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Abstract
Coreference resolution is the task of identifying the sets of mentions referring to the same entity.
Although modern machine learning approaches to coreference resolution exploit a variety of
semantic information, the literature on the effect of relational information on coreference is still very
limited. In this paper, we discuss and compare two methods for incorporating relational information
into a coreference resolver. One approach is to use a filtering algorithm to rerank the output of
coreference hypotheses. The filter is based on the relational structures between mentions and their
corresponding relationships. The second approach is to use a joint model enriched with a set of
relational features derived from semantic relations of each mention. Both methods have shown to
improve the performance of a learning-based state-of-the-art coreference resolver.
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1 Introduction

Much of the recent progress in statistical models of coreference resolution (Rahman and Ng, 2009,
2011; Ng, 2010) has come from the adoption of richer models of this interpretive task that overcome
the limitations and simplifications of earlier models (Soon et al., 2001; Ng and Cardie, 2002),
such as the assumption that resolving coreference involves linking mentions. There has also been
some progress towards taking advantage of richer forms of information in general and of semantic
knowledge in particular. Lexical knowledge has been shown to be clearly useful (Ponzetto and
Strube, 2006) and is exploited by most state-of-the-art systems (Bengtson and Roth, 2008; Lee et al.,
2011); it has been shown that encyclopedic knowledge as contained e.g., in Wikipedia can help
as well (Ponzetto and Strube, 2006; Uryupina et al., 2011). But the ultimate goal is to develop a
statistic-based integrated model of semantic interpretation in which coreference interacts with other
aspects of interpretation such as predicate-argument structure recognition or discourse structure
resolution, as argued in particular by (Hobbs, 1979) and implemented on a small-scale basis in the
early, pre-statistical systems (Wilks, 1975; Hobbs et al., 1993; Alshawi, 1992).

Most work to this end has been concerned with the use of semantic role information to improve
in particular the resolution of pronouns (Yang and Su, 2007; Ponzetto and Strube, 2006; Bean and
Riloff, 2004). However, there has been much more limited investigation of the effect on coreference
of the information provided by ACE-style relations. This is surprising given, first, that prima facie,
such information should be very useful, and second, that annotated containing both coreference
and relational information exist, most notably ACE-05. ACE-style relational information could be
useful to increase precision, by ruling out coreference relations between entities already known to
be related by other relations: if Jack is related by a ‘colleague’ relation with Mr. Smith, then most
likely Jack and Mr. Smith are not coreferent. Such information could also be useful to increase
recall: if Jack is related by a ‘works-for’ relation to an entity mentioned as ‘Foobar Inc.’ and by a
‘colleague’ relation with Mr. Smith, and Mr. Smith is related by a ‘works-for’ relation to an entity
mentioned as ‘the international conglomerate’, then most likely ‘Foobar Inc.’ and ‘the international
conglomerate’ are mentions of the same entity. Yet we are only aware of one study exploring the use
of such information to improve coreference, namely (Ji et al., 2005), whose approach however was
rule-based. In this paper we revisit the topic and compare rule-based methods with machine-learning
approaches to integrating relational and coreference information.

The structure of the paper is as follows. In Section 2 we discuss previous work on using relational
information for coreference. In Section 3 we describe relational information in the ACE corpora. In
Section 4 we propose three methods for integrating relational information in a coreference resolver;
the experimental setting used to evaluate these methods and the results we obtained are discussed in
Section 5.

2 Related Work

The most closely related work to ours is the proposal by (Ji et al., 2005), who use heuristics to inte-
grate constraints from relations between mentions with a coreference resolver. Their methodology
involves a two-stage approach where the probabilities output from a MaxEnt classifier are rescored
by adding information about the semantic relations between the two candidate mentions. These
relations are automatically output by a relation tagger, which is trained on a corpus annotated with
the semantic relations from the ACE 2004 relation ontology. Given a candidate pair 1.B and 2.B
and the respective mentions 1.A and 2.A they are related to in the same document, Ji et al identify
three lightweight rules to identify configurations informative of coreference:
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1. If the relation between 1.A and 1.B is the same as the relation between 2.A and 2.B, and 1A
and 2A don’t corefer, then 1.B and 2.B are less likely to corefer.

2. If the relation between 1.A and 1.B is different from the relation between 2.A and 2.B, and
1.A is coreferent with 2.A, then 1.B and 2.B are less likely to corefer.

3. If the relation between 1.A and 1.B is the same as the relation between 2.A and 2.B and 1.A
is coreferent with 2.A, then 1.B and 2.B are more likely to corefer.

While Ji et al. argue that the second rule usually has high accuracy independently of the particular
relation, the accuracy of the other two rules depends on the particular relation. For example, the
chairman of a company, which has a EMP- ORG/Employ-Executive relation, may be more likely
to remain the same chairman across the text than a spokesperson of that company, which is in the
EMP- ORG/Employ-Staff relation to it. Accordingly, the system retain only those rule instantiated
with a specific ACE relation which have a precision of 70% or more, yielding 58 rule instances.
For instances that still have lower precision, they try conjoining additional preconditions such as
the absence of temporal modifiers such as “current” and “former,” high confidence for the original
coreference decisions, substring matching and/or head matching. In this way, they can recover 24
additional reliable rules that consist of one of the weaker rules plus combinations of at most 3 of the
additional restrictions. They evaluate the system, trained on the ACE 2002 and ACE 2003 training
corpora, on the ACE 2004 evaluation data and provide two types of evaluation: the first uses Vilain
et al’s scoring scheme, but uses perfect mentions, whereas the second uses system mentions, but
ignore in the evaluation any mention that is not both in the system and key response. Using these
two evaluation methods, they get an improvement in F-measure of about 2% in every case. In the
main text of the paper, Ji et al. report an improvement in F-measure from 80.1% to 82.4%, largely
due to a large gain in recall. These numbers are relatively high due to the fact that Ji et al. use a
relaxed evaluation setting disregarding spurious links. A strict evaluation on exact mentions is able
instead to yield an improvement in F-measure from 62.8% to 64.2% on the newswire section of the
ACE corpus.

3 Relational Information in the ACE corpora
The ACE effort (Doddington et al., 2004) (Automatic Content Extraction) aims at developing
technology for automatically carrying out inference in natural language text. The data includes
the entities being mentioned, the relations among these entities that are directly expressed, and the
events in which these entities participate. The program began with a pilot study in 1999. Moreover,
data includes various source types (image, audio, text) and languages (English, Arabic).

We use the ACE 2005 Multilingual Training Corpus1. ACE defines 7 major entity types: FAC
(Facility), GPE (Geo-Political Entity: countries, cities, etc.), LOC (Location), ORG (Organization),
PER (Person), VEH (Vehicle) and WEA (Weapon). Relationship is defined in ACE as semantic
relations between pairs of entities in texts. Note that relations in ACE are mostly directional (i.e.,
asymmetric), very few are symmetric, such as PHYS.Near that characterizes the two locations are
nearby and PER-SOC.Family-Colleague that characterizes a family or colleague relationship.

Table 1 shows examples of ACE relations, the pair of arguments participating in the relation
with their directionality, according to ACE guidelines and standards. In the models that integrate
relational features, we mainly take the relation’s direction into account to compute the features. In
the following, we use the term head and tail to indicate the mentions where the relations are directed
from and to, respectively.

1http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId=LDC2006T06
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Relation type Example From To

ART(artifact) My house is in West Philadelphia “my” “my house”ART.User-Owner(“my”, “my house”)

GEN-AFF U.S. businessman “businessman” “U.S”GEN-AFF.Citizen(“businessman”, “U.S”)

ORF-AFF the CEO of Yahoo “the CEO” “Yahoo”ORF-AFF.Employment(“the CEO”, “Yahoo”)

PART-WHOLE Northern Ireland in Belfast “Belfast” “Northern Ireland”PART-WHOLE.Geographical(“Belfast”, “Northern Ireland”)

PER-SOC∗ their colleagues “their” “their colleagues”PER-SOC.Business(“their”, “their colleagues”)

PHYS∗ a news conference in Paris “conference” “Paris”PHYS.Located(“conference”, “Paris”)

Table 1: Relation types in ACE 2005 and their directionality

4 Embedding Relational Information
In this section, we describe three methods for integrating relational information in a coreference
resolver: the reranker, the enriched model and the joint model.

In traditional mention-pair coreference resolvers (Soon et al., 2001), the training and testing units are
pairs < x , y > of candidate antecedent and anaphor. The system extracts a vector v which contains
syntactic and semantic features from these two mentions. A coreference resolver then learns a
mapping function v→ c where c = (0,1) indicates if x and y belong to the same coreference chain.
In other words, a coreference resolver estimates p(c|v), the probability that x is the antecedent of y
given the feature vector v.

4.1 Reranking
The coreference reranker operates by first applying a baseline model trained using a maximum
entropy classifier with the features proposed in (Soon et al., 2001) to determine whether two
mentions (antecedent, anaphor) are coreferent or not. We then use the resulting coreference
chains c in combination with the relationships between mentions to construct a set of relational
structures. We then extract from those structures a vector r of relational features. The coreference
reranker then integrates v and r and improves the mapping function (v, r)→ c.

In other words, when integrated with relational information, the system extracts a vector r of
relational features, which are derived from both the coreference chains c of the base model and
relationships between pairs of mentions. The coreference reranker then integrates v and r and
improves the mapping function (v, r)→ c.

Figure 1 shows the relational structure for the coreference chain on the left. The directionality
specified in Table 1 is used to determine the relations belonging to the structure: only the relations
whose first argument (’from’ in Table 1) belongs to the coreference chain on the left are considered
part of the relational structure for that coreference chain; which represents the coreference chains as
group of mentions on the left, their relationships and other participants on the right. These structures
are used to infer if it is likely that two mentions corefer, as described in the following.

From the relational structure we extract features that can supplement the information available to the
base coreference resolver. Our set of features are inspired from those used by (Ji et al., 2005), but
the method discussed in this subsection differs from theirs in three important respects, as discussed
below.
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Figure 1: Relational structure Figure 2: Coref_SameRelation

Figure 3: Coref_NotSameRelation Figure 4: Coref_Transitivity

1. Coref_SameRelation: if two mentions in the same coreference chain have two relations
directed from them with the same relation type and direction, then the two participants in
those relations are likely to corefer, as illustrated in Figure 2.

2. Coref_NotSameRelation: if two mentions in the same coreference chain have two relations
directed from them with different relation type and the same direction, or the same relation
type but different direction, then the two participants in those relations are unlikely to corefer,
as illustrated in Figure 3.

3. Coref_Transitivity: : if two mentions in different coreference chains have two relations
directed from them with the same relation type and the same direction, and if these two
mentions have the same semantic classes and participate in “maybe peer” relation (such as
PHYS.Near or PER-SOC.Colleague), then the two participants in those relations are likely to
corefer, as illustrated in Figure 4.

Our proposal differs from the work of (Ji et al., 2005) in three aspects. First, our approach is not
rule-based but learning-based. Second, we do not compute the reliability weight for each rule;
instead, we integrate each feature with relation type/direction directly to the learning model and
let the model learn automatically. Finally, whereas their second and third rules are similar to our
feature F E_Core f _SameRelat ion and F E_Core f _NotSameRelat ion, we do not use the first
rule (discussed in section 2) that refers to the two mentions in two different chains that have the same
relation type/direction, since that rule is problematic. For example, the fact that Bush and Obama
are mentions in different coreference chains with the same relation types/direction leadership with
mentions of the entity US, doesn’t mean that the two mentions US participating in the relationships
cannot corefer.
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4.2 Relational Features
An alternative approach is to use relational information to define features. Relational features are
derived from relationships between mentions. As shown in Table 1, a relationship in ACE is defined
between a pair of mentions, with a corresponding relation. In Table 1, each relationship is directed
from one mention to another, the direction, as we notice, is many-to-one in most of cases and should
be taken into account. Given a pair of (antecedent, anaphor), we then extract relations for each
mention and define the following features.

1. FE_Related characterizes relationships hold between a anaphor with its potential antecedent.
Reasonably, relationships should not be hold between mentions of the same coreference chain.

2. FE_SameRelation determines if the pair (anaphor, antecedent) has two relations starting
from them with the same relation type and direction. We argue that if the two mentions
(anaphor, antecedent) have relationships of the same type/direction (e.g., hasCitizenship or
worksFor), then it is more likely they are corefered.

3. FE_SameRelationEntity determines if the pair (anaphor, antecedent) has two relations
starting from them with the same relation type/direction and directed to the same mention.

4. FE_SameRelationWithPeer determines if the pair (anaphor, antecedent) has two relations
starting from them with the same relation type/direction and if the relations are directed to
the two mentions of the same semantic type and connected by a “peer” relation, such as
PHYS.Near or PER-SOC.

5. FE_LeftRelation describes the set of relation types in common between antecedent and
anaphor where relations are those with these two mentions as head, as described in Table
1. We construct a vector from set of relations where antecedent and anaphor are the head,
respectively, then compute the dot-product between the two vectors.

6. FE_RightRelation is the same as above, but applied for relations are those with these two
mentions as tail.

7. FE_SumRelation computes the sum of FE_LeftRelation and FE_RightRelation.

8. FE_SubtractRelation computes the subtraction of FE_RightRelation and FE_LeftRelation.
Given that the relation’ direction is almost many-to-one, we argue that the tail mention promise
to be more effective. Therefore, we compute the dot-product of tail mention and of head
mention with respect to the pair (antecedent, anaphor) and take the subtraction of these two.

9. FE_MultiplyRelation computes the multiplication of FE_LeftRelation and
FE_RightRelation.

4.3 Enriched Model and Joint Model
Given the baseline and set of additional relational features as described in the previous section, the
enriched model works simply by adding those features into the baseline. Although the features
FE_Related, FE_SameRelationEntity, FE_SameRelationWithPeer and FE_SubtractRelation are the
best performers, the performance is almost consistent amongst the nine relational features.

However, we notice that, when integrated with each of nine relational features ri (which we call
‘individual model’), the increase in the performance is not always consistent amongst different
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documents. Therefore, we proceed with a joint model that learns jointly among separate individual
models and picks the one with the highest score as the final answer. To train the basic models, we
add each relational feature into the baseline and re-train. At testing time the model receiving the
highest score is selected as the final answer.

5 Experiments and Results

5.1 Experimental Setup
Corpus. We use the ACE 2005 coreference corpus released by the LDC, which consists of
the 599 training documents used in the official ACE evaluation. The corpus was created by
selecting documents from six different sources: Broadcast News (bn), Broadcast Conversations
(bc), Newswire (nw), Webblog (wb), Usenet (un), and conversational telephone speech (cts). For
evaluation, we reuse the partition done by (Rahman and Ng, 2009) that splits the 599 documents into
a training set and a test set following a 80/20 ratio, resulting in a partition of 482/117 documents.

In our experiments, we use the relation extraction model2 proposed in (Nguyen and Moschitti, 2011).
To extract mentions from both the training and test set, we used the model defined in (Nguyen
et al., 2010, 2009) to train a mention extractor. When evaluated on the ACE 2005 data sets, since
documents in the corpus are from six different sources with equivalent number of documents in
each source, we perform 6-fold cross-validation where each fold consists of documents from one
source. The performance of the relation and mention extractor is given in Table 2.

Task Precision Recall F1
Relation extractor 57.9% 59.4% 58.5%
Mention extractor 75.3% 67.7% 71.3%

Table 2: Performance of relation extraction and mention extraction

Baseline. As a baseline we train a maximum entropy classifier to generate the coreference chains.
We use (Soon et al., 2001) set of features as implemented in the BART coreference toolkit3. The base
model makes use of a maximum entropy classifier to train a mention-pair model, which determines
whether two mentions are coreferent or not. Our baseline results are shown in Table 3 which also
includes the results of another state-of-the-art coreference system of (Rahman and Ng, 2009). For
this and the following experiments, all the results were computed using MUC-score with standard
precision, recall, and F-measure.

Gold mentions System mentions
System Recall Precision F1 Recall Precision F1

Our Baseline 65.7 87.9 75.2 50.8 76.7 61.1
(Rahman and Ng, 2009) 71.7 69.2 70.4 70.0 56.4 62.5

Table 3: Performance comparison on the ACE 2005

5.2 Results
In this section, we report the results of different relationals model with the reranker, the enriched
model and the joint model. Results with the reranking approach is shown in the second line of Table
4. Results of the enriched model with separate features and with the combination of all features, and
results with the joint model are shown in Table 4.

2http://sourceforge.net/projects/reck/files/reck_v1.0.0.tar.gz/download
3http://www.bart-coref.org/
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First, the reranker improves to 76.1 with gold mentions and 62.7 with system mentions when rela-
tional information is added. This suggests that the relational structures are effectively exploited with
the three features as desribed in section 4.1 and that such information is somewhat complementary
to the basic feature set as defined in (Soon et al., 2001).

Gold mentions System mentions
Setting Recall Precision F1 Recall Precision F1

Baseline 65.7 87.9 75.2 50.8 76.7 61.1
Reranking 66.8 88.4 76.1 52.6 77.5 62.7
FE_Related 65.7 88.2 75.3 51.0 77.0 61.4
FE_SameRelation 65.7 88.2 75.3 50.9 77.0 61.3
FE_SameRelationEntity 65.7 88.1 75.3 51.1 77.0 61.4
FE_SameRelationWithPeer 65.8 88.1 75.3 51.1 77.0 61.4
FE_LeftRelation 65.8 88.1 75.3 51.0 76.7 61.2
FE_RightRelation 65.8 88.0 75.3 50.9 77.0 61.3
FE_SumRelation 65.8 88.0 75.3 50.9 77.0 61.3
FE_SubtractRelation 65.8 88.0 75.3 51.0 77.0 61.4
FE_MultiplyRelation 65.7 88.0 75.3 51.2 77.0 61.4
Enriched Model 66.3 88.7 76.0 52.1 76.7 62.0
Joint Model 67.0 88.9 76.4 54.5 75.7 63.3

Table 4: Results with reranking, enriched and joint models

Second, the enriched model improves to 76.0 with gold mentions and 62.0 with system mentions
when the base model is enriched with nine relational features. This suggests that the relation
information between pairs of mentions can be encoded together with information merely from the
mentions themselves.

Third, the joint model improves to 76.4 with gold mentions and 63.3 with system mentions when
the enriched models are trained with separate relational features and the joint model chooses the best
score for each testing instance. This suggests that the relational information, when possible to be
encoded to yield better results as in the case of the enriched model, are not exploited as better as the
joint model strategy. We also conducted sign test to measure the difference between the best model
(i.e., joint model) and the baseline. The significance results are ρ = 0.0047 with gold mentions and
ρ = 0.0033 with system mentions, which means that our results are statistically significant.

6 Conclusion

Previous results suggest that relational features are clearly helpful for coreference resolution in ACE.
However, as we showed, there has been much more limited investigation of the effect on coreference
of the information provided by ACE-style relations. Such information should be very useful, and
that annotated containing both coreference and relational information exist, most notably ACE-05.

The joint model performs the best. That would suggest 1. relational features are helpful in linking
one anaphor to its antecedent; 2. the integration of machine learning methods outperforms the
merely addition of relational features, as in the enriched model.

We analyzed the impact of relational structures and features for coreference resolution. Our study
demonstrates that both kinds of structures and features clearly give improvement to the coreference
resolver. Most interestingly, as we shown, the integration of relational features, in combination of
the ranking method, yields the best results. The joint model, that is taken by comparing the enriched
models one with each other, turns out as very effective for both gold mentions and system mentions.
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