 .78 .82
TypeDM300 - .82 .65 .85

Table 2: Average accuracy of Concat and Diff on BLESS and ENTAILMENT using different spaces for
feature generation.

those of the hypernym (the weight learned is positive), and the hypernym contexts should not be in-
cluded in those of the hyponym (the weight learned is negative). So like invCL, this model uses a “proper
subset” interpretation of the Distributional Inclusion Hypothesis, but only considers selected dimensions
(i.e. those that the model assigns nonzero weights).

The difference-squared features (g), on the other hand, typically identify dimensions that are not in-
dicative of hypernymy, by learning negative weights on them (more about this in Section 6). Thus, rather
than helping identify hypernyms, they help separate random relations from the rest.

We use a L1 regularizer with a strength of C = 1.0. All other hyperparameters are chosen using
the SciKit-Learn defaults. Since Diff is also a binary classifier, we use SciKit-Learn’s default setting of
training 4 one-vs-all classifiers for BLESS, with the most confident classifier choosing the final answer.

Method: For evaluation on BLESS, we hold out one concept and train on the remaining 199 concepts.
We also exclude from the training set any pair containing a relatum which appears in the test set. This
way, no word that appears in the test set has been seen in training. We report the average accuracy across
all concepts. We use the most frequent relation type (random) as our baseline. For the ENTAILMENT data
set, we hold out one hyponym and train on all remaining hyponyms. Again, we exclude from training
any pair containing a hypernym which appears in the test set. We report average accuracy across all
hyponyms. The data set is balanced, so the baseline is 0.5.

5.2 Results

Table 2 shows the performance of the two classifiers, Concat and Diff, on both the BLESS and ENTAIL-
MENT datasets, using three underlying spaces. We use the reduced versions of the three spaces, indicated
by the subscript 300. Note that the Concat classifier could not converge using features from TypeDM300,
so we omit the result. With both methods, we obtain a high accuracy on the two datasets, with results
around .8 against baselines around .5. Our best result is .84 on BLESS and .85 on ENTAILMENT. More-
over, both approaches are in general robust to changes in space parameters (with TypeDM/Concat an
outlier). Still, the U+W2300 space seems to be the best for this task: Its scores are significantly6 higher
than the rest, except for TypeDM on ENTAILMENT, which achieves the same score as U+W2300. Diff
achieves significantly higher results than Concat.

When provided more information, Concat outperforms Diff. For instance, if cross-validation is done
over all pairs in BLESS in the U+W2300 space, Concat achieves .98 accuracy, while Diff obtains .90.
However, in this setting the same words appear in the training and test sets (albeit in different pairs).
We take this to mean that Concat is memorizing, rather than learning the hypernymy relation. This
emphasizes the need for our stricter evaluation that prevents repetition between training and test sets.

Clearly, both classifiers do fairly well at predicting hypernymy relations between words, regardless
of space. Naturally, one should ask what are the classifiers capturing that the unsupervised measures
are missing? We propose that the supervised classifiers perform essentially the same operation as the
unsupervised measures, but are learning to determine the relevance of dimensions. In particular, Diff
is learning weights on vector difference features. This is equivalent to doing selective distributional
inclusion. In the next section, we test this Selective Distributional Inclusion Hypothesis.

6Wilcoxon signed-rank test, p < .001.
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Figure 2: Distributions of relata scores across concepts using the cosine, ClarkeDE, and invCL measures
(after per-concept z-normalization). Here we use the selected dimensions of the U+W2proj space.

6 Selective Distributional Inclusion

In order to test how well our supervised model is capturing the notion of selective distributional inclusion,
we test each of the unsupervised measures on a smaller space, limited only to the dimensions preferred
by the classifier. We emphasize that we do not aim to show that our supervised method outperforms
unsupervised methods, but rather that the unsupervised methods benefit greatly from feature selection.
Additionally, we analyze which dimensions are selected by the classifier to facilitate understanding of
why these dimensions are important.

6.1 Experiment

We train the Diff classifier using the dimensionality-reduced U+W2300 space with the same method we
use in Section 5. We take the classifier’s learned hyperplane separating hypernyms from other relations,
and project the hyperplane back into the original U+W2 space.7 We select the 500 dimensions in the orig-
inal space that are most relevant according to the classifier weights, and test the unsupervised measures
on this new space, which we denote as U+W2proj .8

The 500 most relevant dimensions are selected as follows: We select the 250 most negatively weighted
original dimensions using the difference features f . These are the features that have smaller values for
hyponyms (e.g. dog) than for hypernyms (e.g. animal), so they characterize hypernymy. We further select
the 250 most positively weighted original dimensions using the squared-differences features g. These
are the ones where a large difference does not indicate hypernymy.

Figure 2 shows the boxplots for the BLESS analysis: the distributions of nearest-neighbor similarity
scores for the four different semantic relations, for the measures cosine, ClarkeDE, and invCL. We see
that invCL now easily discriminates hypernymy from the other relations in the backprojected space. (The
difference of HYPER and CO-HYP is significant.) This is even though the space is based on U+W2, where
invCL failed to rate hypernyms higher than co-hypernyms in Section 4. Unsurprisingly, cosine, which
does not measure distributional inclusion, still prefers CO-HYP.

Table 3 shows the MAP scores for three of the measures in the new U+W2proj space. (The results
for balAPinc and WeedsPrec are slightly worse than ClarkeDE.) All measures except for cosine assign
higher scores to hypernyms than they did in the original space (compare to U+W2 part of Table 1). But
it is only invCL that ranks hypernyms significantly higher than co-hyponyms.9

7Ideally we would train on the original space to inspect the relevant dimensions. However, there are more dimensions than
examples, so we train on the SVD space and backproject.

8Note that U+W2proj varies slightly from concept to concept, since the hyperplane is learned on a per-concept basis. It is
important that we use the linear Diff classifier for this reverse-projection procedure, as the separating hyperplane must be linear
in order to complete the projection. In particular, the hyperplane in the Concat classifier cannot be easily backprojected, since
it exists in a higher dimensional space than the projection matrix. Furthermore, it is important that we use a classifier trained
using the difference features because of its analogy to the Distributional Inclusion Hypothesis.

9Wilcoxon signed-rank test, p < .001. To check that the measures are being improved by the dimension selection and not
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Measure CO-HYP HYPER MERO RANDOM

U+W2proj

cosine .69 .20 .24 .28
ClarkeDE .55 .39 .24 .29
invCL .42 .58 .24 .29

Table 3: Mean Average Precision for the unsupervised measures after selecting the top dimensions from
a supervised model.

For this experiment, we train on all of BLESS except for one concept and then evaluate the unsuper-
vised models on the held-out concept – that is a setting that could, in principle, be used as a hypernymy
detector. If we instead train the supervised model on all of BLESS to determine an upper bound of how
well dimension selection can do on this dataset, MAP for invCL rises to .67.

Overall, these experiments provide strong evidence for the Selective Distributional Inclusion Hypoth-
esis: The Distributional Inclusion Hypothesis holds, but only for relevant dimensions. In addition, hy-
pernymy detectors need to test for “proper inclusion” of distributional contexts in order to really find
hypernyms.

Analysis of Selected Dimensions. We examine the 500 dimensions selected by the above procedure,
in order to see what the classifier is learning. As this is for analysis only, the dimensions were selected
by training on all data.

Recall that the difference-squared g features can be interpreted as dimensions that the classifier deems
not indicative of hypernymy. 200 out of the 250 most relevant dimensions by g are Computer Science
related terms like software, configure, or Linux. Since ukWaC, the largest corpus we use, is web-based,
it makes sense that it has many CS-related terms, which are noise when it comes to hypernymy detection
for BLESS concepts. Also, we find that while the supervised approach needs the negative information
from the g features (for Diff in the U+W2300 space, omitting g features yields a drop from .84 to .8),
the unsupervised measures cannot use it. Dropping g features improves invCL results from .58 to .61.
The g-based dimensions are explicitly those for which distributional inclusion should not hold, so they
constitute noise to the unsupervised approaches.

The f features can be interpreted as dimensions that characterize hypernyms. An inspection reveals
two clear patterns. First, the features are topically relevant for the BLESS dataset. The 17 concept classes
in the dataset belong to three broader groups: animals, plants, and artifacts. An annotation of the 250
dimensions by one of the authors showed that 58 dimensions are typical of animals (parasite, extinct), 14
typical of vegetables (flora, nutrient), 80 typical of artifacts (repair, mechanical), 49 are general terms
(find, worthy), and 49 have no clear interpretation (thee, enigmatic). Second, the features are general
terms. For instance, for animals we find terms like animal, insect, creature, fauna, species, evolutionary,
pathogen, nature, ecology. We also find many hypernyms, including many concept class names.

Clearly, the selected features are domain dependent; most are directly related to the concepts and
concept classes of BLESS. We expect that our method should work well for other data sets, given its high
accuracy and the strict training procedure. However, these features are unlikely to be global indicators of
hypernymy. This emphasizes the need, in future work, to find a way to automatically determine relevance
on a per-word basis.

7 Conclusion

In this paper, we have tested the Distributional Inclusion Hypothesis, the basis for distributional ap-
proaches to hypernymy. We have found that the hypothesis only works if inclusion is selectively applied
to a set of relevant dimensions.

just by restricting to a smaller space, we evaluated the similarity measures on a variation of the U+W2 space which uses 500
randomly selected dimensions from the original space. The results are approximately unchanged from those on the original
U+W2 space.
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We have tested two simple supervised approaches to distributional hypernymy detection and have
found that they show good performance, and are robust to changes in the underlying space. Our best
classifier achieves .84 accuracy on BLESS and .85 on the ENTAILMENT dataset of Baroni et al. (2012). It
uses features that encode dimension-wise difference between vectors. This classifier can be interpreted
as selecting the dimensions necessary for the Distributional Inclusion Hypothesis to work, thus as an
effective way to implement selective distributional inclusion.

The next natural step is to use the supervised features to guide development of an unsupervised mea-
sure for hypernymy detection: Now that we have examples, we hope to propose a method which selects
relevant features automatically. We also would like to explore detection of other relationships, such
as meronymy. Finally, we would like to perform an extrinsic evaluation of our hypernymy detection
approach in an actual RTE system.
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