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Abstract
Sentence realization, as one of the important components in natural language generation, has
taken a statistical swing in recent years. While most previous approaches make heavy usage of
lexical information in terms of N -gram language models, we propose a novel method based on
unlexicalized tree linearization grammars. We formally define the grammar representation and
demonstrate learning from either treebanks with gold-standard annotations, or automatically parsed
corpora. For the testing phase, we present a linear time deterministic algorithm to obtain the 1-best
word order and further extend it to perform exact search for n-best linearizations. We carry out
experiments on various languages and report state-of-the-art performance. In addition, we discuss
the advantages of our method on both empirical aspects and its linguistic interpretability.
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1 Introduction
Natural language generation (NLG) is the key processing task of producing natural language from
some level of abstract representation, either syntactic or (more often) semantic. The long-standing
research in NLG has gone through in-depth investigation into various sub-steps, including content
planning, document structuring, lexical choices, surface realization, etc. The traditional generation
systems typically rely on a rich set of annotation as input and is tightened to specific frameworks or
internal representation, making the reuse of other natural language processing components difficult.
Inspired by the successful application of statistical methods in natural language analysis, researchers
shifted towards using standardized linguistic annotations to learn generation models. In particular,
the now ever-so-popular dependency representation for syntacto-semantic structures has made its
way into the sentence realization task, as evident by the recent Generation Challenge 2011 Surface
Realization Shared Task (Belz et al., 2011). Given the full-connectedness of the input structure, the
task of surface realization concerns mainly about the linearization process1, which shall determine
the ordering of words in the dependency structures.

While the earlier work like Langkilde and Knight (1998) showed that the N -gram language models
can work well on the tree linearization, more recent study shows that improvements can be achieved
by combining the language model outputs with discriminative classifiers (Filippova and Strube,
2009; Bohnet et al., 2010). On the other hand, we see that relatively few results have been reported
on a grammar-based approach, where linearization rules are used instead to determine the word
order within a given structured input.

In this paper, we use tree linearization grammars to specify the local linearization constraints in
bilexical single-headed dependency trees. Unlexicalized linearization rules and their probabilities
can be learned easily from the treebank. By using a dependency parser, we expand the grammar
extraction to automatically parsed dependency structures as well. The linearization model is
fully generative, which can produce N -best word orders for each dependency input. Detailed
evaluation and error analysis on multiple languages show that our grammar-based linearization
approach achieves state-of-the-art performance without language specific tuning or detailed feature
engineering. The resulting linearization rules are comprehensible and reflect linguistic intuitions.

2 Unlexicalized Tree Linearization Grammar
The task of tree linearization takes the unordered single-headed bilexical dependency tree as input,
and produces the surface sentence with determined word order. We define the tree linearization
grammar to be a set of rules that licenses the legitimate linearization of the tree.

More specifically, we define a local configuration C = 〈w0, {〈r1, w1〉, · · · , 〈rn, wn〉}〉 to be an
unordered dependency tree of height 1, with w0 as the head , and {w1, w2, · · · , wn} as the immediate
dependents (daughters) with corresponding dependency relations {r1, r2, · · · , rn}. A linearization
rule L is defined to be:

L :C ⇒ 〈w′0, w′1, · · · , w′n〉 s.t. ∀i, 0≤ i ≤ n, w′i ∈ {w0, · · · , wn} (1)
∀i, j, 0≤ i, j ≤ n, w′i = w′j iff i = j

which determines the complete order of all the words on the LHS of the local configuration. For
an unlexicalized tree linearization rule, wi are syntactic categories instead of words. In our later
experiments, we use either coarse- or fine-grained parts-of-speech as representation of words in the
configurations. Below is an example local configuration with two alternative linearization rules:

1For morphologically-rich languages, an additional inflection realizer is needed as a postprocessor.
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mod ⇒〈n2, adv, v, n1〉
⇒〈n2, v, n1, adv〉

Assuming the projectivity of the dependency structure, we can find the linearization of the complete
sentence if the linearization of each local configuration is determined by one of the rules. In
practice, the linearization of many local configurations are ambiguous. We define a probabilistic
tree linearization grammar by attaching a conditional probability distribution to the rules:

Pr : L → [0,1]s.t.∀C ∈ C ,
∑

∀L∈L ,LHS(L )=C
Pr(L ) = 1 (2)

where C is the set of all local configurations, and L the set of all linearization rules in the grammar.
The probability of a sentence linearization given an input dependency structure D is then defined
as: P(LD) =
∏
L∈LD

Pr(L ), where LD is the linearization of the complete sentence with the
application of one linearization rule L on each local configuration in the input D .

Note that although we assume the projectivity of the dependency structure in this paper, it is possible
to extend the definition of the tree linearization grammar to also encode the discontinuities in the
syntactic structure (e.g., by explicitly marking the gaps in the structure and pointers to their fillers).
Thorough investigation in this direction belongs to our future work. Nevertheless, empirical results
from section 4 suggest that non-projectivity is not a major source of errors for the languages and
datasets used in our experiments.

Similar to the treebank-based approach to grammar extraction for parsing, we extract linearization
rules from the annotated dependency treebank with determined word order. Each local configuration
and its linearization is then gathered as a rule. Due to the unlexicalized approach we take, this
produces a relatively small grammar which can be manually interpreted. To estimate the rule
probalilities Pr, we simply use the maximum likelihood estimation: Pr(L ) = F req(L )

F req(LHS(L )) .

3 N -Best Tree Linearization
We start with the grammar-based deterministic tree linearization algorithm which outputs 1-best
linearization by recursively finding the best linearization for each local configuration. The time
complexity of the algorithm is O (n), where n is the number of words in the dependency tree.

The n-best linearization algorithm is an extension to the 1-best procedure. Each hypothesis
represents a state in the search for the n-best linearizations for the sub-tree under a given node.
It further relies on a vector indices, where indices[0] identifies the index of the lin-
earization rule, and the remaining elements indices[1..k] point to the sub-states in the
n-best linearization of the dependents. Top level procedure linearize-node(root,n)
will iteratively instantiate the top-n linearization hypothesis of the root. The main procedure
hypothesize-node(node, i) creates the ith best hypothesis of node, which recur-
sively finds the linearization of the sub-trees.

According to our definition, the linearization probability of a given node n can be calculated by
multiplying the rule probability with the sub-linearization probabilities of the dependents:

P(Ln) = Pr(rule(Ln)) ∗
∏

d∈dependents(n)

P(Ld) (3)
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1 procedure linearize-node(root , n) ≡
2 results← 〈〉; i← 0;
3 do
4 hypothesis← hypothesize-node(root , i); i← i + 1;
5 if (not hypothesis) break;
6 new← instantiate-hypothesis(hypothesis);
7 n← n − 1; results← results ⊕ 〈new〉;
8 while (n ≥ 1);
9 return results;

10 procedure hypothesize-node(node , i) ≡
11 if (node.hypotheses[i]) return node.hypotheses[i];
12 if (i = 0) then
13 node.rules←sorted-rules(node.config); indices← 〈0〉
14 daughters← 〈〉;
15 for each (dnode in node.dependents) do
16 daughters← daughters ⊕ 〈hypothesize-node(dnode , 0)〉;
17 indices← indices ⊕ 〈0〉;
18 new-hypothesis(node , daughters , indices);
19 if (hypothesis← node.agenda.pop()) then
20 for each (indices in advance-indices(hypothesis.indices)) do
21 daughters← 〈〉;
22 for each (dnode in node.dependents) each (j in indices[1..k]) do
23 daughter← hypothesize-node(dnode , j);
24 if (not daughter) then daughters← 〈〉; break
25 daughters← daughters ⊕ 〈daughter〉;
26 if (daughters) then new-hypothesis(node , daughters , indices)
27 node.hypotheses[i]← hypothesis;
28 return hypothesis;

29 procedure new-hypothesis(node , daughters , indices) ≡
30 hypothesis← new hypothesis(node , daughters , indices);
31 node.agenda.insert(score-hypothesis(hypothesis) , hypothesis);

Figure 1: N -best tree linearization algorithm

This calculation is achieved within the procedure score-hypothesis. Since the nth best
linearization must be different from one of the top n− 1 linearizations in just one position (ei-
ther one of the dependents’ sub-linearization or the linearization rule chosen for the top node),
advance-indices will find all such possibilities. With such lazy expansion of the search
frontier, only the immediate candidates are added to the local agenda of each node.

4 Experiments
For the evaluation, we use the dependency treebanks for multiple languages from the CoNLL-shared
task 20092 (Hajič et al., 2009). Additional unlabeled English texts from L.A. Times & Washington
Post of the North American News Text (NANC) (Supplement)3 are used for training the English
models. Testing results are reported on the development sets of the CoNLL dependency treebanks.
In addition to the automatic metrics such as BLEU (Papineni et al., 2002) and Ulam’s distance (Birch
et al., 2010), we also manually evaluate the quality of the system outputs (Section 4.3).

4.1 Basic Models
For the basic models, we compare our grammar-based approaches with three baselines, Random,
N-Gram, and Rank. The first baseline simply produces a random order of the words; the second
model can be viewed as a simplified version of (Guo et al., 2011)’s basic model4; and the third model

2http://ufal.mff.cuni.cz/conll2009-st/index.html
3http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC98T30
4Instead of using grammatical functions derived from lexical functional grammar (LFG), we use the dependency

relation and the parts-of-speech as our syntactic categories. For the previous example, we obtain N -gram counts from
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is a log-linear model, which is trained on each word’s relative position in its local configuration5.
For the main approach based on linearization grammars, we have two configurations using either
coarse- or fine-grained part-of-speech (CPOS vs. POS)6. Notice that the baseline system N-Gram
can also choose between CPOS and POS.

In Table 1, ‘Covered’ rows report the results on the subcorpus whose sentences are fully covered by
the grammar, and ‘Overall’ rows report the results on the complete test corpus with Rank baseline
as the backoff model for the out-of-grammar configurations. As Rank can only produce 1-best
linearization, we set the score for that configuration as 1 for further calculation in Equation (3).
‘1-best’ is the deterministic tree linearization result, while ‘upper bound (1000)’ gives the upper
bound of n-best linearization with n= 1000.

Models POS CPOS Baselines
Rank N-Gram Random

Coverage Sent. (1334) 451 (33.8%) 711 (53.3%) - - -Config. (17282) 15843 (91.7%) 16423 (95.0%)
BLEU

Covered 1-best 92.65 90.64 - - -upper bound (1000) 96.31 95.31

Overall 1-best 81.63 83.28 73.09 43.22 32.34
upper bound (1000) 84.08 87.13 - 66.55 44.90

Table 1: Performance of the basic models
We observe that although the grammar with fine-grained POS achieves better performance on the
data covered by the grammar, the coverage is relatively low. On the overall results, when combined
with the Rank backoff model, the CPOS model achieves a good balance between ‘precision’ and
‘recall’, and also outperforms all the baselines with large margins (10+ BLEU points). We will refer
to this system as our Base model for the rest of this section.

While the configuration level coverage is over 95%, the Base grammar only achieves full coverage
on 53% of the sentences. We investigate the possible ways of expanding the coverage of the
linearization grammar in Section 4.2. Also, when comparing the Base model with the n-best upper
bound, the difference of 4 BLEU points suggests that a better ranking model can potentially achieve
further improvements on the linearization. This will be discussed in Section 4.3.

4.2 Experiments with Automatically Parsed Data
Self-training has been shown to be effective for parser training (McClosky et al., 2006). It expands
the training observations on new texts with hypothesized annotation produced by a base model. In
our case, we can obtain further linearization observations from unannotated sentences, and rely on a
parser to produce the dependency structures7.

We use a state-of-the-art dependency parser, MSTParser (McDonald et al., 2005), and train it with
the same data with gold-standard dependency annotations using the second order features and
a projective decoder. For the additional data, we use a fragment of the NANC corpus (765670

sequences 〈n|sub j, adv|mod, v|hd, n1|ob j〉 and 〈n2|sub j, v|hd, n1|ob j, adv|mod〉. On top of such instances from all the
configurations, we train a tri-gram model.

5The features we use include token features, lemma and part-of-speech, and the dependency relation. We differentiate
parent and children nodes by adding different prefixes.

6In the CoNLL data, the coarse-grained POS is the first character of the fine-grained POS.
7Unlike parser self-training, we do not update the parsing model, but expect the extra observations to help improve the

coverage of the linearization grammar.
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sentences in total). The 1-best linearization with the additional corpus improved from 83.28 to 83.94
BLEU, with the oracle (1000) upper-bound improved from 87.13 to 88.82 BLEU.

Although the performance on the grammar-covered sentences drops slightly, the overall performance
improves steadily for both 1-best and the upper bound. We also notice that on such high range
BLEU scores (above 80), the differences are less indicative of the actual quality of the linearization.
We will address this issue in the next section.

4.3 Manual Analysis
In the previous experiments, we have observed the performance difference between the 1-best result
and the n-best upper bound. In an attempt to improve the selection of the best linearization, we
incorporate a simple tri-gram language model at the surface level to re-rank the n-best output of
the Base model (LM-Rerank), and hope it will compensate for the lack of lexical information in
our unlexicalized linearization grammar. We train the language model on the same data and choose
n= 1000.

When we perform a pair-wise comparison of the output from these two systems, the results show
that in 28% of the cases Base is better; and only in 14% of the cases LM-Rerank is better. To
further investigate the difference between the two systems, we carry out a manual analysis on
two aspects: 1) comprehensiveness and 2) grammaticality, which are similar to the measurements
used in the surface realization evaluation (Belz et al., 2011). In particular, we have three levels of
judgement for both criteria, ranging from 0 to 2. As both systems output exactly the same gold
standard linearizations in almost half of the cases, we calculate the BLEU score for each sentence
and randomly sample 100 sentences between the range (75.0, 90.0]. This allows us to ‘zoom in’ on
the (error) characteristics of the two systems.

Each sentence from both systems is annotated by two annotators on two criteria with reference to
the gold standard linearization. For both criteria, the annotations are mostly agreed, with Cohen’s
Kappa scores (Cohen, 1960) κ = 0.83 for comprehensiveness and κ = 0.87 for grammaticality.
Table 2 shows the results only on the agreed cases.

Comprehensiveness Grammaticality Perfect
Base 84.1% 77.1% 28.8%

LM-Rerank 90.1% 73.2% 36.7%

Table 2: Agreed manual evaluation results on sentences within BLEU range (75.0, 90.0]

We sum up the scores for both criteria separately, and divide by a sum of maximal scores. The
‘Perfect’ column indicates the portion of sentences which get full scores for both criteria, i.e., they
are correct and fluent, though being different from the gold standard.

Notice that the sampled sentences do not reflect the performance of two configurations as a whole
due to the selection process. However, the differences on two criteria reflect different characteristics
of the two systems. Base tends to output grammatical linearization, though the results could be
less fluent and hard to comprehend; LM-Rerank is more fluent and comprehensible, though might
violate grammaticality. Furthermore, the result indicates that within this BLEU range about 1/3
of the output sentences are perfect linearization, although the BLEU scores are not 1. We view
this issue as the inadequacy of 1-best evaluation for this task, as among the n-best output, we have
observed more than one correct realizations. However, proposing a better evaluation method is out
of the scope of this paper, which we will leave for our future work.
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Sentences
Gold: [“ The market is overvalued , not cheap , ” says] Alan Gaines of the New York money - management firm Gaines Berland .
System: Alan Gaines of the New York money - management firm Gaines Berland [says , “ The market is overvalued , not cheap . ”]
Gold: ... than many taxpayers working at the same kinds of jobs and [perhaps] supporting families .
System: ... than many taxpayers [perhaps] working at the same kinds of jobs and supporting families .
Gold: ... to set [aside] provisions covering all its C$ 1.17 billion in non - Mexican LDC debt .
System: ... to set provisions covering all C$ its 1.17 billion in non - Mexican LDC debt [aside] .
Gold: Good service programs require recruitment , screening , training and supervision – [all of high quality] .
System: [all of high quality] – Good service programs require recruitment , screening , training and supervision .

Table 3: Examples of the system output compared with the gold standard

We list several examples of the system output in Table 3. One major source of errors is the clustering
of punctuations, in particular, commas, as they are not differentiable at the configuration level for the
backoff model Rank. This occurs less with the LM-Rerank model. The free movement of modifiers
(adjectives, adverbs, modifying prepositional phrases, etc.) poses a serious challenge for automatic
evaluation, as in most cases the meaning does not change. However, in the second example in the
table, due to the coordinate structure, the movement of “perhaps” does change the meaning of the
sentence. Furthermore, the context-freeness of the linearization rules do not concern the ‘heaviness’
of the dependent NP, hence (wrongly) preferring the unnatural placement of “aside” to the end of
the sentence in the third example. The last example shows that even when the generated sentence is
perfectly grammatical, the discourse semantics could change drastically.

4.4 Multilinguality
To investigate the multilingual applicability of our approach, we further experiment with five more
languages: Catalan (CA), Chinese (CN), Czech (CZ), German (DE), and Spanish (ES). There is
no language-specific tuning, so this is achieved easily with the availability of the CoNLL 2009
Shared Task datasets. We show some basic statistics of the datasets in Table 4 as well as the
system performance under two automatic measurements: BLEU and Ulam’s distance. The latter
is the minimum number of single item movements of arbitrary length required to transform one
permutation into another (Ulam, 1972), which is the same as the ‘di’ measurement used by Bohnet
et al. (2010) and others.

Languages CA CN CZ EN DE ES
No. of CPOS Tag 12 13 12 24 10 12
Avg. Token / Sent. 31.0 30.0 16.8 25.0 16.0 30.4

Grammar
Avg. Config. / Sent. 13.1 14.0 8.3 12.4 6.0 13.2

Coverage
Sent. 578 / 1724 790 / 1762 498 / 5228 724 / 1334 1512 / 2000 650 / 1655

(33.5%) (44.8%) (9.5%) (54.3%) (75.6%) (39.3%)

Config. 22526 / 24546 24749 / 26250 43552 / 49751 16536 / 17369 11925 / 12503 21920 / 23511
(91.8%) (94.3%) (87.5%) (95.2%) (95.4%) (93.2%)

BLEU

Covered 1-best 84.51 88.67 82.00 91.95 78.52 79.93
upper bound (1000) 91.77 94.49 93.60 96.20 88.01 89.78

Overall 1-best 75.79 81.48 66.59 84.89 73.85 73.10
upper bound (1000) 80.61 86.52 76.85 88.75 82.09 79.75

Ulam’s distance

Covered 1-best 0.890 0.946 0.867 0.950 0.857 0.871
upper bound (1000) 0.949 0.973 0.965 0.978 0.934 0.941

Overall 1-best 0.838 0.891 0.771 0.911 0.829 0.820
upper bound (1000) 0.875 0.914 0.856 0.934 0.897 0.869

Table 4: Performance of the multilingual models

Notice that the best coverage of the grammar is on the German data, which is mainly due to the
short average sentence length (16.0 tokens / sentence) and the flatness of the tree (6.0 configura-
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tions / sentence). However, the high coverage does not guarantee good performance, as for each
configuration, the linearization selection could still be ambiguous. Overall, the best performances
come from English and Chinese, whose word orders are relatively strict; while Czech has the worst
performance due to its relatively free word order, and the coverage of the grammar is also the lowest.

We observe 803 non-projective inputs from the Czech test set (15.4%), and 106 sentences from
German (5.3%); for the other languages, almost all the trees are projective. The proposal of Bohnet
et al. (2012) to use a separate classifier to predict the lifting of non-projective edges in a dependency
tree can be combined with the use of linearization rules in our approach in the future.

Note that although we test our models on the same data source as the surface realization shared
task8, subtle differences in the preprocessing of the data and/or the evaluation scripts make the direct
comparison to previously reported results difficult. Some comparison of different approaches and
reported results will be discussed in the next section.

5 Discussion and Future Work
Several works on statistical surface realization have been reported recently. Ringger et al. (2004)
proposed several models, and achieved 83.6 BLEU score on the same data source.They also tested
their approaches on French and German data, but with predicate-argument structures as input. One
of the interesting features of our approach is the generative nature of the model. Unlike the previous
work of (Filippova and Strube, 2009; Bohnet et al., 2010) who relied on discriminative modeling
for the selection of the realization, our approach actually produces the realization probabilities, and
does not rely on ad hoc pruning of the search space. Filippova and Strube (2009) (and their previous
paper) reported 0.88 Ulam’s distance for English and 0.87 for German, but their evaluation is at the
clause level instead of full sentences. Bohnet et al. (2010)’s experiments were also on the CoNLL
datasets, achieving 85 BLEU score for Chinese, 89.4 for English, 73.5 for German, and 78 for
Spanish. Their system was ranked the first place in the surface realization shared task, followed
by Guo et al. (2011)’s dependency-based N -gram approach. The permutation filtering technique
they use is essentially similar to our linearization rules. As we show in the manual evaluation, the
BLEU scores are not always indicative (especially at the higher range) of the generation quality, in
the future, we are interested in a more elaborate manual analysis of their results.

While we are achieving satisfying results with our method on multiple languages without language-
specific tuning, it should be noted that the dependency tree linearization task is only part of the
sentence realization workflow, along with other subtasks such as lexical choices, morphological
realizer, etc. The linearization rules learned are not a full-fledged grammar covering the entire
syntactic layer of the language, but rather the complements to the morphological or grammatical
relations given by the dependency inputs and they specify the linear precedence of the words. In
comparison to the other sentence realization systems which relies on richer frameworks and accept
more abstract semantic inputs, our task does not touch the syntacto-semantic interface. Nevertheless,
it is interesting to note that one of the key challenges in semantics-based sentence realization is the
lack of word-order constraints, hence the inefficiency (Carroll et al., 1999; Carroll and Oepen, 2005;
Espinosa et al., 2008). With our efficient grammar-based linearization algorithms, extra efficiency
boost to the deeper generation workflow can be achieved by pruning the implausible orderings.
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