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Abstract

In this paper, we propose an approach to automatically learning feature embeddings to address
the feature sparseness problem for dependency parsing. Inspired by word embeddings, feature
embeddings are distributed representations of features that are learned from large amounts of
auto-parsed data. Our target is to learn feature embeddings that can not only make full use of
well-established hand-designed features but also benefit from the hidden-class representations
of features. Based on feature embeddings, we present a set of new features for graph-based
dependency parsing models. Experiments on the standard Chinese and English data sets show
that the new parser achieves significant performance improvements over a strong baseline.

1 Introduction

Discriminative models have become the dominant approach for dependency parsing (Nivre et al., 2007;
Zhang and Clark, 2008; Hatori et al., 2011). State-of-the-art accuracies have been achieved by the use of
rich features in discriminative models (Carreras, 2007; Koo and Collins, 2010; Bohnet, 2010; Zhang and
Nivre, 2011). While lexicalized features extracted from non-local contexts enhance the discriminative
power of parsers, they are relatively sparse. Given a limited set of training data (typically less than 50k
sentences for dependency parsing), the chance of a feature occurring in the training data but not in the
test data can be high.

Another limitation on features is that many are typically derived by (manual) combination of atomic
features. For example, given the head word (wh) and part-of-speech tag (ph), dependent word (wd)
and part-of-speech tag (pd), and the label (l) of a dependency arc, state-of-the-art dependency parsers
can have the combined features: [wh; ph], [wh; ph; wd; pd], [wh; ph; wd], and so on, in addition to the
atomic features: [wh], [ph], etc. Such combination is necessary for high accuracies because the dominant
approach uses linear models, which can not capture complex correlations between atomic features.

We tackle the above issues by borrowing solutions from word representations, which have been in-
tensely studied in the NLP community (Turian et al., 2010). In particular, distributed representations of
words have been used for many NLP problems, which represent a word by information from the words
it frequently co-occurs with (Lin, 1997; Curran, 2005; Collobert et al., 2011; Bengio, 2009; Mikolov
et al., 2013b). The representation can be learned from large amounts of raw sentences, and hence used
to reduce OOV rates in test data. In addition, since the representation of each word carries information
about its context words, it can also be used to calculate word similarity (Mikolov et al., 2013a), or used
as additional semantic features (Koo et al., 2008).

In this paper, we show that a distributed representation can be learned for features also. Learned
from large amount of automatically parsed data, the representation of each feature can be defined on the
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features it frequently co-occurs with. Similar to words, the feature representation can be used to reduce
the rate of unseen features in test data, and to capture inherent correlations between features. Borrowing
terminologies from word embeddings, we call the feature representation feature embeddings.

Compared with the task of learning word embeddings, the task of learning feature embeddings is
more difficult because the size of features is much larger than the vocabulary size and tree structures
are more complex than word sequences. This requires us to find an effective embedding format and an
efficient inference algorithm. Traditional LSA and RNN (Collobert et al., 2011; Bengio, 2009) models
turn out to be very slow for feature embeddings. Recently, Mikolov et al. (2013a) and Mikolov et al.
(2013b) introduce efficient models to learn high-quality word embeddings from extremely large amounts
of raw text, which offer a possible solution to the efficiency issue of learning feature embeddings. We
adapt their approach for learning feature embeddings, showing how an unordered feature context can
be used to learn the representation of a set of complex features. Using this method, a large number
of embeddings are trained from automatically parsed texts, based on which a set of new features are
designed and incorporated into a graph-based parsing model (McDonald and Nivre, 2007).

We conduct experiments on the standard data sets of the Penn English Treebank and the Chinese Tree-
bank V5.1. The results indicate that our proposed approach significantly improves parsing accuracies.

2 Background

In this section, we introduce the background of dependency parsing and build a baseline parser based on
the graph-based parsing model proposed by McDonald et al. (2005).

2.1 Dependency parsing
Given an input sentence x = (w0, w1, ..., wi, ..., wm), where w0 is ROOT and wi (i ̸= 0) refers to a
word, the task of dependency parsing is to find y∗ which has the highest score for x,

y∗ = arg max
y∈Y (x)

score(x, y)

where Y (x) is the set of all the valid dependency trees for x. There are two major models (Nivre
and McDonald, 2008): the transition-based model and graph-based model, which showed comparable
accuracies for a wide range of languages (Nivre et al., 2007; Bohnet, 2010; Zhang and Nivre, 2011;
Bohnet and Nivre, 2012). We apply feature embeddings to a graph-based model in this paper.

2.2 Graph-based parsing model
We use an ordered pair (wi, wj) ∈ y to define a dependency relation in tree y from word wi to word wj

(wi is the head and wj is the dependent), and Gx to define a graph that consists of a set of nodes Vx =
{w0, w1, ..., wi, ..., wm} and a set of arcs (edges) Ex = {(wi, wj)|i ̸= j, wi ∈ Vx, wj ∈ (Vx − {w0})}.
The parsing model of McDonald et al. (2005) searches for the maximum spanning tree (MST) in Gx.

We denote Y (Gx) as the set of all the subgraphs of Gx that are valid spanning trees (McDonald and
Nivre, 2007). The score of a dependency tree y ∈ Y (Gx) is the sum of the scores of its subgraphs,

score(x, y) =
∑
g∈y

score(x, g) =
∑
g∈y

f(x, g) · w (1)

where g is a spanning subgraph of y, which can be a single arc or adjacent arcs, f(x, g) is a high-
dimensional feature vector based on features defined over g and x, and w refers to the weights for the
features. In this paper we assume that a dependency tree is a spanning projective tree.

2.3 Baseline parser
We use the decoding algorithm proposed by Carreras (2007) and use the Margin Infused Relaxed Al-
gorithm (MIRA) (Crammer and Singer, 2003; McDonald et al., 2005) to train feature weights w. We
use the feature templates of Bohnet (2010) as our base feature templates, which produces state-of-the-art
accuracies. We further extend the features by introducing more lexical features to the base features. The
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First-order
[wp]h, [wp]d, d(h, d)
[wp]h, d(h, d)
wd, pd, d(h, d)
[wp]d, d(h, d)
wh, ph, wd, pd, d(h, d)
ph, wh, pd, d(h, d)
wh, wd, pd, d(h, d)
wh, ph, [wp]d, d(h, d)
ph, pb, pd, d(h, d)
ph, ph+1, pd−1, pd, d(h, d)
ph−1, ph, pd−1, pd, d(h, d)
ph, ph+1, pd, pd+1, d(h, d)
ph−1, ph, pd, pd+1, d(h, d)
Second-order
ph, pd, pc, d(h, d, c)
wh, wd, cw, d(h, d, c)
ph, [wp]c, d(h, d, c)
pd, [wp]c, d(h, d, c)

Second-order (continue)
wh, [wp]c, d(h, d, c)
wd, [wp]c, d(h, d, c)
[wp]h, [wp]h+1, [wp]c, d(h, d, c)
[wp]h−1, [wp]h, [wp]c, d(h, d, c)
[wp]h, [wp]c−1, [wp]c, d(h, d, c)
[wp]h, [wp]c, [wp]c+1, d(h, d, c)
[wp]h−1, [wp]h, [wp]c−1, [wp]c, d(h, d, c)
[wp]h, [wp]h+1, [wp]c−1, [wp]c, d(h, d, c)
[wp]h−1, [wp]h, [wp]c, [wp]c+1, d(h, d, c)
[wp]h, [wp]h+1, [wp]c, [wp]c+1, d(h, d, c)
[wp]d, [wp]d+1, [wp]c, d(h, d, c)
[wp]d−1, [wp]d, [wp]c, d(h, d, c)
[wp]d, [wp]c−1, [wp]c, d(h, d, c)
[wp]d, [wp]c, [wp]c+1, d(h, d, c)
[wp]d, [wp]d+1, [wp]c−1, [wp]c, d(h, d, c)
[wp]d, [wp]d+1, [wp]c, [wp]c+1, d(h, d, c)
[wp]d−1, [wp]d, [wp]c−1, [wp]c, d(h, d, c)
[wp]d−1, [wp]d, [wp]c, [wp]c+1, d(h, d, c)

Table 1: Base feature templates.

base feature templates are listed in Table 1, where h and d refer to the head, the dependent, respectively,
c refers to d’s sibling or child, b refers to the word between h and d, +1 (−1) refers to the next (previous)
word, w and p refer to the surface word and part-of-speech tag, respectively, [wp] refers to the surface
word or part-of-speech tag, d(h, d) is the direction of the dependency relation between h and d, and
d(h, d, c) is the directions of the relation among h, d, and c.

We train a parser with the base features and use it as the Baseline parser. Defining fb(x, g) as the base
features and wb as the corresponding weights, the scoring function becomes,

score(x, g) = fb(x, g) · wb (2)

3 Feature Embeddings

Our goal is to reduce the sparseness of rich features by learning a distributed representation of features,
which is dense and low dimensional. We call the distributed feature representation feature embeddings.
In the representation, each dimension represents a hidden-class of the features and is expected to capture
a type of similarities or share properties among the features.

The key to learn embeddings is making use of information from a local context, and to this end
various methods have been proposed for learning word embeddings. Lin (1997) and Curran (2005) use
the count of words in a surrounding word window to represent distributed meaning of words. Brown
et al. (1992) uses bigrams to cluster words hierarchically. These methods have been shown effective
on words. However, the number of features is much larger than the vocabulary size, which makes it
infeasible to apply them on features. Another line of research induce word embeddings using neural
language models (Bengio, 2008). However, the training speed of neural language models is too slow for
the high dimensionality of features. Mikolov et al. (2013b) and Mikolov et al. (2013a) introduce efficient
methods to directly learn high-quality word embeddings from large amounts of unstructured raw text.
Since the methods do not involve dense matrix multiplications, the training speed is extremely fast.

We adapt the models of Mikolov et al. (2013b) and Mikolov et al. (2013a) for learning feature embed-
dings from large amounts of automatically parsed dependency trees. Since feature embeddings have a
high computational cost, we also use Negative sampling technique in the learning stage (Mikolov et al.,
2013b). Different from word embeddings, the input of our approach is features rather than words, and
the feature representations are generated from tree structures instead of word sequences. Consequently,
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Figure 1: An example of one-step context. Figure 2: One-step surrounding features.

we give a definition of unordered feature contexts and adapt the algorithms of Mikolov et al. (2013b) for
feature embeddings.

3.1 Surrounding feature context

The most important difference between features and words is the contextual structure. Given a sentence
x =w1, w2, ..., wn and its dependency tree y, we define the M -step context as a set of relations reachable
within M steps from the current relation. Here one step refers to one dependency arc. For instance, the
one-step context includes the surrounding relations that can be reached in one arc, as shown in Figure 1.
In the figure, for the relation between “with” and “fork”, the relation between “ate” and “with” is in the
one-step context, while the relation between “He” and “ate” is in the two-step context because it can be
reached via the arc between “ate” and “with”. A larger M results in more contextual features and thus
might lead to a more accurate embedding, but at the expense of training speed.

Based on the M -step context, we use surrounding features to represent the features on the current
dependency relations. The surrounding features are defined on the relations in the M -step context. Take
1-step context as an example. Figure 2 shows the representations for the current relation between “with”
and “fork” in Figure 1. Given the current relation and the relations in its one-step context, we generate
the features based on the base feature templates. In Figure 2 the current feature “f1:with, fork, R”
can be represented by the surrounding features “cf1:ate, with, R” and “cf1: fork, a, L” based on the
template “T1:wh, wd, d(h, d)”. Similarly, all the features on the current relation are represented by the
features on the relations in the one-step context. To reduce computational cost, we generate for every
feature its contextual features based on the same feature template. As a result, the embeddings for each
feature template is trained separately. In the experiments, we use one-step context for learning feature
embeddings.

3.2 Feature Embedding model

We adapt the models of Mikolov et al. (2013b) and Mikolov et al. (2013a) to infer feature embeddings
(FE). Based on the representation of surrounding context, the input to the learning models is a set of
features and the output is feature embeddings as shown in Figure 3. For each dependency tree in large
amounts of auto-parsed data, we generate the base features and associate them with their surrounding
contextual features. Then all the base features are put into a set, which is used as the training instances
for learning models.

In the embedding model, we use the features on the current dependency arc to predict the surround-
ing features, as shown in Figure 4. Given sentences and their corresponding dependency trees Y , the
objective of the model is to maximize the conditional log-likelihood of context features,∑

y∈Y

∑
f∈Fy

∑
cf∈CFf

log(p(cf |f)) (3)
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Figure 3: Input feature set. Figure 4: The feature embedding model.

where Fy is a set of features generated from tree y, CFf is the set of surrounding features in the M -step
context of feature f . p(cf |f) can be computed by using the softmax function (Mikolov et al., 2013b),
for which the input is f and the output is cf ,

p(cf |f) =
exp(v′cf

Tvf )∑F
i=1 exp(v′cfi

Tvf )
(4)

where vf and v′f are the input and output vector representations of f , and F is the number of features in
the feature table. The formulation is impractical for large data because the number of features is large
(in the millions) and the computational cost is too high.

To compute the probabilities efficiently, we use the Negative sampling method proposed by Mikolov
et al. (2013b), which approximates the probability by the correct example and K negative samples for
each instance. The formulation to compute log(p(cf |f)) is,

log σ(v′cf
T
vf ) +

K∑
k=1

Ecfk∼P (cf)[log σ(−v′cfk

T
vf )] (5)

where σ(z) = 1/(1 + exp(−z)) and P (f) is the noise distribution on the data. Following the setting of
Mikolov et al. (2013b), we set K to 5 in our experiments.

We predict the set of features one by one. Stochastic gradient ascent is used to perform the following
iterative update after predicting the ith feature,

θ ← θ + α(
∂

∑
cf log(p(cfi|f)

∂θ
) (6)

where α is the learning rate and θ includes the parameters of the model and the vector representations
of features. The initial value of α is 0.025. If the log-likelihood does not improve significantly after one
update, the rate is halved (Mikolov et al., 2009).

3.3 Distributed representation
Based on the proposed surrounding context, we use the feature embedding model with the help of the
Negative sampling method to learn feature embeddings. For each base template Ti, the distributed rep-
resentations are stored in a matrixMi ∈ Rd×|Fi|, where d is the number of dimensions (to be chosen
in the experiments) and |Fi| is the size of the features Fi for Ti. For each feature f ∈ Fi, its vector is
vf = [v1, ..., vd].
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< j : T (f) · Φ(vj) > for j ∈ [1, d]
< j : T (f) · Φ(vj), wh > for j ∈ [1, d]

Table 2: FE-based templates.

4 Parsing with feature embeddings

In this section, we discuss how to apply the feature embeddings to dependency parsing.

4.1 FE-based feature templates
The base parsing model contains only binary features, while the values in the feature embedding repre-
sentation are real numbers that are not in a bounded range. If the range of the values is too large, they will
exert much more influence than the binary features. To solve this problem, we define a function Φ(vi)
(details are given in Section 4.3) to convert real values to discrete values. The vector vf = [v1, ..., vd] is
converted into vN

f = [Φ(v1), ...,Φ(vd)].
We define a set of new feature templates for the parsing models, capturing feature embedding infor-

mation. Table 2 shows the new templates, where T (f) refers to the base template type of feature f . We
remove any new feature related to the surface form of the head if the word is not one of the Top-N most
frequent words in the training data. We used N=1000 for the experiments, which reduces the size of the
feature sets.

4.2 FE parser
We combine the base features with the new features by a new scoring function,

score(x, g) = fb(x, g) · wb + fe(x, g) · we (7)

where fb(x, g) refers to the base features, fe(x, g) refers to the FE-based features, and wb and we are
their corresponding weights, respectively. The feature weights are learned during training using MIRA
(Crammer and Singer, 2003; McDonald et al., 2005).

We use the same decoding algorithm in the new parser as in the Baseline parser. The new parser is
referred to as the FE Parser.

4.3 Discretization functions
There are various functions to convert the real values in the vectors into discrete values. Here, we use a
simple method. First, for the ith base template, the values in the jth dimension are sorted in decreasing
order Lij . We divide the list into two parts for positive (Lij+) and negative (Lij−), respectively, and
define two functions. The first function is,

Φ1(vj) =


+B1 if vj is in top 50% in Lij+

+B2 if vj is in bottom 50% in Lij+

−B1 if vj is in top 50% in Lij−
−B2 if vj is in bottom 50% in Lij−

The second function is,

Φ2(vj) =
{

+B1 if vj is in top 50% in Lij+

−B2 if vj is in bottom 50% in Lij−

In Φ2, we only consider the values (“+B1” and “-B2”), which have strong values (positive or negative)
on each dimension, and omit the values which are close to zero. We refer the systems with Φ1 as M1
and the ones with Φ2 as M2. We also tried the original continuous values and the scaled values as used
by Turian et al. (2010), but the results were negative.

5 Experiments

We conducted experiments on English and Chinese data, respectively.
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train dev test
PTB 2-21 22 23
CTB5 001-815 886-931 816-885

1001-1136 1148-1151 1137-1147

Table 3: Data sets of PTB and CTB5.

# of words # of sentences
BLLIP WSJ 43.4M 1.8M
Gigaword Xinhua 272.3M 11.7M

Table 4: Information of raw data.
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Figure 5: Effect of different sizes of embeddings on the development data.

5.1 Data sets

We used the Penn Treebank (PTB) to generate the English data sets, and the Chinese Treebank version 5.1
(CTB5) to generate the Chinese data sets. “Penn2Malt”1 was used to convert the data into dependency
structures with the English head rules of Yamada and Matsumoto (2003) and the Chinese head rules
of Zhang and Clark (2008). The details of data splits are listed in Table 3, where the data partition of
Chinese were chosen to match previous work (Duan et al., 2007; Li et al., 2011b; Hatori et al., 2011).

Following the work of Koo et al. (2008), we used a tagger trained on the training data to provide
part-of-speech (POS) tags for the development and test sets, and used 10-way jackknifing to generate
part-of-speech tags for the training set. For English we used the MXPOST (Ratnaparkhi, 1996) tagger
and for Chinese we used a CRF-based tagger with the feature templates defined in Zhang and Clark
(2008). We used gold-standard segmentation in the CTB5 experiments. The accuracies of part-of-speech
tagging are 97.32% for English and 93.61% for Chinese on the test sets, respectively.

To obtain feature contexts, we processed raw data to obtain dependency trees. For English, we used the
BLLIP WSJ Corpus Release 1.2 For Chinese, we used the Xinhua portion of Chinese Gigaword3 Version
2.0 (LDC2009T14). The statistical information of raw data sets is listed in Table 4. The MXPOST part-
of-speech tagger and the Baseline dependency parser trained on the training data were used to process
the sentences of the BLLIP WSJ corpus. For Chinese, we need to perform word segmentation and part-
of-speech tagging before parsing. The MMA system (Kruengkrai et al., 2009) trained on the training
data was used to perform word segmentation and tagging, and the Baseline parser was used to parse the
sentences in the Gigaword corpus.

We report the parser quality by the unlabeled attachment score (UAS), i.e., the percentage of tokens
(excluding all punctuation tokens) with the correct HEAD. We also report the scores on complete depen-
dency tree matches (COMP).

1http://w3.msi.vxu.se/˜nivre/research/Penn2Malt.html
2We excluded the texts of PTB from the BLLIP WSJ Corpus.
3We excluded the texts of CTB5 from the Gigaword data.
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UAS COMP
Baseline 92.78 48.08
Baseline+BrownClu 93.37 49.26
M2 93.74 50.82
Koo and Collins (2010) 93.04 N/A
Zhang and Nivre (2011) 92.9 48.0
Koo et al. (2008) 93.16 N/A
Suzuki et al. (2009) 93.79 N/A
Chen et al. (2009) 93.16 47.15
Zhou et al. (2011) 92.64 46.61
Suzuki et al. (2011) 94.22 N/A
Chen et al. (2013) 93.77 51.36

Table 5: Results on English data.
N/A=Not Available.

POS UAS COMP
Baseline 93.61 81.04 29.73
M2 93.61 82.94 31.72
Li et al. (2011a) 93.08 80.74 29.11
Hatori et al. (2011) 93.94 81.33 29.90
Li et al. (2012) 94.51 81.21 N/A
Chen et al. (2013) N/A 83.08 32.21

Table 6: Results on Chinese data.
N/A=Not Available.

5.2 Development experiments

In this section, we use the English development data to investigate the effects of different vector sizes
of feature embeddings, and compare the systems with the discretization functions Φ1 (M1) and Φ2 (M2)
(defined in Section 4.3), respectively. To reduce the training time, we used 10% of the labeled training
data to train the parsing models.

Turian et al. (2010) reported that the optimal size of word embedding dimensions was task-specific for
NLP tasks. Here, we investigated the effect of different sizes of embedding dimensions on dependency
parsing. Figure 5 shows the effect on UAS scores as we varied the vector sizes. The systems with FE-
based features always outperformed the Baseline. The curve of M2 was almost flat and we found that M1
performed worse as the sizes increased. Overall, M2 performed better than M1. For M2, 10-dimensional
embeddings achieved the highest score among all the systems. Based on the above observations, we
chose the following settings for further evaluations: 10-dimensional embeddings for M2.

5.3 Final results on English data

We trained the M2 model on the full training data and evaluated it on the English testing data. The
results are shown in Table 5. The parser using the FE-based features outperformed the Baseline. We
obtained absolute improvements of 0.96 UAS points. As for the COMP scores, M2 achieved absolute
improvement of 2.74 over the Baseline. The improvements were significant in McNemar’s Test (p <
10−7) (Nivre et al., 2004).

We listed the performance of the related systems in Table 5. We also added the cluster-based features
of Koo et al. (2008) to our baseline system listed as “Baseline+BrownClu” in Table 5. From the table,
we found that our FE parsers obtained comparable accuracies with the previous state-of-the-art systems.
Suzuki et al. (2011) reported the best result by combining their method with the method of Koo et al.
(2008). We believe that the performance of our parser can be further enhanced by integrating their
methods.

5.4 Final results on Chinese data

We also evaluated the systems on the testing data for Chinese. The results are shown in Table 6. Sim-
ilar to the results on English, the parser using the FE-based features outperformed the Baseline. The
improvements were significant in McNemar’s Test (p < 10−8) (Nivre et al., 2004).

We listed the performance of the related systems4 on Chinese in Table 6. From the table, we found
that the scores of our FE parser was higher than most of the related systems and comparable with the
results of Chen2013, which was the best reported scores so far.

4We did not include the result (83.96) of Wu et al. (2013) because their part-of-speech tagging accuracy is 97.7%, much
higher than ours and other work. Their tagger includes rich external resources.
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6 Related work

Learning feature embeddings are related to two lines of research: deep learning models for NLP, and
semi-supervised dependency parsing.

Recent studies used deep learning models in a variety of NLP tasks. Turian et al. (2010) applied
word embeddings to chunking and Named Entity Recognition (NER). Collobert et al. (2011) designed
a unified neural network to learn distributed representations that were useful for part-of-speech tagging,
chunking, NER, and semantic role labeling. They tried to avoid task-specific feature engineering. Socher
et al. (2013) proposed a Compositional Vector Grammar, which combined PCFGs with distributed word
representations. Zheng et al. (2013) investigated Chinese character embeddings for Chinese word seg-
mentation and part-of-speech tagging. Wu et al. (2013) directly applied word embeddings to Chinese
dependency parsing. In most cases, words or characters were the inputs to the learning systems and
word/character embeddings were used for the tasks. Our work is different in that we explore distributed
representations at the feature level and we can make full use of well-established hand-designed features.

We use large amounts of raw data to infer feature embeddings. There are several previous studies
relevant to using raw data for dependency parsing. Koo et al. (2008) used the Brown algorithm to learn
word clusters from a large amount of unannotated data and defined a set of word cluster-based features
for dependency parsing models. Suzuki et al. (2009) adapted a Semi-supervised Structured Conditional
Model (SS-SCM) to dependency parsing. Suzuki et al. (2011) reported the best results so far on the
standard test sets of PTB using a condensed feature representation combined with the word cluster-based
features of Koo et al. (2008). Chen et al. (2013) mapped the base features into predefined types using
the information of frequencies counted in large amounts of auto-parsed data. The work of Suzuki et al.
(2011) and Chen et al. (2013) were to perform feature clustering. Ando and Zhang (2005) presented
a semi-supervised learning algorithm named alternating structure optimization for text chunking. They
used a large projection matrix to map sparse base features into a small number of high level features over
a large number of auxiliary problems. One of the advantages of our approach is that it is simpler and
more general than that of Ando and Zhang (2005). Our approach can easily be applied to other tasks by
defining new feature contexts.

7 Conclusion

In this paper, we have presented an approach to learning feature embeddings for dependency parsing from
large amounts of raw data. Based on the feature embeddings, we represented a set of new features, which
was used with the base features in a graph-based model. When tested on both English and Chinese, our
method significantly improved the performance over the baselines and provided comparable accuracy
with the best systems in the literature.
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