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ABSTRACT
Community structure is a common attribute of many social networks, which would give us
a better understanding of the networks. However, as the social networks grow lager and
lager nowadays, the Pareto Principle becomes more and more notable which makes traditional
community discovery algorithms no longer suitable for them. This principle explains the
unbalanced existence of two different types of network actors. Specifically, the core actors
usually occupy only a small proportion of the population, but have a large influence. In
this paper, we propose a novel algorithm LCDN (Latent Community Discovery with Network
Structure) for dividing the core actors. This is a hierarchical probabilistic model based on
statistical topic model and regularized by network structure in data. We had experiments on
three large networks which show that this new model performs much better than the traditional
statistical models and network partitioning algorithms.

KEYWORDS: community discovery, statistical topic models, social networks, core actors, regu-
larization.
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1 Introduction

Social network has been studied for a long time in both empirical ways and theoretical ways. A
common attribute of many networks is community structure. Discovering this inherent attribute
can lead us to a deeper understanding of the networks (Scott, 1988). The study of community
structure in networks is mainly related to the graph partitioning of graph theory and statistical
model. Most of the graph partitioning and statistical model algorithms have been proved
effective. However, a new problem which is known as the Pareto principle arose, especially
in large networks. For many events, roughly 80% of the effects come from 20% of the causes
(Wikipedia, 2001). This also fits many large social networks. In these networks, there exist two
different kinds of actors with disparate social behaviors and social influence. The core actors
get a small proportion of population but make a big proportion of social influence. See figure 1
for an example. Core actors get more attention than the ordinary ones.

Figure 1: Two different kinds of actors

Because of the Pareto principle, the existed community discovery algorithms do not perform very
well about core actors. In order to address this problem, we design a regularized model LCDN
(Latent Community Discovery with Network Structure). The rest of this paper is organized as
follows. We present related work in section 2. In section 3, we define the problem of community
discovery on core network. And In section 4, we propose the novel algorithm LCDN. Finally in
section 5 we discuss the experiments and evaluation.

2 Related work

Community discovery is a problem that arise in, for example, the Social Network Service (SNS).
It is mainly related to the graph partitioning of graph theory and statistical model. For the
graph partitioning of graph theory, its solutions fall into two main classes, agglomerative and
divisive, depending on whether the procedure is to add or to remove the edges in the network
to form communities, such as the k-means algorithm (Hartigan and Wong, 1979) and the
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Girvan-Newman algorithm (Newman and Girvan, 2004). Statistical model is another way to
discover community structure (Zhang et al., 2007b). Statistical model, especially topic model,
has been applied to many domains such as information retrieval successfully (Chang and Blei,
2009). Compared with the graph partitioning of graph theory, statistical model for community
detection introduces probability, which means one actor in the network could belong to more
than one community and the boundaries between different communities could be blurry (Zhang
et al., 2007a). That makes it more explainable (Chang et al., 2009).

3 Problem formulation
We assume that the network to be analyzed is influenced by Pareto Efficiency. These networks
that we are going to handle conspicuously separated the actors into two groups, namely the
core actors and the ordinary actors. Now we introduce the related definitions of LCDN:
Definition 1 (core actor): core actors are more influential. For example, in scientific coauthors,
they publish most of the papers, and in a SNS, they get the highest in-degrees.
Definition 2 (association document): an association document d in a network n is a sequence
of core actors a1, a2...a|d| that are associated with the current actor, where ai is an element from
a fixed core actor map. And c(a,d) means the occurrences of actor a in d.
Definition 3 (core network): a network is a graph G=<V, E>, where V is a set of vertices and
E is a set of edges. A vertex u ∈ V represents a single actor of the network associated with
its association document. An edge <u, v> is a connection between vertices u and v. It can
be either directed or undirected. A core network is an extraction of the whole network, a sub
network that its vertices only consist of the core actors.
Definition 4 (latent community): a latent community in our model corresponds to a topic in
the topic model. We represent it with z, then we have

∑
z P(z|d) = 1 and

∑
a P(a|z) = 1. And

we assume that there are k latent communities in this network.
Definition 5 (community map): for each core actor in the association document, its commu-
nity map is a weighting function f (z, a) that shows the probabilistic relevance between core
actor and latent community. For example, we may define f (z, a) = P(z|a). And we expect that
the adjacent actors have similar community maps.

4 Latent Community Discovery with Network Structure

4.1 Probabilistic latent semantic analysis
First of all, we introduce the PLSA (Probabilistic Latent Semantic Analysis) topic model which
our statistical part is based on. The PLSA model assumes that there are k topics in the corpora,
where k is a fixed parameter, and every document in the corpora corresponds to one distribution
of topics. This is a hierarchical model. We can describe its generative process as:

• Select a document d with probability P(d).
• Pick a latent topic z with probability P(z|d).
• Generate a word w with probability P(w|z).

So we obtain an observed pair P(d, wn) = P(d)
∑

z P(z|d)P(wn|z) (Hofmann, 1999). When this
statistical model is used to do community detecting, documents are replaced by association
documents, and words in a document correspond to actors in an association document. So, the
log likelihood of a network n to be generated with PLSA model is given by:

L =
M∑

d=1

Nd∑
a=1

C(a, d) ∗ log
T∑

j=1

P(z j |d) ∗ P(a|z j) (1)
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4.2 The probabilistic community discovery framework

By regularizing the statistical model with network structure, we propose a framework that takes
both the statistical model and the network structure into consideration. As we expect that the
adjacent actors have similar community maps, the criterion function is succinct and natural:

O(N , G) = x ∗ (−L(N)) + (1− x) ∗ R(N , G) (2)

Where L(N) is the log likelihood of an association corpora with statistical model, and R(N , G) is
the regularizer defined on the network structure. This criterion function is very general, where
L(N) can be the log likelihood of any statistical model and R(N , G) can be any regularizer to
make the community map smoother. In this paper, we choose PLSA as the statistical model, and
define the regularizer R(N , G) as (Zhu et al., 2003):

R(N , G) =
1

2

∑
(a1,a2)∈E

∑
z

(P(z|a1)− P(z|a2))
2 (3)

By maximizing L(N), we will get the P(z|d) and P(a|z) that fit our association document the
best, and by minimizing R(N , G), we will get the P(z|a) that smooth our network structure the
most. The parameter x will be set between 0 and 1 to control the balance between statistical
log likelihood and smooth regularizer. Then we have the following optimization problem:

O(N , G) = x ∗ (−
M∑

d=1

Nd∑
a=1

C(a, d) ∗ log
T∑

j=1

P(z j |d) ∗ P(a|z j))

+ (1− x) ∗ 1

2

∑
(a1,a2)∈E

∑
z

(P(z|a1)− P(z|a2))
2

(4)

4.3 Parameter inference

When x = 0, the criterion function turns into a standard log likelihood of the PLSA model. The
way to infer and estimate parameters for PLSA is the EM (Expectation Maximization) algorithm
(Dempster et al., 1977), so we can find a local maximum of L(N) in this iterative way. In the
PLSA model, the E-step boils down to computing the probability of latent variables:

P(z|a, d) =
P(z|d) ∗ P(a|z)∑T

j′=1 P(z j′ |d) ∗ P(a|z j′)
(5)

Take the latent variables into consideration, and then we have its complete likelihood:

Q(N) =
M∑

d=1

Nd∑
a=1

C(a, d) ∗
∑

z

P(z|a, d) log(P(z|d)P(a|z)) (6)

By maximizing the complete likelihood in the-M step, we obtain the following updated equations:

P(a|z) =
∑

d C(a, d) ∗ P(z|a, d)∑
d,a C(a, d) ∗ P(z|a, d)

P(z|d) =
∑

a C(a, d) ∗ P(z|a, d)∑
a,z C(a, d) ∗ P(z|a, d)

(7)
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When x 6= 0, it becomes more complicated. Then we consider the constraints:∑
z

P(z|d)− 1= 0,
∑

a

P(a|z)− 1= 0,
∑

z

P(z|a)− 1= 0

Add Lagrange multipliers corresponding to the constraints, we obtain the following complete
likelihood with network structure information:

Q(N , G) = x ∗ (−
M∑

d=1

Nd∑
a=1

C(a, d) ∗
∑

z

P(z|a, d) log(P(z|d)P(a|z)))

+
∑

d

αd(
∑

z

P(z|d)− 1) +
∑

z

αz(
∑

a

P(a|z)− 1) +
∑

a

αa(
∑

z

P(z|a)− 1)

+ (1− x) ∗ 1

2

∑
(a1,a2)∈E

∑
z

(P(z|a1)− P(z|a2))
2

(8)

Where αd ,αz and αa are all Lagrange multipliers. Continue our EM process to seek the local
minimum of Q(N , G). It is easy to see that the latent variables do not change from equation 6
to equation 9 compared with PLSA model, so the E-step of LCDN is still the same as equation 5.
The introduction of network structural R(N , G) do not affect the P(z|d), so the estimation of
P(z|d) remains as equation 8. However, P(a|z) and P(z|a) are no longer calculable directly by
minimizing Q(N , G). The Newton-Raphson method is a good way to solve this kind of problem.
Suppose xn is the variable to be updated by the Newton-Raphson method at n-th iteration,
corresponding to the unknown parameters P(a|z) and P(z|a) in our model. Specifically applied
to our task:

xn+1 = xn −
f (xn)
f ′(xn)

= xn − HQ(xn; N , G)−1▽Q(xn; N , G) (9)

Where ▽Q(xn; N , G) is the gradient of Q(xn; N , G) and HQ(xn; N , G) is the Hessian matrix of
Q(xn; N , G).

4.4 An efficient algorithm
In fact, we could achieve the expected effect by ensuring Qn+1(N , G)<Qn(N , G) at every M-step.
So we can optimize the statistical complete likelihood part and network structural regularizer of
the objective function separately. In each M-step, we could maximize the complete likelihood by
equation 7 and equation 8 as before, but this does not necessarily mean Qn+1(N , G)<Qn(N , G),
so we have to continue optimizing the structural part R(N , G). Obviously, random walk on the
network is a simple and effective choice to minimize R(N , G). Thus for P(z|a):

Pn+1(z|a) = x ∗ Pn(z|a) + (1− x) ∗
∑
(a,a′)∈E C(a, a′) ∗ Pn(z|a′)∑

(a,a′)∈E C(a, a′)
(10)

It is easy to see that
∑

z Pn+1(z|a) = 1 and Pn+1(z|a)≥ 0 always hold in equation 11. Here, x
is the random walk parameter. Every iteration of random walk makes the network smoother
(Jamali and Ester, 2009). Note that, the random walk process is based on P(z|a) of each actor
in the network, so we have to use the Bayes’ theorem to obtain P(a|z) for next EM algorithm
iteration:

P(a|z) = P(z|a) ∗ P(a)
P(z)

=
P(z|a) ∗ P(a)∑
a P(z|a) ∗ P(a)

(11)
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5 Experiments and evaluation

In this section, we experiment on three large networks. Since the LCDN is unsupervised,
pairwise comparison is a good choice to measure our experiment results (Menestrina et al.,
2010). So we get the pairwise precision, recal l and F1:

precision(E, G) =
|pairE

⋂
pairG |

|pairE |
recal l(E, G) =

|pairE

⋂
pairG |

|pairG |
(12)

F1(E, G) =
|2 ∗ precision ∗ recal l|
|precision+ recal l| (13)

Besides, in order to obtain a more comprehensive evaluation of the model, we add two
comparison indexes: time cost to measure efficiency and community size to measure partitioning
balance. We pick two statistical models (PLSA and Ball-Karrer-Newman models) and two graph
partitioning models (k-means and Newman-Girvan models) as the comparative algorithms.

5.1 DBLP co-authorship network

In DBLP co-authorship network, the actors represent authors, and the edges represent the
collaboration relation between authors. This benchmark co-authorship network contains the
co-authorship of more than 50000 papers published at 27 computer science conferences from
2008 to 2010. And the whole network gets 59073 actors and 151399 edges. These conferences
can be mainly divided into five research groups (Wang et al., 2011):

1. AI: artificial intelligence, including IJCAI, AAAI, ICML, UAI, NIPS, UMAP and AAMAS.
2. DB: database, including EDBT, ICDT, ICDE, PODS, SIGMOD and VLDB.
3. DP: distributed and parallel computing, including ICCP, IPDPS, PACT, PPoPP and Euro-Par.
4. GV: graphics, vision and HCI, including I3DG, ICCV, CVPR and SIGGRAPH.
5. NC: networks communications and performance, including MOBICOM, INFOCOM, SIGMETRICS,

PERFORMANCE and SIGCOMM.

Intuitively, we believe that the program committee members are academically active in their
respective areas, so that these program committee members (1241 actors, including 406 AI
members, 282 DB members, 323 NC members, 79 GV members and 188 DP members) constitute
the core actor group. In PLSA and LCDN model, the input weight in the association document
is the number of collaboration times between current actor and target actor. And NG is short
for Newman-Girvan algorithm and BKN is short for Ball-Karrer-Newman algorithm. The core
community discovery result comparison of these algorithms is given in table 1:

Pairwise
precision

Pairwise
recall

Pairwise
F1

Time
cost(s)

Community size
C1 C2 C3 C4 C5

PLSA 0.276 0.238 0.265 19 243 199 244 256 299
k-means 0.257 0.978 0.406 569 2 19 1218 1 1

NG Unavailable since this network is not fully interconnected
BKN 0.156 0.306 0.206 799 852 100 80 126 83

LCDN 0.456 0.434 0.445 114 136 370 108 251 376

Table 1: Algorithm performance comparison on the DBLP co-authorship network
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And then we move on to the fully interconnected DBLP co-authorship network. This is the
biggest sub network extracted from the DBLP co-authorship network, whose actors are fully
interconnected. So the Newman-Girvan algorithm would work on it. This extraction contains
42956 actors and 130132 edges. And the number of core actors is reduced to 1222, including
402 AI members, 281 DB members, 319 NC members, 79 GV members and 178 DB members.
The core community discovery result comparison of these algorithms is given in table 2:

Pairwise
precision

Pairwise
recall

Pairwise
F1

Time
cost(s)

Community size
C1 C2 C3 C4 C5

PLSA 0.309 0.245 0.273 18 221 252 242 213 294
k-means 0.258 0.979 0.409 432 1199 19 1 1 2

NG 0.253 0.988 0.403 8625 1217 1 1 1 2
BKN 0.287 0.480 0.359 755 764 102 104 125 127

LCDN 0.501 0.465 0.483 267 394 298 171 92 267

Table 2: Comparison on the fully interconnected DBLP co-authorship network
We can see from table 1 and 2 that LCDN achieves an 8% ∼ 20% improvement in terms of
pairwise F1 value over the other comparative algorithms. And the k-means algorithm and
Newman-Girvan algorithm are confronted with the problem of unbalanced partitioning.

5.2 WEIBO network

Compared with the DBLP co-authorship network, WEIBO network is a much larger one with
164524 actors and 14444794 edges. WEIBO is a directed graph whose actors are fully intercon-
nected. And there are two kinds of edges in it, strong and weak. This will influence the actor
weight in association documents. In this paper, we set the weight to 1 for the weak ones and
to 11 for the strong ones. Since the actors of WEIBO network get far more neighbors than the
ones of DBLP co-authorship network, the random walk parameter is set smaller to keep the
regularization balance of LCDN model. And in fact, to achieve a better performance, the denser
the network, the smaller value of random walk parameter x we should set. In this paper, we set
the random walk parameter of DBLP co-authorship network to x = 0.9, and set the random
walk parameter of WEIBO network to x = 0.1.

Intuitively, we believe that in a SNS the more followers mean the more influence, so we pick
actors whose in-degree is greater than 2000 to constitute the core actor group. These actors
can be mainly divided into 5 social groups according to their tags and verification information:

1. Entertainment and sports, including 244 members.
2. Grass roots and leisure, including 333 members.
3. Finance and technology, including 297 members.
4. Culture and religion, including 185 members.
5. Newspapers and media, including 163 members.

The core community discovery result comparison of these algorithms is given in table 3:

We can see that LCDN still gets a much better performance than the other algorithms. For the
k-means algorithm and Newman-Girvan algorithm, the problem of unbalanced partitioning
remains. Besides, compared with the other algorithms, the time cost of Newman-Girvan
algorithm is really unacceptable. Empirically, the Newman-Girvan algorithm should not partition
a network so unbalanced as a divisive method. So we traced the actor Li Kaifu, who had the
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Pairwise
precision

Pairwise
recall

Pairwise
F1

Time
cost(s)

Community size
C1 C2 C3 C4 C5

PLSA 0.627 0.567 0.596 1098 176 200 235 299 271
k-means 0.227 0.715 0.345 558 77 108 2 992 2

NG 0.201 0.873 0.326 85084 11 1124 21 10 15
BKN 0.528 0.478 0.502 4164 184 270 227 304 196

LCDN 0.682 0.611 0.645 2067 282 185 221 277 216

Table 3: Algorithm performance comparison on the WEIBO network

highest in-degree in WEIBO network but was assigned to a small community. Actually, we
found that, the community that Li Kaifu was assigned to was not really small because it also
contained thousands of ordinary actors. As Li Kaifu and other famous actors have numerous
followers, this will surely lead to an very high betweenness score of the edges between these
core actors. Thus edges between core actors tend to be cut with a very high priority, and it is
indeed so according to our observation of Li.

Conclusion and perspectives

A structure of communities with Pareto Principle exists in many real-world social networks.
Every individual does not get the same social influence. Naturally, we pay more attention to
the core actors, since they are the kernel of a network. In this paper, we define the problem of
community detection among the core actors in large social networks. Taking both the statistical
model and the network structure into consideration, we propose a probabilistic community
discovery framework LCDN. The experimental results show that LCDN model performs much
better than the other algorithms.

For future work, we would like to try to make this framework multifunctional, for example to
collaborative filtering, and develop this framework into a fuller Bayesian model. Since we can
obtain the association document parameters P(z|d) which could properly represent the interest
of current actor. So we can do collaborative recommendation based on either the community
map or association document parameter P(z|d) (Su and Khoshgoftaar, 2009). The PLSA model
gets limitations that there is no constraint on the association document parameters P(z|d). This
leads to overfitting: the number of association document parameters grows linearly with the
data size (Mei et al., 2008). The LDA (Latent Dirichlet Allocation) model is a good choice to
alleviate this problem (Blei et al., 2003; Griffiths, 2002). Moreover, the LDA model is more
general. It gets plenty of variations which pay different emphases so that it is applicable to
many different situations (Ramage et al., 2009; Blei and Lafferty, 2006; Blei and McAuliffe,
2007; Blei and Lafferty, 2005).
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