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Abstract

Structured distributional semantic models aim to improve upon simple vector space models of
semantics by hypothesizing that the meaning of a word is captured more effectively through its
relational — rather than its raw distributional — signature. In accordance, they extend the vector
space paradigm by structuring elements with relational information that decompose distributional
signatures over discrete relation dimensions. However, the number and nature of these relations
remains an open research question, with most previous work in the literature employing syn-
tactic dependencies as surrogates for truly semantic relations. In this paper we propose a novel
structured distributional semantic model with latent relation dimensions, and instantiate it using
latent relational analysis. Evaluation of our model yields results that significantly outperform
several other distributional approaches on two semantic tasks and performs competitively on a
third relation classification task.

1 Introduction

The distributional hypothesis, articulated by Firth (1957) in the popular dictum “You shall know the
word by the company it keeps”, has established itself as one of the most popular models of modern
computational semantics. With the rise of massive and easily-accessible digital corpora, computation of
co-occurrence statistics has enabled researchers in NLP to build distributional semantic models (DSMs)
that have found relevance in many application areas. These include information retrieval (Manning et
al., 2008), question answering (Tellex et al., 2003), word-sense disambiguation (McCarthy et al., 2004)
and selectional preference modelling (Erk, 2007), to name only a few.

The standard DSM framework, which models the semantics of a word by co-occurrence statistics
computed over its neighbouring words, has several known short-comings. One severe short-coming
derives from the fundamental nature of the vector space model, which characterizes the semantics of a
word by a single vector in a high dimensional space (or some lower dimensional embedding thereof).

Such a modelling paradigm goes against the grain of the intuition that the semantics of a word is neither
unique nor constant. Rather, it is composed of many facets of meaning, and similarity (or dissimilarity)
to other words is an outcome of the aggregate harmony (or dissonance) between the individual facets
under consideration. For example, a shirt may be similar along one facet to a balloon in that they are
both coloured blue, at the same time being similar to a shoe along another facet for both being articles
of clothing, while being dissimilar along yet another facet to a t-shirt because one is stitched from linen
while the other is made from polyester.

Structured distributional semantic models (SDSMs) aim to remedy this fault with DSMs by decompos-
ing distributional signatures over discrete relation dimensions, or facets. This leads to a representation
that characterizes the semantics of a word by a distributional tensor, rather than a vector. Previous at-
tempts in the literature include the work of Padó and Lapata (2007), Baroni and Lenci (2010) and Goyal
et al. (2013). However, all these approaches assume a simplified representation in which truly semantic
relations are substituted by syntactic relations obtained from a dependency parser.
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We believe that there are limiting factors to this approximation. Most importantly, the set of syntactic
relations, while relatively uncontroversial, is unable to capture the full extent of semantic nuance encoun-
tered in natural language text. Often, syntax is ambiguous and leads to multiple semantic interpretations.
Conversely, passivization and dative shift are common examples of semantic invariance in which mul-
tiple syntactic realizations are manifested. Additionally, syntax falls utterly short in explaining more
complex phenomena – such as the description of buying and selling – in which implicit semantics are
tacit from complex interactions between multiple participants.

While it is useful to consider relations that draw their origins from semantic roles such as Agent,
Patient and Recipient, it remains unclear what this set of semantic roles should be. This problem is
one that has long troubled linguists (Fillmore, 1967; Sowa, 1991), and has been previously noted by
researchers in NLP as well (Màrquez et al., 2008). Proposed solutions range from a small set of generic
Agent-like or Patient-like roles in Propbank (Kingsbury and Palmer, 2002) to an effectively open-ended
set of highly specific and fine-grained roles in Framenet (Baker et al., 1998). In addition to the theoretic
uncertainty of the set of semantic relations there is the very real problem of the lack of high-performance,
robust semantic parsers to annotate corpora. These issues effectively render the use of pre-defined,
linguistically ordained semantic relations intractable for use in SDSM.

In this paper we propose a novel approach to structuring distributional semantic models with latent
relations that are automatically discovered from corpora. This approach effectively solves the conceptual
dilemma of selecting the most expressive set of semantic relations. To the best of our knowledge this
is the first paper to propose latent relation dimensions for SDSMs. The intuition for generating these
latent relation dimensions leads to a generic framework, which — in this paper — is instantiated with
embeddings obtained from latent relational analysis (Turney, 2005).

We conduct experiments on three different semantic tasks to evaluate our model. On a similarity
scoring task and another synonym ranking task the model significantly outperforms other distributional
semantic models, including a standard window-based model, a syntactic SDSM based on previous ap-
proaches proposed in the literature, and a state-of-the-art semantic model trained using recursive neural
networks. On a relation classification task, our model performs competitively, outperforming all but one
of the models it is compared against.

2 Related Work

Since the distributional hypothesis was first proposed by Firth (1957), a number of different research
initiatives have attempted to extend and improve the standard distributional vector space model of se-
mantics. Insensitivity to the multi-faceted nature of semantics has been one of the focal points of several
papers. Earlier work in this regard is a paper by Turney (2012), who proposes that the semantics of a word
is not obtained along a single distributional axis but simultaneously in two different spaces. He proposes
a DSM in which co-occurrence statistics are computed for neighbouring nouns and verbs separately to
yield independent domain and function spaces of semantics.

This intuition is taken further by a stance which proposes that a word’s semantics is distributionally
decomposed over many independent spaces – each of which is a unique relation dimension. Authors
who have endorsed this perspective are Erk and Padó (2008), Goyal et al. (2013), Reisinger and Mooney
(2010) and Baroni and Lenci (2010). Our work relates to these papers in that we subscribe to the multiple
space semantics view. However, we crucially differ from them by structuring our semantic space with
information obtained from latent semantic relations rather than from a syntactic parser. In this paper the
instantiation of the SDSM with latent relation dimensions is obtained using LRA (Turney, 2005), which
is an extension of LSA (Deerwester et al., 1990) to induce relational embeddings for pairs of words.

From a modelling perspective, SDSMs characterize the semantics of a word by a distributional ten-
sor. Other notable papers on tensor based semantics or semantics of compositional structures are the
simple additive and multiplicative models of Mitchell and Lapata (2009), the matrix-vector neural net-
work approach of Socher et al. (2012), the physics inspired quantum view of semantic composition of
Grefenstette and Sadrzadeh (2011) and the tensor-factorization model of Van de Cruys et al. (2013).

A different, partially overlapping strain of research attempts to induce word embeddings using meth-
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ods from deep learning, yielding state-of-the-art results on a number of different tasks. Notable research
papers on this topic are the ones by Collobert et al. (2011), Turian et al. (2010) and Socher et al. (2010).

Other related work to note is the body of research concerned with semantic relation classification,
which is one of our evaluation tasks. Research community wide efforts in the SemEval-2007 task 4
(Girju et al., 2007), the SemEval-2010 task 8 (Hendrickx et al., 2009) and the SemEval-2012 task 2
(Jurgens et al., 2012) are notable examples. However, different from our work, most previous attempts at
semantic relation classification operate on the basis of feature engineering and contextual cues (Bethard
and Martin, 2007).

3 Structured Distributional Semantics and Latent Semantic Relation Induction

In this section we formalize the notion of SDSM as an extension of DSM and present a novel SDSM
with latent relation dimensions.

A DSM is a vector space V that contains |Σ| elements in Rn, where Σ = {w1, w2, ..., wk} is a vocab-
ulary of k distinct words. Every vocabulary word wi has an associated semantic vector ~vi representing its
distributional signature. Each of the n elements of ~vi is associated with a single dimension of its distribu-
tion. This dimension may correspond to another word — that may or may not belong to Σ — or a latent
dimension as might be obtained from an SVD projection or an embedding learned via a deep neural net-
work. Additionally, each element in ~vi is typically a normalized co-occurrence frequency count, a PMI
score, or a number obtained from an SVD or RNN transformation. The semantic similarity between two
words wi and wj in a DSM is the vector distance defined by cos(~vi, ~vj) on their associated distributional
vectors.

An SDSM is an extension of DSM. Formally, it is a space U that contains |Σ| elements in Rd×n, where
Σ = {w1, w2, ..., wk} is a vocabulary of k distinct words. Every vocabulary word wi has an associated
semantic tensor ~~ui, which is itself composed of d vectors ~ui1, ~ui2, ..., ~uid each having n dimensions.
Every vector ~uil ∈ ~~ui represents the distributional signature of the word wi in a relation (or along a
facet) rl. The d relations of the SDSM may be syntactic, semantic, or latent (as in this paper). The n
dimensional relational vector ~uil is configurationally the same as a vector ~vi of a DSM. This definition
of an SDSM closely relates to an alternate view of Distributional Memories (DMs) (Baroni and Lenci,
2010) where the semantic space is a third-order tensor, whose modes are Word× Link×Word.

The semantic similarity between two wordswi andwj in an SDSM is the similarity function defined by
sim(~~ui, ~~uj) on their associated semantic tensors. We use the following decomposition of the similarity
function:

sim(~~ui, ~~uj) =
1
d

d∑
l=1

cos( ~uil, ~ujl) (1)

Mathematically, this corresponds to the ratio of the normalized Frobenius product of the two matrices
representing ~~ui and ~~uj to the number of rows in both matrices. Intuitively it is simply the average
relation-wise similarity between the two words wi and wj .

3.1 Latent Relation Induction for SDSM

The intuition behind our approach for inducing latent relation dimensions revolves around the simple ob-
servation that SDSMs, while representing semantics as distributional signatures over relation dimensions,
also effectively encode relational vectors between pairs of words. Our method thus works backwards
from this observation — beginning with a relational embedding for pairs of words, that are subsequently
transformed to yield an SDSM.

Concretely, given a vocabulary Γ = {w1, w2, ..., wk} and a list of word pairs of interest from the
vocabulary ΣV ⊆ Γ × Γ, we assume that we have some method for inducing a DSM V ′ that has a
vector representation ~v′ij of length d for every word pair wi, wj ∈ ΣV , which intuitively embeds the
distributional signature of the relation binding the two words in d latent dimensions. We then construct
an SDSM U where ΣU = Γ. For every word wi ∈ Γ a tensor ~~ui ∈ Rd×k is generated. The tensor ~~ui
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has d unique k dimensional vectors ~ui1, ~ui2, ..., ~uid. For a given relational vector ~uil, the value of the
jth element is taken from the lth element of the vector ~v′ij belonging to the DSM V ′. If the vector ~v′ij
does not exist in V ′ – as is the case where the pair wi, wj /∈ ΣV – the value of the jth element of ~uil is
set to 0. By applying this mapping to generate semantic tensors for every word in Γ, we are left with an
SDSM U that effectively embeds latent relation dimensions. From the perspective of DMs we matricize
the third-order tensor and perform truncated SVD, before restoring the resulting matrix to a third-order
tensor.

3.1.1 Latent Relational Analysis
In what follows, we present our instantiation of this model with an implementation that is based on
Latent Relational Analysis (LRA) (Turney, 2005) to generate the DSM V ′. While other methods (such
as RNNs) are equally applicable in this scenario, we use LRA for its operational simplicity as well as
proven efficacy on semantic tasks such as analogy detection. The parameter values we chose in our
experiments are not fine-tuned and are guided by recommended values from Turney (2005), or scaled
suitably to accommodate the size of ΣV .

The input to LRA is a vocabulary Γ = {w1, w2, ..., wk} and a list of word pairs of interest from the
vocabulary ΣV ⊆ Γ × Γ. While one might theoretically consider a large vocabulary with all possi-
ble pairs, for computational reasons we restrict our vocabulary to approximately 4500 frequent English
words and only consider about 2.5% word pairs with high PMI (as computed on the whole of English
Wikipedia) in Γ× Γ. For each of the word pairs wi, wj ∈ ΣV we extract a list of contexts by querying a
search engine indexed over the combined texts of the whole of English Wikipedia and Gigaword corpora
(approximately 5.8× 109 tokens). Suitable query expansion is performed by taking the top 4 synonyms
of wi and wj using Lin’s thesaurus (Lin, 1998). Each of these contexts must contain both wi, wj (or
appropriate synonyms) and optionally some intervening words, and some words to either side.

Given such contexts, patterns for every word pair are generated by replacing the two target words wi

and wj with placeholder characters X and Y , and replacing none, some or all of the other words by their
associated part-of-speech tag or a wildcard symbol. For example, if wi and wj are “eat” and “pasta”
respectively, and the queried context is “I eat a bowl of pasta with a fork”, one would generate patterns
such as “* X * NN * Y IN a *”, “* X DT bowl IN Y with DT *”, etc. For every word pair, only the 5000
most frequent patterns are stored.

Once the set of all relevant patterns P = p1, p2, ..., pn have been computed a DSM V is constructed.
In particular, the DSM constitutes a ΣV based on the list of word pairs of interest, and every word pair
wi, wj of interest has an associated vector ~vij . Each element m of the vector ~vij is a count pertaining to
the number of times that the pattern pm was generated by the word pair wi, wj .

3.1.2 SVD Transformation
The resulting DSM V is noisy and very sparse. Two transformations are thus applied to V . Firstly all
co-occurrence counts between word pairs and patterns are transformed to PPMI scores (Bullinaria and
Levy, 2007). Then given the matrix representation of V — where rows correspond to word pairs and
columns correspond to patterns — SVD is applied to yield V = M∆N . HereM andN are matrices that
have unit-length orthogonal columns and ∆ is a matrix of singular values. By selecting the d top singular
values, we approximate V with a lower dimension projection matrix that reduces noise and compensates
for sparseness: V ′ = Md∆d. This DSM V ′ in d latent dimensions is precisely the one we then use to
construct an SDSM, using the transformation described above.

Since the large number of patterns renders it effectively impossible to store the entire matrix V in
memory we use a memory friendly implementation1 of a multi-pass stochastic algorithm to directly
approximate the projection matrix (Halko et al., 2011; Rehurek, 2010). A detailed analysis to see how
change in the parameter d effects the quality of the model is presented in section 4.

The optimal SDSM embeddings we trained and used in the experiments detailed below are available
for download at http://www.cs.cmu.edu/~sjauhar/Software_files/LR-SDSM.tar.

1http://radimrehurek.com/gensim/
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Model Spearman’s ρ
Random 0.000

DSM 0.179
synSDSM 0.315
SENNA 0.510

LR-SDSM (300) 0.567
LR-SDSM (130) 0.586

Table 1

Model Acc.
Random 0.25

DSM 0.28
synSDSM 0.27
SENNA 0.38

LR-SDSM (300) 0.47
LR-SDSM (130) 0.51

Table 2

Results on the WS-353 similarity scoring task and the ESL synonym selection task. LRA-SDSM signif-
icantly outperforms other structured and non-structured distributional semantic models.

gz. This SDSM contains a vocabulary of 4546 frequent English words with 130 latent relation dimen-
sions.

4 Evaluation

Section 3 has described a method for embedding latent relation dimensions in SDSMs. We now turn to
the problem of evaluating these relations within the scope of the distributional paradigm in order to ad-
dress two research questions: 1) Are latent relation dimensions a viable and empirically competitive solu-
tion for SDSM? 2) Does structuring lead to a semantically more expressive model than a non-structured
DSM? In order to answer these questions we evaluate our model on two generic semantic tasks and
present comparative results against other structured and non-structured distributional models. We show
that we outperform all of them significantly, thus answering both research questions affirmatively.

While other research efforts have produced better results on these tasks (Jarmasz and Szpakowicz,
2003; Gabrilovich and Markovitch, 2007; Hassan and Mihalcea, 2011), they are either lexicon or knowl-
edge based, or are driven by corpus statistics that tie into auxiliary resources such as multi-lingual in-
formation and structured ontologies like Wikipedia. Hence they are not relevant to our experimental
validation, and are consequently ignored in our comparative evaluation.

4.1 Word-Pair Similarity Scoring Task

The first task consists in using a semantic model to assign similarity scores to pairs of words. The dataset
used in this evaluation setting is the WS-353 dataset from Finkelstein et al. (2002). It consists of 353
pairs of words along with an averaged similarity score on a scale of 1.0 to 10.0 obtained from 13–16
human judges. Word pairs are presented as-is, without any context. For example, an item in this dataset
might be “book, paper→ 7.46”.

System scores are obtained by using the standard cosine similarity measure between distributional
vectors in a non-structured DSM. In the case of a variant of SDSM, these scores can be found by using
the cosine-based similarity functions in Equation 1 of the previous section. System generated output
scores are evaluated against the gold standard using Spearman’s rank correlation coefficient.

4.2 Synonym Selection Task

In the second task, the same set of semantic space representations is used to select the semantically closest
word to a target from a list of candidates. The ESL dataset from Turney (2002) is used for this task, and
was selected over the slightly larger TOEFL dataset (Landauer and Dumais, 1997). The reason for this
choice was because the latter contained more complex vocabulary words — several of which were not
present in our simple vocabulary model. The ESL dataset consists of 50 target words that appear with 4
candidate lexical substitutes each. While disambiguating context is also given in this dataset, we discard
it in our experiments. An example item in this dataset might be “rug→ sofa, ottoman, carpet, hallway”,
with “carpet” being the most synonym-like candidate to the target.
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Figure 1: Evaluation results on WS-353 and ESL with varying number of latent dimensions. Generally
high scores are obtained in the range of 100-150 latent dimensions, with optimal results on both datasets
at 130 latent dimensions.

Similarity scores — which are obtained in the same manner as for the previous evaluation task —
are extracted between the target and each of the candidates in turn. These scores are then sorted in
descending order, with the top-ranking score yielding the semantically closest candidate to the target.
Systems are evaluated on the basis of their accuracy at discriminating the top-ranked candidate.

4.3 Results

We compare our model (LR-SDSM) to several other distributional models in these experiments. These
include a standard distributional vector space model (DSM) trained on the combined text of English
Wikipedia and Gigaword with a window-size of 3 words to either side of a target, a syntax-based SDSM
(Goyal et al., 2013; Baroni and Lenci, 2010) (synSDSM) trained on the same corpus parsed with a
dependency parser (Tratz and Hovy, 2011) and the state-of-the-art neural network embeddings from
Collobert et al. (2011) (SENNA). We also give the expected evaluation scores from a random baseline,
for comparison.

An important factor to consider when constructing an SDSM using LRA is the number of latent di-
mensions selected in the SVD projection. In Figure 1 we investigate the effects of selecting different
number of latent relation dimensions on both semantic evaluation tasks, starting with 10 dimensions up
to a maximum of 800 (which was the maximum that was computationally feasible), in increments of 10.
We note that optimal results on both datasets are obtained at 130 latent dimensions. In addition to the
SDSM obtained in this setting we also give results for an SDSM with 300 latent dimensions (which has
been a recommended value for SVD projections in the literature (Landauer and Dumais, 1997)) in our
comparisons against other models. Comparative results on the Finkelstein WS-353 similarity scoring
task are given in Table 1, while those on the ESL synonym selection task are given in Table 2.

4.4 Discussion

The results in Tables 1 and 2 show that LR-SDSM outperforms the other distributional models by a
considerable and statistically significant margin (p-value < 0.05) on both types of semantic evaluation
tasks. It should be noted that we do not tune to the test sets. While the 130 latent dimension SDSM yields
the best results, 300 latent dimensions also gives comparable performance and moreover outperforms all
the other baselines. In fact, it is worth noting that the evaluation results in figure 1 are almost all better
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Random SENNA-Mik
DSM SENNA LR-SDSM

AVC MVC AVC MVC
Prec. 0.111 0.273 0.419 0.382 0.489 0.416 0.431
Rec. 0.110 0.343 0.449 0.443 0.516 0.457 0.475
F-1. 0.110 0.288 0.426 0.383 0.499 0.429 0.444

% Acc. 11.03 34.30 44.91 44.26 51.55 45.65 47.48

Table 3: Results on Relation Classification Task. LR-SDSM scores competitively, outperforming all but
the SENNA-AVC model.

than the results of the other models on either datasets.
We conclude that structuring of a semantic model with latent relational information in fact leads to

performance gains over non-structured variants. Also, the latent relation dimensions we propose offer a
viable and empirically competitive alternative to syntactic relations for SDSMs.

Figure 1 shows the evaluation results on both semantic tasks as a function of the number of latent
dimensions. The general trend of both curves on the figure indicate that the expressive power of the
model quickly increases with the number of dimensions until it peaks in the range of 100–150, and then
decreases or evens out after that. Interestingly, this falls roughly in the range of the 166 frequent (those
that appear 50 times or more) frame elements, or fine-grained relations, from FrameNet that O’Hara and
Wiebe (2009) find in their taxonomization and mapping of a number of lexical resources that contain
semantic relations.

5 Semantic Relation Classification and Analysis of the Latent Structure of Dimensions

In this section we conduct experiments on the task of semantic relation classification. We also perform a
more detailed analysis of the induced latent relation dimensions in order to gain insight into our model’s
perception of semantic relations.

5.1 Semantic Relation Classification
In this task, a relational embedding is used as a feature vector to train a classifier for predicting the
semantic relation between previously unseen word pairs. The dataset used in this experiment is from
the SemEval-2012 task 2 on measuring the degree of relational similarity (Jurgens et al., 2012), since
it characterizes a number of very distinct and interesting semantic relations. In particular it consists of
an aggregated set of 3464 word pairs evidencing 10 kinds of semantic relations. We prune this set to
discard pairs that don’t contain words in the vocabularies of the models we consider in our experiments.
This leaves us with a dataset containing 933 word pairs in 9 classes (1 class was discarded altogether
because it contained too few instances). The 9 semantic relation classes are: “Class Inclusion”, “Part-
Whole”, “Similar”, “Contrast”, “Attribute”, “Non-Attribute”, “Case Relation”, “Cause-Purpose” and
“Space-Time”. For example, an instance of a word pair that exemplifies the “Part-Whole” relationship is
“engine:car”. Note that, as with previous experiments, word pairs are given without any context.

5.2 Results
We compare LR-SDSM on the semantic relation classification task to several different models. These
include the additive vector composition (AVC) and multiplicative vector composition methods (MVC)
proposed by Mitchell and Lapata (2009); we present both DSM and SENNA based variants of these
models. We also compare against the vector difference method of Mikolov et al. (2013) (SENNA-
Mik) which sees semantic relations as a meaning preserving vector translation in an RNN embedded
vector space. Finally, we note the performance of random classification as a baseline, for reference. We
attempted to produce results of a syntactic SDSM on the task; however, the hard constraint imposed by
syntactic adjacency meant that effectively all the word pairs in the dataset yielded zero feature vectors.

To avoid overfitting on all 130 original dimensions in our optimal SDSM, and also to render results
comparable, we reduce the number of latent relation dimensions of LR-SDSM to 50. We similarly reduce
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Figure 2: Correlation distances between semantic relations’ classifier weights. The plot shows how our
latent relations seem to perceive humanly interpretable semantic relations. Most points are fairly well
spaced out, with opposites such as “Attribute” and “Non-Attribute” as well as “Similar” and “Contrast”
being relatively further apart.

the feature vector dimension of DSM-AVC and DSM-MVC to 50 by feature selection. The dimensions
of SENNA-AVC, SENNA-MVC and SENNA-Mik are already 50, and are not reduced further.

For each of the methods we train a logistic regression classifier. We don’t perform any tuning of
parameters and set a constant ridge regression value of 0.2, which seemed to yield roughly the best
results for all models. The performance on the semantic relation classification task in terms of averaged
precision, recall, F-measure and percentage accuracy using 10-fold cross-validation is given in Table 3.

Additionally, to gain further insight into the LR-SDSM’s understanding of semantic relations, we
conduct a secondary analysis. We begin by training 9 one-vs-all logistic regression classifiers for each of
the 9 semantic relations under consideration. Then pairwise correlation distances are measured between
all pairs of weight vectors of the 9 models. Finally, the distance adjacency matrix is projected into 2-d
space using multidimensional scaling. The result of this analysis is presented in Figure 2.

5.3 Discussion

Table 3 shows that LR-SDSM performs competitively on the relation classification task and outperforms
all but one of the other models. The performance differences are statistically significant with a p-value
< 0.5. We believe that some of the expressive power of the model is lost by compressing to 50 latent
relation dimensions, and that a greater number of dimensions might improve performance. However,
testing a model with a 130-length dense feature vector on a dataset containing 933 instances would
likely lead to overfitting and also not be comparable to the SENNA-based models that operate on 50-
length feature vectors.

Other points to note from Table 3 are that the AVC variants of the the DSM and SENNA composition
models tend to perform better than their MVC counterparts. Also, SENNA-Mik performs surprisingly
poorly. It is worth noting, however, that Mikolov et al. (2013) report results on fairly simple lexico-
syntactic relations between words – such as plural forms, possessives and gender – while the semantic
relations under consideration in the SemEval-2012 dataset are relatively more complex.

In the analysis of the latent structure of dimensions presented in Figure 2, there are few interesting
points to note. To begin with, all the points (with the exception of one pair) are fairly well spaced out. At
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the weight vector level, this implies that different latent dimensions need to fire in different combinations
to characterize distinct semantic relations, thus resulting in low correlation between their corresponding
weight vectors. This indicates the fact that the latent relation dimensions seem to capture the intuition
that each of the classes encodes a distinctly different semantic relation. The notable exception is “Space-
Time”, which is very close to “Contrast”. This is probably due to the fact that distributional models are
ineffective at capturing spatio-temporal semantics. Moreover, it is interesting to note that “Attribute"
and “Non-Attribute” as well as “Similar” and “Contrast”, which are intuitively semantic inverses of each
other are also (relatively) distant from each other in the plot.

These general findings indicate an interesting avenue for future research, which involves mapping the
empirically learnt latent relations to hand-built semantic lexicons or frameworks. This could help to vali-
date the empirical models at various levels of linguistic granularity, as well as establish correspondences
between different views of semantic representation.

6 Conclusion and Future Work

In this paper we have proposed a novel paradigm for SDSMs, that allows for structuring via latent
relational information. We have introduced a generic operational framework that allows for building
such SDSMs and outlined an instantiation of the model with LRA. Experimental results of the model
support our claim that the resulting SDSM captures the semantics of words more effectively than a
number of other semantic models, and presents a viable — and empirically competitive — alternative
to syntactic SDSMs. Additionally we have conducted experiments on a relation classification task and
shown promising results, as well as performed analyses to investigate the structure of, and interactions
between, the latent relation dimensions.

These findings motivate a number of future directions of research. Since our framework is fairly gen-
eral we hope to explore techniques other than LRA (such as RNNs) to generate relational embeddings
for word pairs. A desiderata for future techniques is scalability so that we can characterize vocabular-
ies that are larger than the one in our current experiments. We also hope to explore mappings between
our empirically learnt latent relations, and semantic lexicons and frameworks that catalog semantic re-
lations. Finally, we hope to test our model on more realistic application task such as event coreference,
recognizing textual entailment, and semantic parsing in future work.
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