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ABSTRACT
Inspired by work on robust optimization we introduce a subspace method for learning linear
classifiers for natural language processing that are robust to out-of-vocabulary effects. The
method is applicable in live-stream settings where new instances may be sampled from dif-
ferent and possibly also previously unseen domains. In text classification and part-of-speech
(POS) tagging, robust perceptrons and robust stochastic gradient descent (SGD) with hinge
loss achieve average error reductions of up to 18% when evaluated on out-of-domain data.
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1 Introduction

In natural language processing (NLP), data is rarely drawn independently and identically at
random. In particular we often apply models learned from available labeled data to data
that differs from the original labeled data in several respects. Supervised learning without
the assumption that data is drawn identically is sometimes referred to as transfer learning,
i.e. learning to make predictions about data sampled from a target distribution using labeled
data from a related, but different source distribution or under a strong sample bias.

Domain adaptation refers to a prominent class of transfer learning problems in NLP. Two
domain adaptation scenarios are typically considered: (a) semi-supervised domain adaption,
where a small sample of data from the target domain is available, as well as large pool of
unlabeled target data, and (b) unsupervised domain adaptation where only unlabeled data is
available from the target domain. In this paper we do not even assume the latter, but consider
the more difficult scenario where the target domain is unknown.

The assumption that a large pool of unlabeled data is available from a relatively homogeneous
target domain holds only if the target domain is known in advance. In a lot of applications
of NLP, this is not the case. When we design publicly available software such as the Stanford
Parser, or when we set up online services such as Google Translate, we do not know much
about the input in advance. A user will apply the Stanford Parser to any kind of text from
any textual domain and expect it to do well.1 Recent work has extended domain adaptation
with domain identification (Dredze et al., 2010; McClosky et al., 2010), but this still requires
that we know the possible domains in advance and are able to relate each instance to one of
them, and in many cases we do not. If the possible target domains are not known in advance,
the transfer learning problem reduces to the problem of learning robust models that are as
insensitive as possible to domain shifts. This is the problem considered in this paper.

One of the main reasons for performance drops when evaluating supervised NLP
models on out-of-domain data is out-of-vocabulary (OOV) effects (Blitzer et al., 2007;
Daumé and Jagarlamudi, 2011). Several techniques for reducing OOV effects have been
introduced in the literature, including spelling expansion, morphological expansion, dictio-
nary term expansion, proper name transliteration, correlation analysis, and word clustering
(Blitzer et al., 2007; Habash, 2008; Turian et al., 2010; Daumé and Jagarlamudi, 2011), but
most of these techniques still leave us with a lot of "empty dimensions", i.e. features that are
always 0 in the test data. While these features are not uninstantiated in the sense of missing
values, we will nevertheless refer to OOV effects as removing dimensions from our datasets,
since a subset of dimensions become uninformative as we leave our source domain.

This is a potential source of error, since the best decision boundary in n dimensions is not
necessarily the best boundary in m < n dimensions. If we remove dimensions, our optimal
decision boundaries may suddenly be far from optimal. Consider, for example, the plot in
Figure 1. 2D-SVC is the optimal decision boundary for this two-dimensional dataset (the non-
horizontal, solid line). If we remove one dimension, however, say because this variable is
never instantiated in our test data, the learned weight vector will give us the decision bound-
ary TEST(2D-SVC) (the dashed line). Compare this to the optimal decision boundary for the
reduced, one-dimensional dataset, 1D-SVC (the horizontal, solid line).

OOV effects "remove" dimensions from our data. In robust learning, we do not know which di-

1Chris Manning previously raised this point in an invited talk at a NAACL workshop.
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Figure 1: Optimal decision boundary is not optimal when one dimension is removed

mensions are to be removed in our target data in advance, however. In this paper we therefore,
inspired by previous work on robust optimization (Ben-Tal and Nemirovski, 1998), suggest to
minimize our expected loss under all (or K random) possible removals. We will implement this
strategy for perceptron learning and SGD with hinge loss and apply it to text classification, as
well as POS tagging. Results are very promising, with error reductions up to 70% and average
error reductions up to 18%.

2 Robust learning under random subspaces

In robust optimization (Ben-Tal and Nemirovski, 1998) we aim to find a solution w that min-
imizes a (parameterized) cost function f (w,ξ), where the true parameter ξ may differ from
the observed ξ̂. The task is to solve

min
w

max
ξ̂∈∆

f (w, ξ̂) (1)

with ∆ all possible realizations of ξ. An alternative to minimizing loss in the worst case is
minimizing loss in the average case, or the sum of losses:

min
w

∑

ξ̂∈∆
f (w, ξ̂) (2)

The learning algorithms considered in this paper aim to learn models w from finite samples
(of size N) that minimize the expected loss on a distribution ρ (with, say, M dimensions):

min
w
E〈y,x〉∼ρL(y, sign(w · x)) (3)

OOV effects can be seen as introducing an extra parameter into this equation. Let ξ be a binary
vector of length M selecting what dimensions are removed. In NLP we typically assume that
ξ = 〈1, . . . , 1〉 and minimize the expected loss in the usual way, but if we have a set ∆ of
possible instantiations of ξ such that ξ can be any binary vector, minimizing expected loss is
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1: X = {〈yi ,xi〉}Ni=1
2: for k ∈ K do
3: w0 = 0,v = 0, i = 0
4: ξ← random.bits(M)
5: for n ∈ N do
6: if sign(w · x ◦ ξ) 6= yn then
7: wi+1← update(wi)
8: i← i + 1
9: end if

10: end for
11: v← v+wi

12: end for
13: return w= v/(N × K)

Figure 2: Robust learning in random subspaces

likely to be suboptimal, as discussed in the introduction. In this paper we will instead minimize
average expected loss under random subspaces:

min
w

∑

ξ̂∈∆
E〈y,x〉∼ρL(y, sign(w · x ◦ ξ̂)) (4)

We refer to this idea as robust learning in random subspaces (RLRS). Since the number of
possible instantiations of ξ is 2M we randomly sample K instantiations removing 10% of the
dimensions, with K ≤ 250.2

RLRS can be applied to any linear model, and we present the general form in Figure 2. Given
a dataset X = {〈yi ,xi〉}Ni=1 we randomly draw ξ from the set of binary vectors of length M . We
now pass over {〈yi ,xi ◦ ξ〉}Ni=1 K times, updating our linear model according to the learning
algorithm. The weights of the K models are averaged to minimize the average expected loss
in random subspaces. In our experiments we will use perceptron (Rosenblatt, 1958) and SGD
with hinge loss (Zhang, 2004) as our learning algorithms. A perceptron c consists of a weight
vector w with a weight for each feature, a bias term b and a learning rate α. For a data point
x j , c(x j) = 1 iff w · x+ b > 0, else 0. The threshold for classifying something as positive is
thus −b. The bias term is left out by adding an extra variable to our data with fixed value
-1. The perceptron learning algorithm now works by maintaining w in several passes over the
data (see Figure 2). Say the algorithm at time i is presented with a labeled data point 〈x j , y j〉.
The current weight vector wi is used to calculate x j ·wi . If the prediction is wrong, an update
occurs:

wi+1←wi +α(y j − sign(wi · x j))x j (5)

The numbers of passes K the learning algorithm does (if it does not arrive at a perfect separa-
tor any earlier) is typically fixed by a hyper-parameter. The number of passes is fixed to 5 in
our experiments below. The RLRS variant of the perceptron (P-RLRS) is obtained by replacing

2Our choice to constrain ourselves to instantiations of ξ removing 10% of the dimensions was somewhat arbitrary,
and we briefly discuss the effect of this hyper-parameter after presenting our main results.
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Figure 3: Robust learning in random subspaces (Perceptron on artificial data)

line 8 in Figure 2 with Equation 5. The application of P-RLRS to an artificial two-dimensional
dataset in Figure 3 (the solid line) illustrates how P-RLRS can lead to very different decision
boundaries than the regular perceptron (the black dashed line) by averaging decision bound-
aries learned in random subspaces (red dashed lines).

A perceptron finds the vector w that minimizes the expected loss on training data where the
loss function is given by:

L(y, sign(w · x)) =max{0,−y(w · x)} (6)

which is 0 when y is predicted correctly, and otherwise the confidence in the mis-prediction.
This reflects the fact that perceptron learning is conservative and does not update on correctly
classified data points. Equation 6 is the hinge loss with γ = 0. SGD uses hinge loss with γ = 1
(like SVMs) (Zhang, 2004). Our objective function thus becomes:

min
w

∑
ε̂∈∆
E〈y,x〉∼ρmax{0,γ− y(w · x ◦ ξ̂)) (7)

with γ= 0 for the perceptron and γ = 1 for SGD. We call the RLRS variant of SGD SGD-RLRS.

3 Evaluation

In our experiments we use perceptron and SGD with hinge loss, regularized using the L2-norm.
Since we want to demonstrate the general applicability of RLRS, we use the default parameters
in a publicly available implementation of both algorithms.3 Both algorithms do five passes over
the data. SGD uses ’optimal’ learning rate, and perceptron uses a learning rate of 1.

Text classification. The goal of text classification is the automatic assignment of documents into
predefined semantic classes. The input is a set of labeled documents 〈y1,x1〉, . . . , 〈yN ,xN 〉, and
the task is to learn a function f : X 7→ Y that is able to correctly classify previously unseen
documents. It has previously been noted that robustness is important for the success of text

3http://scikit-learn.org/stable/
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Figure 4: Hierarchical structure of 20 Newsgroups. (a) IBM, MAC, (b) GRAPHICS, MS-WINDOWS,
X-WINDOWS, (c) BASEBALL, HOCKEY, (d) AUTOS, MOTORCYCLES, (e) CRYPTOGRAPHY, ELECTRONICS,
MEDICINE, SPACE, (f) GUNS, MIDEAST, MISCELLANEOUS, (g) ATHEISM, CHRISTIANITY, MISCELLA-
NEOUS, (h) FORSALE

classification in down-stream applications (Lipka and Stein, 2011). In this paper we use the
20 Newsgroups dataset.4 The topics in 20 Newsgroups are hierarchically structured, which
enables us to do domain adaptation experiments (Chen et al., 2009; Sun et al., 2011) (except
that we will not assume unlabeled data is available in the target domain). See the hierarchy
in Figure 4. We extract 20 high-level binary classification problems by considering all pairs of
top-level categories, e.g. COMPUTERS-RECREATIVE (comp-rec). For each of these 20 problems,
we have different possible datasets, e.g. IBM-BASEBALL, MAC-MOTORCYCLES, etc. A problem
instance takes training and test data from two different datasets belong to the same high-level
problem, e.g. MAC-MOTORCYCLES and IBM-BASEBALL. In total we have 280 available problem
instances in the 20 Newsgroups dataset. For each problem instance, we create a sparse matrix
of occurrence counts of lowercased tokens and normalize the counts using TF-IDF in the usual
way. Otherwise we did not do any preprocessing or feature selection. The code necessary to
replicate our text classification experiments is available from the main author’s website.5

POS tagging. To supplement our experiments on the 20 Newsgroups corpus, we also evaluate
our approach to robust learning in the context of discriminative HMM training for POS tagging
using averaged perceptron (Collins, 2002). The goal of POS tagging is to assign sequences of
labels to words reflecting their syntactic categories. We use a publicly available and easy-to-
modify reimplementation of the model proposed by Collins (2002).6 We evaluate our tagger
on the English Web Treebank (EWT; LDC2012T13). We use the original PTB tag set, and our
results are therefore not comparable to those reported in the SANCL 2012 Shared Task of
Parsing the Web. Our model is trained on the WSJ portion of the Ontonotes 4.0 (Sect. 2-21).
Our initial experiments used the Email development data, but we simply applied document
classification parameters with no tuning. We evaluate our model on test data in the remaining
sections of EWT: Answers, Newsgroups, Reviews and Weblogs.

3.1 Results and discussion

Figure 1 presents our main results on text classification. The left column is the number of
extracted subspaces (K in Figure 2). Note that rows are not comparable, since the 20/280
problem instances were randomly selected for each experiment. Neither are the perceptron
and SGD results. We observe that P-RLRS consistently outperforms the regular perceptron

4http://people.csail.mit.edu/jrennie/20Newsgroups/
5http://cst.dk/anders
6https://github.com/gracaninja/lxmls-toolkit
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K P P-RLRS err.red p-value SGD SGD-RLRS err.red p-value
25 67.2 70.1 0.09 < 0.01 75.2 75.7 0.02 ∼ 0.17
50 63.8 66.2 0.07 < 0.01 68.6 70.9 0.07 ∼ 0.02
75 73.2 75.3 0.08 < 0.01 76.3 78.9 0.11 < 0.01
100 72.0 73.3 0.05 ∼ 0.06 73.6 77.1 0.15 < 0.01
150 72.3 76.2 0.14 < 0.01 74.6 79.2 0.18 < 0.01
250 70.4 72.6 0.07 ∼ 0.02 75.0 78.7 0.15 < 0.01

Table 1: Results on 20 Newsgroups
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Figure 5: Plots of P-RLRS error reductions with K = 25 (upper left), K = 50 (upper right),
K = 75 (lower left), K = 100 (lower mid), K = 150 (lower mid) and K = 250 (lower right).

(P), with error reductions of 7–14%. SGD-RSRL consistently outperforms SGD, with error
reductions of 2–18%. Note that statistical significance is across datasets, not across data points.
Since we are interested in the probability of success on new datasets, we believe this is the
right way to evaluate our model, putting our results to a much stronger test. All results, except
two, are still statistically significant, however. As one would expect our models become more
robust the more instantiations of ξ we sample. The error reductions for each problem instance
in the P/P-RLRS experiments are plotted in Figure 5. The plots show that error reductions are
up to 70% on some problem instances, and that RLRS seldom hurts (in 3-8 out of 20 cases).

We include a comparison with state-of-the-art learning algorithms for completeness. In Fig-
ure 6 (left), we compare SGD-RLRS to passive-aggressive learning (PA) (Crammer et al., 2006)
and confidence-weighted learning (CW) (Dredze et al., 2008), using a publicly available im-
plementation,7 on randomly chosen 20 Newsgroups problem instances. CW is known to be
relatively robust to sample bias, reducing weights under-training for correlating features. All
algorithms did five passes over the data. Our results indicate that RLRS is more robust than
other algorithms, but on some datasets algorithms CW performs much better that RLRS.

The results on the EWT are similar to those for 20 Newsgroups, and we observe consistent
improvements with both robust averaged perceptron. The results are presented in Table 2. All

7http://code.google.com/p/oll/ (using default parameters)
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AP AP-RLRSK=25 AP-RLRSK=50 AP-RLRSK=100

EWT-Answers 85.22 85.63 85.69 85.68
EWT-Newsgroups 86.82 87.26 87.36 87.26
EWT-Reviews 84.92 85.32 85.31 85.35
EWT-Weblogs 87.00 87.54 87.52 87.61

Table 2: Results on the EWT
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Figure 6: Left: Classifier comparison. Right: Using increased removal rates when sampling ξ.

improvements are statistically significant across data points.

As mentioned, fixing the removal rate to 10% when randomly sampling ξ ∈∆ was a relatively
arbitrary choice. RLRS actually benefits slightly from increasing the removal rate. See Figure 6
(right) for results on the selection of problem instances we used in our classifier comparison. In
order to explain this we investigated and found a statistically significant correlation between
the empirical removal rate and the difference in performance of a model with removal rate 0.8
over a model with removal rate 0.9. This, in our view, suggests that the intuition behind RLRS
is correct. Learning under random subspaces is a way of equipping NLP for OOV effects.

Related work. The RLRS algorithm in Figure 2 is essentially an ensemble learning algorithm,
similar in spirit to the random subspace method (Ho, 1998), except averaging over multi-
ple models rather than taking majority votes. Ensemble learning is known to lead to more
robust models and therefore to performance gains in domain adaptation (Gao et al., 2008;
Duan et al., 2009), so in a way our results are maybe not that surprising. There is also a
connection between RLRS and feature bagging (Sutton et al., 2006), a method proposed to
reduce weights under-training as an effect of indicative features swamping less indicative fea-
tures. Weights under-training makes models vulnerable to OOV effects, and feature bagging,
in which several models are trained on subsets of features and combined using a mixture of
experts, is very similar to RLRS. Sutton et al. 2006 use manually defined rather than random
subspaces. See Smith et al. 2005 for an interesting predecessor.

4 Conclusion

We have presented a novel subspace method for robust learning with applications to document
classification and POS tagging, aimed specifically at out-of-vocabulary effects arising in the
context of domain adaptation. We have reported average error reductions of up to 18%.
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