
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers,
pages 69–78, Dublin, Ireland, August 23-29 2014.

Deep Convolutional Neural Networks for
Sentiment Analysis of Short Texts

Cı́cero Nogueira dos Santos
Brazilian Research Lab

IBM Research
cicerons@br.ibm.com

Maı́ra Gatti
Brazilian Research Lab

IBM Research
mairacg@br.ibm.com

Abstract

Sentiment analysis of short texts such as single sentences and Twitter messages is challenging
because of the limited contextual information that they normally contain. Effectively solving this
task requires strategies that combine the small text content with prior knowledge and use more
than just bag-of-words. In this work we propose a new deep convolutional neural network that ex-
ploits from character- to sentence-level information to perform sentiment analysis of short texts.
We apply our approach for two corpora of two different domains: the Stanford Sentiment Tree-
bank (SSTb), which contains sentences from movie reviews; and the Stanford Twitter Sentiment
corpus (STS), which contains Twitter messages. For the SSTb corpus, our approach achieves
state-of-the-art results for single sentence sentiment prediction in both binary positive/negative
classification, with 85.7% accuracy, and fine-grained classification, with 48.3% accuracy. For the
STS corpus, our approach achieves a sentiment prediction accuracy of 86.4%.

1 Introduction

The advent of online social networks has produced a crescent interest on the task of sentiment analysis for
short text messages (Go et al., 2009; Barbosa and Feng, 2010; Nakov et al., 2013). However, sentiment
analysis of short texts such as single sentences and and microblogging posts, like Twitter messages, is
challenging because of the limited amount of contextual data in this type of text. Effectively solving this
task requires strategies that go beyond bag-of-words and extract information from the sentence/message
in a more disciplined way. Additionally, to fill the gap of contextual information in a scalable manner, it
is more suitable to use methods that can exploit prior knowledge from large sets of unlabeled texts.

In this work we propose a deep convolutional neural network that exploits from character- to sentence-
level information to perform sentiment analysis of short texts. The proposed network, named Character
to Sentence Convolutional Neural Network (CharSCNN), uses two convolutional layers to extract rele-
vant features from words and sentences of any size. The proposed network can easily explore the richness
of word embeddings produced by unsupervised pre-training (Mikolov et al., 2013). We perform experi-
ments that show the effectiveness of CharSCNN for sentiment analysis of texts from two domains: movie
review sentences; and Twitter messages (tweets). CharSCNN achieves state-of-the-art results for the two
domains. Additionally, in our experiments we provide information about the usefulness of unsupervised
pre-training; the contribution of character-level features; and the effectiveness of sentence-level features
to detect negation.

This work is organized as follows. In Section 2, we describe the proposed the Neural Network archi-
tecture. In Section 3, we discuss some related work. Section 4 details our experimental setup and results.
Finally, in Section 5 we present our final remarks.

2 Neural Network Architecture

Given a sentence, CharSCNN computes a score for each sentiment label τ ∈ T . In order to score
a sentence, the network takes as input the sequence of words in the sentence, and passes it through

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/

69

a sequence of layers where features with increasing levels of complexity are extracted. The network
extracts features from the character-level up to the sentence-level. The main novelty in our network
architecture is the inclusion of two convolutional layers, which allows it to handle words and sentences
of any size.

2.1 Initial Representation Levels

The first layer of the network transforms words into real-valued feature vectors (embeddings) that cap-
ture morphological, syntactic and semantic information about the words. We use a fixed-sized word
vocabulary V wrd, and we consider that words are composed of characters from a fixed-sized character
vocabulary V chr. Given a sentence consisting of N words {w1, w2, ..., wN}, every word wn is con-
verted into a vector un = [rwrd; rwch], which is composed of two sub-vectors: the word-level embedding
rwrd ∈ Rdwrd

and the character-level embedding rwch ∈ Rcl0u of wn. While word-level embeddings are
meant to capture syntactic and semantic information, character-level embeddings capture morphological
and shape information.

2.1.1 Word-Level Embeddings
Word-level embeddings are encoded by column vectors in an embedding matrix Wwrd ∈ Rdwrd×|V wrd|.
Each column Wwrd

i ∈ Rdwrd
corresponds to the word-level embedding of the i-th word in the vocabulary.

We transform a word w into its word-level embedding rwrd by using the matrix-vector product:

rwrd = Wwrdvw (1)

where vw is a vector of size
∣∣V wrd

∣∣ which has value 1 at index w and zero in all other positions. The
matrix Wwrd is a parameter to be learned, and the size of the word-level embedding dwrd is a hyper-
parameter to be chosen by the user.

2.1.2 Character-Level Embeddings
Robust methods to extract morphological and shape information from words must take into consideration
all characters of the word and select which features are more important for the task at hand. For instance,
in the task of sentiment analysis of Twitter data, important information can appear in different parts
of a hash tag (e.g., “#SoSad”, “#ILikeIt”) and many informative adverbs end with the suffix “ly” (e.g.
“beautifully”, “perfectly” and “badly”). We tackle this problem using the same strategy proposed in
(dos Santos and Zadrozny, 2014), which is based on a convolutional approach (Waibel et al., 1989). As
depicted in Fig. 1, the convolutional approach produces local features around each character of the word
and then combines them using a max operation to create a fixed-sized character-level embedding of the
word.

Given a word w composed of M characters {c1, c2, ..., cM}, we first transform each character cm into
a character embedding rchr

m . Character embeddings are encoded by column vectors in the embedding
matrix W chr ∈ Rdchr×|V chr|. Given a character c, its embedding rchr is obtained by the matrix-vector
product:

rchr = W chrvc (2)

where vc is a vector of size
∣∣V chr

∣∣ which has value 1 at index c and zero in all other positions. The input
for the convolutional layer is the sequence of character embeddings {rchr

1 , rchr
2 , ..., rchr

M }.
The convolutional layer applies a matrix-vector operation to each window of size kchr of successive

windows in the sequence {rchr
1 , rchr

2 , ..., rchr
M }. Let us define the vector zm ∈ Rdchrkchr

as the con-
catenation of the character embedding m, its (kchr − 1)/2 left neighbors, and its (kchr − 1)/2 right
neighbors1:

zm =
(
rchr
m−(kchr−1)/2, ..., r

chr
m+(kchr−1)/2

)T

1We use a special padding character for the characters with indices outside of the word boundaries.

70

Figure 1: Convolutional approach to character-level feature extraction.

The convolutional layer computes the j-th element of the vector rwch ∈ Rcl0u , which is the character-level
embedding of w, as follows:

[rwch]j = max
1<m<M

[
W 0zm + b0

]
j

(3)

where W 0 ∈ Rcl0u×dchrkchr
is the weight matrix of the convolutional layer. The same matrix is used to

extract local features around each character window of the given word. Using the max over all character
windows of the word, we extract a “global” fixed-sized feature vector for the word.

Matrices W chr and W 0, and vector b0 are parameters to be learned. The size of the character vector
dchr, the number of convolutional units cl0u (which corresponds to the size of the character-level embed-
ding of a word), and the size of the character context window kchr are hyper-parameters.

2.2 Sentence-Level Representation and Scoring
Given a sentence x with N words {w1, w2, ..., wN}, which have been converted to joint word-level
and character-level embedding {u1, u2, ..., uN}, the next step in CharSCNN consists in extracting a
sentence-level representation rsent

x . Methods to extract a sentence-wide feature set most deal with two
main problems: sentences have different sizes; and important information can appear at any position in
the sentence. We tackle these problems by using a convolutional layer to compute the sentence-wide
feature vector rsent. This second convolutional layer in our neural network architecture works in a very
similar way to the one used to extract character-level features for words. This layer produces local
features around each word in the sentence and then combines them using a max operation to create a
fixed-sized feature vector for the sentence.

The second convolutional layer applies a matrix-vector operation to each window of size kwrd of
successive windows in the sequence {u1, u2, ..., uN}. Let us define the vector zn ∈ R(dwrd+cl0u)kwrd

as
the concatenation of a sequence of kwrd embeddings, centralized in the n-th word2:

zn =
(
un−(kwrd−1)/2, ..., un+(kwrd−1)/2

)T

2We use a special padding token for the words with indices outside of the sentence boundaries.

71

The convolutional layer computes the j-th element of the vector rsent ∈ Rcl1u as follows:

[rsent]j = max
1<n<N

[
W 1zn + b1

]
j

(4)

where W 1 ∈ Rcl1u×(dwrd+cl0u)kwrd
is the weight matrix of the convolutional layer. The same matrix is

used to extract local features around each word window of the given sentence. Using the max over
all word windows of the sentence, we extract a “global” fixed-sized feature vector for the sentence.
Matrix W 1 and vector b1 are parameters to be learned. The number of convolutional units cl1u (which
corresponds to the size of the sentence-level feature vector), and the size of the word context window
kwrd are hyper-parameters to be chosen by the user.

Finally, the vector rsent
x , the “global’ feature vector of sentence x, is processed by two usual neural

network layers, which extract one more level of representation and compute a score for each sentiment
label τ ∈ T :

s(x) = W 3h(W 2rsent
x + b2) + b3 (5)

where matrices W 2 ∈ Rhlu×cl1u and W 3 ∈ R|T |×hlu , and vectors b2 ∈ Rhlu and b3 ∈ R|T | are parameters
to be learned. The transfer function h(.) is the hyperbolic tangent. The number of hidden units hlu is a
hyper-parameter to be chosen by the user.

2.3 Network Training
Our network is trained by minimizing a negative likelihood over the training set D. Given a sentence x,
the network with parameter set θ computes a score sθ(x)τ for each sentiment label τ ∈ T . In order to
transform these scores into a conditional probability distribution of labels given the sentence and the set
of network parameters θ, we apply a softmax operation over the scores of all tags τ ∈ T :

p (τ |x, θ) =
esθ(x)τ∑

∀i∈T

esθ(x)i (6)

Taking the log, we arrive at the following conditional log-probability:

log p (τ |x, θ) = sθ(x)τ − log

(∑
∀i∈T

esθ(x)i

)
(7)

We use stochastic gradient descent (SGD) to minimize the negative log-likelihood with respect to θ:

θ 7→
∑

(x,y)∈D

−log p(y|x, θ) (8)

where (x, y) corresponds to a sentence in the training corpus D and y represents its respective label.
The backpropagation algorithm is a natural choice to efficiently compute gradients of network archi-

tectures such as the one proposed in this work (Lecun et al., 1998; Collobert, 2011). In order to perform
our experiments, we implement the proposed CharSCNN architecture using the Theano library (Bergstra
et al., 2010). Theano is a versatile Python library that allows the efficient definition, optimization, and
evaluation of mathematical expressions involving multi-dimensional arrays. We use Theano’s automatic
differentiation capabilities in order to implement the backpropagation algorithm.

3 Related Work

There are a few works on neural network architectures for sentiment analysis. In (Socher et al., 2011),
the authors proposed a semi-supervised approach based on recursive autoencoders for predicting senti-
ment distributions. The method learns vector space representation for multi-word phrases and exploits
the recursive nature of sentences. In (Socher et al., 2012), it is proposed a matrix-vector recursive neu-
ral network model for semantic compositionality, which has the ability to learn compositional vector

72

representations for phrases and sentences of arbitrary length. The vector captures the inherent meaning
of the constituent, while the matrix captures how the meaning of neighboring words and phrases are
changed. In (Socher et al., 2013b) the authors propose the Recursive Neural Tensor Network (RNTN)
architecture, which represents a phrase through word vectors and a parse tree and then compute vectors
for higher nodes in the tree using the same tensor-based composition function. Our approach differ from
these previous works because it uses a feed-forward neural network instead of a recursive one. Moreover,
it does not need any input about the syntactic structure of the sentence.

Regarding convolutional networks for NLP tasks, in (Collobert et al., 2011), the authors use a convo-
lutional network for the semantic role labeling task with the goal avoiding excessive task-specific feature
engineering. In (Collobert, 2011), the authors use a similar network architecture for syntactic parsing.
CharSCNN is related to these works because they also apply convolutional layers to extract sentence-
level features. The main difference in our neural network architecture is the addition of one convolutional
layer to extract character features.

In terms of using intra-word information in neural network architectures for NLP tasks, Alexandrescu
et al. (2006) present a factored neural language model where each word is represented as a vector of
features such as stems, morphological tags and cases and a single embedding matrix is used to look
up all of these features. In (Luong et al., 2013), the authors use a recursive neural network (RNN) to
explicitly model the morphological structures of words and learn morphologically-aware embeddings.
Lazaridou et al. (Lazaridou et al., 2013) use compositional distributional semantic models, originally
designed to learn meanings of phrases, to derive representations for complex words, in which the base
unit is the morpheme. In (Chrupala, 2013), the author proposes a simple recurrent network (SRN) to learn
continuous vector representations for sequences of characters, and use them as features in a conditional
random field classifier to solve a character level text segmentation and labeling task. The main advantage
of our approach to extract character-level features is it flexibility. The convolutional layer allows the
extraction of relevant features from any part of the word and do not need handcrafted inputs like stems
and morpheme lists (dos Santos and Zadrozny, 2014).

4 Experimental Setup and Results

4.1 Sentiment Analysis Datasets

We apply CharSCNN for two different corpora from two different domains: movie reviews and Twitter
posts. The movie review dataset used is the recently proposed Stanford Sentiment Treebank (SSTb)
(Socher et al., 2013b), which includes fine grained sentiment labels for 215,154 phrases in the parse
trees of 11,855 sentences. In our experiments we focus in sentiment prediction of complete sentences.
However, we show the impact of training with sentences and phrases instead of only sentences.

The second labeled corpus we use is the Stanford Twitter Sentiment corpus (STS) introduced by
(2009). The original training set contains 1.6 million tweets that were automatically labeled as posi-
tive/negative using emoticons as noisy labels. The test set was manually annotated by Go et al. (2009).
In our experiments, to speedup the training process we use only a sample of the training data consisting
of 80K (5%) randomly selected tweets. We also construct a development set by randomly selecting 16K
tweets from Go et al.’s training set. In Table 1, we present additional details about the two corpora.

Dataset Set # sentences / tweets # classes

SSTb
Train 8544 5
Dev 1101 5
Test 2210 5

STS
Train 80K 2
Dev 16K 2
Test 498 3

Table 1: Sentiment Analysis datasets.

73

4.2 Unsupervised Learning of Word-Level Embeddings

Word-level embeddings play a very important role in the CharSCNN architecture. They are meant to
capture syntactic and semantic information, which are very important to sentiment analysis. Recent
work has shown that large improvements in terms of model accuracy can be obtained by performing
unsupervised pre-training of word embeddings (Collobert et al., 2011; Luong et al., 2013; Zheng et
al., 2013; Socher et al., 2013a). In our experiments, we perform unsupervised learning of word-level
embeddings using the word2vec tool3, which implements the continuous bag-of-words and skip-gram
architectures for computing vector representations of words (Mikolov et al., 2013).

We use the December 2013 snapshot of the English Wikipedia corpus as a source of unlabeled data.
The Wikipedia corpus has been processed using the following steps: (1) removal of paragraphs that are
not in English; (2) substitution of non-western characters for a special character; (3) tokenization of the
text using the tokenizer available with the Stanford POS Tagger (Manning, 2011); (4) and removal of
sentences that are less than 20 characters long (including white spaces) or have less than 5 tokens. Like
in (Collobert et al., 2011) and (Luong et al., 2013), we lowercase all words and substitute each numerical
digit by a 0 (e.g., 1967 becomes 0000). The resulting clean corpus contains about 1.75 billion tokens.

When running the word2vec tool, we set that a word must occur at least 10 times in order to be included
in the vocabulary, which resulted in a vocabulary of 870,214 entries. To train our word-level embeddings
we use word2vec’s skip-gram method with a context window of size 9. The training time for the English
corpus is around 1h10min using 12 threads in a Intelr Xeonr E5-2643 3.30GHz machine.

In our experiments, we do not perform unsupervised pre-training of character-level embeddings, which
are initialized by randomly sampling each value from an uniform distribution: U (−r, r), where r =√

6
|V chr|+ dchr

. There are 94 different characters in the SSTb corpus and 453 different characters in

the STS corpus. Since the two character vocabularies are relatively small, it has been possible to learn
reliable character-level embeddings using the labeled training corpora. The raw (not lowercased) words
are used to construct the character vocabularies, which allows the network to capture relevant information
about capitalization.

4.3 Model Setup

We use the development sets to tune the neural network hyper-parameters. Many different combinations
of hyper-parameters can give similarly good results. We spent more time tuning the learning rate than
tuning other parameters, since it is the hyper-parameter that has the largest impact in the prediction
performance. The only two parameters with different values for the two datasets are the learning rate
and the number of units in the convolutional layer that extract sentence features. This provides some
indication on the robustness of our approach to multiple domains. For both datasets, the number of
training epochs varies between five and ten. In Table 2, we show the selected hyper-parameter values for
the two labeled datasets.

Parameter Parameter Name SSTb STS
dwrd Word-Level Embeddings dimension 30 30
kwrd Word Context window 5 5
dchr Char. Embeddings dimension 5 5
kchr Char. Context window 3 3
cl0u Char. Convolution Units 10 50
cl1u Word Convolution Units 300 300
hlu Hidden Units 300 300
λ Learning Rate 0.02 0.01

Table 2: Neural Network Hyper-Parameters

3https://code.google.com/p/word2vec/

74

In order to assess the effectiveness of the proposed character-level representation of words, we com-
pare the proposed architecture CharSCNN with an architecture that uses only word embeddings. In
our experiments, SCNN represents a network which is fed with word representations only, i.e, for each
word wn its embedding is un = rwrd. For SCNN, we use the same NN hyper-parameters values (when
applicable) shown in Table 2.

4.4 Results for SSTb Corpus

In Table 3, we present the result of CharSCNN and SCNN for different versions of the SSTb corpus. Note
that SSTb corpus is a sentiment treebank, hence it contains sentiment annotations for all phrases in all
sentences in the corpus. In our experiments, we check whether using examples that are single phrases, in
addition to complete sentences, can provide useful information for training the proposed NN. However,
in our experiments the test set always includes only complete sentences. In Table 3, the column Phrases
indicates whether all phrases (yes) or only complete sentences (no) in the corpus are used for training.
The Fine-Grained column contains prediction results for the case where 5 sentiment classes (labels) are
used (very negative, negative, neutral, positive, very positive). The Positive/Negative column presents
prediction results for the case of binary classification of sentences, i.e, the neutral class is removed, the
two negative classes are merged as well as the two positive classes.

Model Phrases Fine-Grained Positive/Negative
CharSCNN yes 48.3 85.7
SCNN yes 48.3 85.5
CharSCNN no 43.5 82.3
SCNN no 43.5 82.0
RNTN (Socher et al., 2013b) yes 45.7 85.4
MV-RNN (Socher et al., 2013b) yes 44.4 82.9
RNN (Socher et al., 2013b) yes 43.2 82.4
NB (Socher et al., 2013b) yes 41.0 81.8
SVM (Socher et al., 2013b) yes 40.7 79.4

Table 3: Accuracy of different models for fine grained (5-class) and binary predictions using SSTb.

In Table 3, we can note that CharSCN and SCNN have very similar results in both fine-grained and bi-
nary sentiment prediction. These results suggest that the character-level information is not much helpful
for sentiment prediction in the SSTb corpus. Regarding the use of phrases in the training set, we can note
that, even not explicitly using the syntactic tree information when performing prediction, CharSCNN
and SCNN benefit from the presence of phrases as training examples. This result is aligned with Socher
et al.’s (2013b) suggestion that information of sentiment labeled phrases improves the accuracy of other
classification algorithms such as support vector machines (SVM) and naive Bayes (NB). We believe
that using phrases as training examples allows the classifier to learn more complex phenomena, since
sentiment labeled phrases give the information of how words (phrases) combine to form the sentiment
of phrases (sentences). However, it is necessary to perform more detailed experiments to confirm this
conjecture.

Regarding the fine-grained sentiment prediction, our approach provides an absolute accuracy improve-
ment of 2.6 over the RNTN approach proposed by (Socher et al., 2013b), which is the previous best
reported result for SSTb. CharSCN, SCNN and Socher et al.’s RNTN have similar accuracy performance
for binary sentiment prediction. Compared to RNTN, our method has the advantage of not needing the
output of a syntactic parser when performing sentiment prediction. For comparison reasons, in Table
3 we also report Socher et al.’s (2013b) results for sentiment classifiers trained with recursive neural
networks (RNN), matrix-vector RNN (MV-RNN), NB, and SVM algorithms.

Initializing word-embeddings using unsupervised pre-training gives an absolute accuracy increase of
around 1.5 when compared to randomly initializing the vectors. The Theano based implementation of
CharSCNN takes around 10 min. to complete one training epoch for the SSTb corpus with all phrases

75

and five classes. In our experiments, we use 4 threads in a Intelr Xeonr E5-2643 3.30GHz machine.

4.5 Results for STS Corpus

In Table 4, we present the results of CharSCNN and SCNN for sentiment prediction using the STS cor-
pus. As expected, character-level information has a greater impact for Twitter data. Using unsupervised
pre-training, CharSCNN provides an absolute accuracy improvement of 1.2 over SCNN. Additionally,
initializing word-embeddings using unsupervised pre-training gives an absolute accuracy increase of
around 4.5 when compared to randomly initializing the word-embeddings.

In Table 4, we also compare CharSCNN performance with other approaches proposed in the literature.
In (Speriosu et al., 2011), a label propagation (LProp) approach is proposed, while Go et al. (2009)
use maximum entropy (MaxEnt), NB and SVM-based classifiers. CharSCNN outperforms the previous
approaches in terms of prediction accuracy. As far as we know, 86.4 is the best prediction accuracy
reported so far for the STS corpus.

Model Accuracy Accuracy (random
(unsup. pre-training) word embeddings)

CharSCNN 86.4 81.9
SCNN 85.2 82.2
LProp (Speriosu et al., 2011) 84.7
MaxEnt (Go et al., 2009) 83.0
NB (Go et al., 2009) 82.7
SVM (Go et al., 2009) 82.2

Table 4: Accuracy of different models for binary predictions (positive/negative) using STS Corpus.

4.6 Sentence-level features

In figures 2 and 3 we present the behavior of CharSCNN regarding the sentence-level features extracted
for two cases of negation, which are correctly predicted by CharSCNN. We choose these cases because
negation is an important issue in sentiment analysis. Moreover, the same sentences are also used as
illustrative examples in (Socher et al., 2013b). Note that in the convolutional layer, 300 features are first
extracted for each word. Then the max operator selects the 300 features which have the largest values
among the words to construct the sentence-level feature set rsent. Figure 2 shows a positive sentence
(left) and its negation. We can observe that in both versions of the sentence, the extracted features
concentrate mainly around the main topic, “film”, and the part of the phrase that indicates sentiment
(“liked” and “did ’nt like”). Note in the left chart that the word “liked” has a big impact in the set of
extracted features. On the other hand, in the right chart, we can see that the impact of the word “like’’ is
reduced because of the negation “did ’nt”, which is responsible for a large part of the extracted features.

In Figure 3 a similar behavior can be observed. While the very negative expression “incredibly dull”
is responsible for 69% of the features extracted from the sentence in the left, its negation “definitely
not dull”, which is somewhat more positive, is responsible for 77% of the features extracted from the
sentence in the chart at right . These examples indicate CharSCNN’s robustness to handle negation, as
well as its ability to capture information that is important to sentiment prediction.

5 Conclusions

In this work we present a new deep neural network architecture that jointly uses character-level, word-
level and sentence-level representations to perform sentiment analysis. The main contributions of the
paper are: (1) the idea of using convolutional neural networks to extract from character- to sentence-
level features; (2) the demonstration that a feed-forward neural network architecture can be as effective
as RNTN (Socher et al., 2013a) for sentiment analysis of sentences; (3) the definition of new state-of-
the-art results for SSTb and STS corpora.

76

 10

 20

 30

 40

 50

 60

 70

I liked
every

single

m
inute

of this
film

.
 0

 10

 20

 30

 40

 50

 60

 70

I did
n’t

like
a single

m
inute

of this
film

.

Figure 2: Number of local features selected at each word when forming the sentence-level representation.
In this example, we have a positive sentence (left) and its negation (right).

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

It ’s just
incredibly

dull

 20

 30

 40

 50

 60

 70

 80

 90

It ’s definitely

not
dull

Figure 3: Number of local features selected at each word when forming the sentence-level representation.
In this example, we have a negative sentence (left) and its negation (right).

As future work, we would like to analyze in more detail the role of character-level representations
for sentiment analysis of tweets. Additionally, we would like to check the impact of performing the
unsupervised pre-training step using texts from the specific domain at hand.

References
Andrei Alexandrescu and Katrin Kirchhoff. 2006. Factored neural language models. In Proceedings of the Human

Language Technology Conference of the NAACL, pages 1–4, New York City, USA, June.

Luciano Barbosa and Junlan Feng. 2010. Robust sentiment detection on twitter from biased and noisy data. In
Proceedings of the 23rd International Conference on Computational Linguistics, pages 36–44.

James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, Guillaume Desjardins,
Joseph Turian, David Warde-Farley, and Yoshua Bengio. 2010. Theano: a CPU and GPU math expression
compiler. In Proceedings of the Python for Scientific Computing Conference (SciPy).

Grzegorz Chrupala. 2013. Text segmentation with character-level text embeddings. In Proceedings of the ICML
workshop on Deep Learning for Audio, Speech and Language Processing.

R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa. 2011. Natural language processing
(almost) from scratch. Journal of Machine Learning Research, 12:2493–2537.

R. Collobert. 2011. Deep learning for efficient discriminative parsing. In Proceedings of the Fourteenth Interna-
tional Conference on Artificial Intelligence and Statistics (AISTATS), pages 224–232.

Cı́cero Nogueira dos Santos and Bianca Zadrozny. 2014. Learning character-level representations for part-of-
speech tagging. In Proceedings of the 31st International Conference on Machine Learning, JMLR: W&CP
volume 32, Beijing, China.

77

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twitter sentiment classification using distant supervision. Tech-
nical report, Stanford University.

Angeliki Lazaridou, Marco Marelli, Roberto Zamparelli, and Marco Baroni. 2013. Compositional–ly derived rep-
resentations of morphologically complex words in distributional semantics. In Proceedings of the 51st Annual
Meeting of the Association for Computational Linguistics (ACL), pages 1517–1526.

Yann Lecun, Lon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based learning applied to document
recognition. In Proceedings of the IEEE, pages 2278–2324.

Minh-Thang Luong, Richard Socher, and Christopher D. Manning. 2013. Better word representations with recur-
sive neural networks for morphology. In Proceedings of the Conference on Computational Natural Language
Learning, Sofia, Bulgaria.

Christopher D. Manning. 2011. Part-of-speech tagging from 97% to 100%: Is it time for some linguistics? In
Proceedings of the 12th International Conference on Computational Linguistics and Intelligent Text Processing,
CICLing’11, pages 171–189.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of word representations in
vector space. In Proceedings of Workshop at International Conference on Learning Representations.

Preslav Nakov, Sara Rosenthal, Zornitsa Kozareva, Veselin Stoyanov, Alan Ritter, and Theresa Wilson. 2013.
Semeval-2013 task 2: Sentiment analysis in twitter. In Second Joint Conference on Lexical and Computational
Semantics (*SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation
(SemEval 2013), pages 312–320, Atlanta, Georgia, USA, June. Association for Computational Linguistics.

Richard Socher, Jeffrey Pennington, Eric H. Huang, Andrew Y. Ng, and Christopher D. Manning. 2011. Semi-
supervised recursive autoencoders for predicting sentiment distributions. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing, pages 151–161.

Richard Socher, Brody Huval, Christopher D. Manning, and Andrew Y. Ng. 2012. Semantic compositionality
through recursive matrix-vector spaces. In Proceedings of theConference on Empirical Methods in Natural
Language Processing, pages 1201–1211.

Richard Socher, John Bauer, Christopher D. Manning, and Andrew Y. Ng. 2013a. Parsing with compositional
vector grammars. In Proceedings of the Annual Meeting of the Association for Computational Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Y. Ng, and Christopher
Potts. 2013b. Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings
of the Conference on Empirical Methods in Natural Language Processing, pages 1631–1642.

Michael Speriosu, Nikita Sudan, Sid Upadhyay, and Jason Baldridge. 2011. Twitter polarity classification with la-
bel propagation over lexical links and the follower graph. In Proceedings of the First Workshop on Unsupervised
Learning in NLP, EMNLP, pages 53–63.

A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang. 1989. Phoneme recognition using time-delay
neural networks. IEEE Transactions on Acoustics, Speech and Signal Processing, 37(3):328–339.

Xiaoqing Zheng, Hanyang Chen, and Tianyu Xu. 2013. Deep learning for chinese word segmentation and pos
tagging. In Proceedings of the Conference on Empirical Methods in NLP, pages 647–657.

78

