
Proceedings of COLING 2012: Posters, pages 391–400,
COLING 2012, Mumbai, December 2012.

Deban jan Ghosh Smaranda Muresan

2

391

1 Introduction

Information Extraction (IE) is the task of extracting structured information from unstructured
text. Two major sub-tasks of IE are extracting entities such as [John Smith]Pers, [New York]Loc
and [Google Inc]Or g and the relation between these entities, such as Work_For relation between
[John Smith]Pers and [Google Inc.]Or g , and Live_In relation between [John Smith]Pers and
[New York]Loc . Extracting relations between entities is still a significantly harder task than
recognizing entities, and current state-of-the-art systems achieve inferior results. Consider the
following examples of a Live_In relation from the corpus introduced by (Roth and Yih, 2004):

(1) [Actress Angie Dickinson]Pers, who was born in [Kulm,N.D.]Loc donated a coat she
wore to the 1966 [Academy Awards]Other

(2) [Modesto]Loc, native [George Lucas]Per ’s film was released...

Our task is to extract the Live_In relation from the above sentences where the involved named
entities are [Actress Angie Dickinson]Per and [Kulm, N.D.]Loc in example (1) and [George
Lucas]Per and [Modesto]Loc in example (2). These two examples are illustrative of two key
challenges: 1) a sentence can contain multiple entities (e.g., [Academy awards]Other is a named
entity in sentence (1), but it is not part of the Live_In relation); and 2) each relation has
a concept of directionality. This is because the arguments in a relation often take different
roles and need to be distinguished (Live_in([Actress Angie Dickinson]Pers, [Kulm,N.D.]Loc]
vs. Live_in([Modesto]Loc ,[George Lucas]Pers). Identifying the right directionality is key to the
task of relation extraction. While few recent work on relation extraction has modeled the
directionality of relations (Roth and Yih, 2004; Giuliano et al., 2007; Kate and Mooney, 2010;
Zhang et al., 2008), these studies have only reported averaged results. A key contribution of
this paper is an in-depth study of relation directionality, showing how various factors might
contribute to the accuracy of results for each relation direction.

In this paper, we explore a novel approach of creating substring sequences from corpora
annotated with entities for relation extraction. We use intra-sentential information between the
entities to create string sequences, which we call entity sequences. In our approach, we assume
that entity boundaries are known, but the types of entities are unknown. We treat the relation
extraction problem as a supervised learning (classification) problem. A modified string kernel is
applied over entity sequences. This kernel in turn is augmented with SVM to find the decision
hyperplane that can separate one relation from the other. We show that semantic and syntactic
features (WordNet hypernyms and dependency relations) help the classifier to achieve better
results. We also present a preliminary set of experiments using a shortest path dependency
kernel similar to the one introduced by Bunescu and Mooney (2005b), which improves our
results for three out of the five relations under study. We use the dataset created by Roth and
Yih (2004)1 for two main reasons: 1) it represents a challenging dataset for our task since there
are often more than two entities in a sentence, unlike SemEval 2010 dataset2 and 2) it has
been widely used in recent relation extraction research (Roth and Yih, 2004, 2007; Giuliano
et al., 2007; Kate and Mooney, 2010) allowing us to compare our results with prior work. This
dataset is referred to as the RY dataset.

In Section 2 we describe the method of creating entity sequences for the relation extraction task.
Section 3 formally presents our proposed kernel. We discuss the kernel performance in Section

1http://cogcomp.cs.illinois.edu/Data/ER/
2http://semeval2.fbk.eu/semeval2.php

392

4 including detailed experiments of relation directionality and comparison with state-of-the-art
methods. In Section 5 we briefly review related work.

2 Entity Sequence Generation

Given a sentence S that contains a set of entities e1, . . . en a relation Ri j exists between a pair of
entities ei and ej , where ei is the first entity and ej is the second entity. Together ei and ej are
considered candidate entities. For example, given the sentence:

(3) a reasonable doubt that [Oswald]Pers was the lone gunman who killed [President
Kennedy]Pers and [Officer Tippit]Pers and that there was no coverup by the [Warren
Commission]Or g

There are two Kill relations. The first one between [Oswald]ei
(first entity) and [President

Kennedy]ej
(second entity) and the second one between [Oswald]ei

(first entity) and [Officer
Tippit]ej

(second entity). In this paper, we introduce the concept of the entity sequence and
describe how it represents entities and relations in a sentence. An entity sequence depends upon
the position and occurrence of entities in a sentences. We introduce three terms to represent
the word sequences related to a relation: 1) pre-entity (the word sequence before the first entity
of a relation), 2) intra-entities (the word sequence between the two entities) and 3) post-entity
(the word sequence after the second entity). Thus, an entity sequence (ES) is defined as:

ES = [pre] + enti t y1+ [intra] + enti t y2+ [post] (1)

The pre/post entity word sequences have a maximum length of four words. Each entity sequence
can contain a maximum of one relation between candidate entities entity1 and entity2. If an
entity sequence contains a relation, then the sequence is considered as a positive example
for the given relation. Otherwise, it is a negative example. A single entity can take part in
multiple relations. For example, in Figure 1, [Oswald]Pers is part of two Kill relations. In
contrast, an entity in a given sentence might not take part in any relation (e.g., [Warren
Commission]Or g). From a given sentence S, it is trivial to create the set of entity sequences
by permuting the position of the entities (e.g., Figure 1). However, this has an unwanted
consequence of producing an extremely large number of negative entity sequences. Thus,
to balance the distribution of the positive and the negative examples in the training set, we
selected only those negative entity sequences where at least one of the two entities is a gold
standard entity. In Figure 1, we have a total of six entity sequences generated from the candidate
sentence. The first ([Oswald]ei ... killed [President Kennedy]ej) and the second ([Oswald]ei ...
killed ... and [Officer Tippit]ek) are positive examples for the Kill relation, where the rest are
negative examples. Sentences in the RY dataset are taken from the TREC corpus and annotated
with entities and relations. Our experiments used only the 1,437 sentences that contain at least
one relation. There are four types of entities (Person (Pers), Location (Loc), Organization (Org)
and Other) and five types of relations: Kill, Live_In, Work_For, Located_In, and OrgBased_In.
Based on the algorithm of entity sequence generation we created 268 Kill, 521 Live_in, 401
Work_For, 405 Located_In and 452 OrgBased_In positive entity sequences. Each ES indicates
a pair of candidate entities holding a binary relation. Table 1 depicts the relations in the
RY dataset, as well as relation directionality. For each entity sequence the candidate entities
have assigned a role. For three relations (Work_For, OrgBased_In and Live_In) the types of the
candidate entities are different. For simplicity, we have defined a specific nomenclature for the

393

Entity Sequences Generated:
ES1= a reasonable doubt that [Oswald]ei was the lone gunman who killed [President Kennedy]ej and
Officer Tippit and
ES2= a reasonable doubt that [Oswald]ei was the lone gunman who killed President Kennedy and [Officer
Tippit]ek and that there was
ES3= a reasonable doubt that [Oswald]ei was the lone gunman who killed President Kennedy and Officer
Tippit and that there was no coverup by the [Warren Commission]el

ES4= gunman who killed [President Kennedy]ej and [Officer Tippit]ek and that there was
ES5= gunman who killed [President Kennedy]ej and Officer Tippit and that there was no coverup by the
[Warren Commission]el

ES6= killed President Kennedy and [Officer Tippit]ek and that there was no coverup by the [Warren
Commission]el

Figure 1: Example of entity sequences for a given sentence.
Relation positive negative e1 e2 Example

Kill
191 962 Pers Pers Oswald killed Kenned y
77 Pers Pers Tippi t was killed by Oswald

Located_in
337 1234 Loc Loc Disne yWorld in F lorida
68 Loc Loc China’s agricultural producers, Anhui

Work_for
260 1280 Pers Org Emmerich vice president of ABCcorp
141 Org Pers Pepco executive SharonPrat tDixon

Orgbased_in
283 1338 Loc Org USA has leaped 34%... FBI reported
169 Org Loc leather f actor y in Caguasu

Live_in
376 1549 Pers Loc DavidAbernathy is born in Linden
145 Loc Pers I l l inois born Charl tonHeston

Table 1: Statistics of Entity Sequences in the RY dataset

order of the entities. In the case of Work_For relation, the Pers entity is e1 and the Org entity is
e2. This ordering of entities is denoted as e1→ e2. There are 260 examples of this ordering in
Table 1. Conversely, there are 141 examples of type e2→ e1 where Org is the first entity and
Pers is the second entity. We have applied some heuristics for Kill and Located_In because the
candidate entities are of the same type. In the first example, one Pers entity [Oswald]e1 is acting
upon another Pers entity [President Kennedy]e2. According to our heuristic thus [Oswald] is
denoted as e1 and [President Kennedy] is e2. So the order of the entities is e1→ e2. Similarly, in
[Officer Tippit] ek, the Dallas policeman who was killed by [Oswald]ei the order of the entities is
e2→ e1. For the Located_in relation, when a location entity is inside another location entity we
denote the contained entity e1 and the container entity as e2. In the example [Disney World]ei
in [Florida]ej , we have that [Disney World] is e1 and [Florida] is e2. Similarly, in the example
[China]ei ’s major agricultural producers, [Anhui]ej , [China] becomes e2 and [Anhui] is e1.

3 Entity Sequence Kernel and SVM

Once we generate entity sequences from the given sentences, the next task is to adopt the proper
machine learning algorithm for the relation extraction task. Every relation is split into two sub
relations (e1→ e2 and e2→ e1) depending upon the order of the candidate entities. All negative
examples are categorized together in a single category. We utilize a modified version of the gap
weighted sequence kernel (Lodhi et al., 2002) for the relation extraction task. Our data set
(entity sequences) is nothing but a carefully selected sequences of words, where the order of the
words is of prime importance. A conventional BoW feature vector representation (e.g., binary
value features) is unaware of the word order and hence it will be difficult for a traditional

394

classifier (e.g., a standard vector kernel) to classify entity sequences. Instead, gap weighted
sequence kernels (Lodhi et al., 2002) are a perfect fit to handle instances where the order of
the word sequences is essential. Thus, this kernel is a natural choice for our classification task.

Given two entity sequences s and t, an Entity Sequence Kernel Kes counts the number of
subsequences of length n common to both s and t. Formally, let Fi be the feature space over the
words in an ES. Similarly, we consider other disjoint feature spaces Fj , Fk, ..., Fl (e.g., stem, POS
tags, chunk tags) (Bunescu and Mooney, 2005a) where the set of all possible feature vectors
F× = Fi × Fj × Fk × ...× Fl . For any two feature vectors x , y ∈ F× let sim(x , y) computes the
number of similar (i.e., common) features between x and y . Given two entity sequences s and
t over the finite set F×, let |s| denote the length of s = s1...s|s|. Let i= (i1, ..., i|i|) be a sequence
of |i| indices in s where the length l(i) is i|i| − i1 + 1. Similarly, j is a sequence of | j| indices in t.
The kernel function Kes(s, t,λ) that calculates the number of weighted sparse subsequences of
length n (say, n=2:bigram) common to both s and t, is defined as:

Kes(s, t,λ) =
�

i:|i|=n

�

j:|j|=n

n�
k=1

sim(sik , t jk)λ
l(i)+l(j) (2)

The recursive computation can be computed in O(kn|s||t|) time. The gap between the words is
penalized with a suitable decay factor λ (0< λ < 1). This decay factor in turn compensates for
matches between lengthy word sequences. The design of the kernel Kes is created by the pre,
int ra, and post patterns, which have already been found useful in previous work of relation
extraction (Giuliano et al., 2007; Bunescu and Mooney, 2005a). We define two separate kernels
to effectively use the candidate entities and the word sequence before and after them. The
relation kernel Krel measures the similarity between s and t by adding up the evidences of various
sub kernels over the word sequences (pre, post and int ra): Krel = Kprei + Kint + Kipost , where
Kprei consists of pre-entity and intra-entity substrings, Kint consists of intra-entity substring,
and Kipost consists of intra-entity and post-entity substrings. The entity kernel, Kent measures
the similarity between the candidate entities (Kent = Ke1

+ Ke2
) where Ke1

is the kernel for
the first entity, and Ke2

is the kernel for the second entity. The final entity sequence kernel is
Kes = Krel + Kent .

Several features are used in computing sim(s, t) such as original word, stem, POS, chunk infor-
mation, dependency and WordNet hypernym features. Various preprocessing steps (sentence
detection, POS tagging, chunking) are performed using the JTextPro3 package. Rita.WordNet4

is used as the WordNet library to compute the similar hypernyms between words. Stanford
Dependency Parser5 is utilized to extract the dependency features. Often the entity sequences
are just sequences of words which are non-grammatical as an utterance. Consequently, a parser
will behave unexpectedly while parsing these sequences. Thus, we ran the Stanford Parser
over the original sentences instead of the entity sequences. The grammatical relation with the
governing token is used as a feature for the words. All the experiments are conducted using
the LibSVM (Chang and Lin, 2001) package customized to augment the entity sequence kernel.
The decay factor λ was set to 0.5 empirically. To reduce the data imbalance problem the cost
factor Wi was set to be the ratio between the number of negative and positive examples.

We have also performed an initial set of experiments using the shortest path dependency

3http://jtextpro.sourceforge.net/
4http://www.rednoise.org/rita/wordnet/documentation/
5http://nlp.stanford.edu/software/lex-parser.shtml

395

Approach Direction Kill Located In Live In
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

BL e1→ e2 65.5 73.5 69.3 74.1 67.6 70.7 59.5 61.7 60.6
BL e2→ e1 87.1 70.1 77.6 68.0 32.4 43.9 80.5 40.9 54.2

BL + WN e1→ e2 68.8 76.7 72.5 82.5 79.4 80.9 60.8 62.2 61.5
BL + WN e2→ e1 92.6 64.6 76.6 71.0 29.7 41.7 84.5 41.2 55.4

BL + Dep + WN e1→ e2 75.0 76.7 75.9 81.6 79.3 80.4 60.5 60.7 60.7
BL + Dep + WN e2→ e1 94.6 66.7 78.1 73.3 29.6 42.2 85.9 41.3 55.8

Approach Direction OrgBased In Work For
Prec. Rec. F1 Prec. Rec. F1

BL e1→ e2 56.1 42.7 48.5 70.2 72.6 71.4
BL e2→ e1 79.7 77.4 78.6 83.8 45.5 59.0

BL + WN e1→ e2 69.9 60.5 64.9 67.3 72.4 69.8
BL + WN e2→ e1 88.1 80.8 84.3 87.5 52.0 65.2

BL + Dep + WN e1→ e2 54.2 44.8 49.1 69.5 75.9 72.6
BL + Dep + WN e2→ e1 83.0 80.8 81.9 87.8 54.1 67.0

Table 2: Performance of entity sequence kernels (Kes) on both relation directions.

kernel of Bunescu and Mooney (2005b) modified for our settings. We have modified the Entity
Sequence Kernel to use only those words that occur on the shortest dependency path between
the mentioned entities. Using the Stanford Dependency Parser we create the shortest path
between two entities (ei and ej) in the undirected version of the dependency graph. Thus an
entity sequence - shortest path (ESSP) is defined as ESSP = enti t y1+ [sp] + enti t y2, where
[sp] represents the words which appear on the shortest dependency path between entity1 and
entity2. We define the shortest path entity sequence kernel Kes_sp = Krel_sp+Kent , where Krel_sp
is based on the words present in [sp]. In Table 3, we notice that for three out of the five
relations, Kes_sp kernel outperforms the original Kes kernel.

4 Results and Discussion

Table 2 presents the results for each of the five relations, including directionality (e1 → e2
vs e2 → e1). All scores are averaged over a 5-fold cross validation set. BL denotes baseline
features (word, stem, chunk, POS), Dep is the dependency feature and WN is the WordNet
hypernym similarity. For three relations (Kill, Work_For and Live_In) the e1→ e2 relations have
a higher recall but lower precision where the e2 → e1 have significantly higher precision for
all the relations. For the Kill relation, there are 191 examples of e1→ e2 direction and only 77
examples of e2→ e1 (Table 1). This imbalance in number explains the general trend to express
a Kill relation in text. The entity order e1→ e2 (Oswald killed Kennedy) is more common than
e2→ e1 (Kennedy was killed by Oswald).

In addition, a larger number of negative examples are created for e1→ e2 relations than for the
e2 → e1 relations. For Kill relation there are around 650 negative examples for the direction
e1 → e2 , i.e., 70% of all the negative sequences. These negative examples are similar in
syntactic structure to the positive examples, which leads the classifier to misclassify the negative
examples as e1 → e2. This explains the low precision. In addition, from the perspective of a
sequence kernel, it considers all possible subsequences for matching, implementing a partial
(fuzzy) matching. Table 2 for e1→ e2 represents the effect of disjoint feature scopes of every
features (POS, Chunk, Dep, WordNet). Each features adds up and expands the feature scope
of the sequence kernels by allowing fuzzy matching, which in turn improve the recall. For the
e2 → e1 direction, the number of negative examples is small and thus there are fewer false

396

Approach Kill Located In Live In
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Kes BL + WN 80.7 70.7 75.4 77.7 51.6 62.1 72.7 51.7 60.5
Kes BL + Dep + WN 84.8 71.7 77.8 77.4 54.5 64.0 73.2 52.0 61.0

Kessp
BL + WN 80.0 73.7 76.7 65.9 71.1 68.4 65.1 58.5 61.6

Kessp
BL + Dep + WN 82.0 75.1 78.4 65.5 69.6 67.5 64.9 56.3 60.3

KM10 Pipeline 91.1 61.2 73.1 71.5 57.0 62.3 68.1 56.6 61.7
KM10 CardPyramid 91.6 64.1 75.2 67.5 56.7 58.3 66.4 60.1 62.9

RY07 Pipeline 73.0 81.5 76.5 52.5 56.4 50.7 58.9 50.0 53.5
RY07 Joint 77.5 81.5 79.0 53.9 55.7 51.3 59.1 49.0 53.0

G10 MC |K∗SL 82.5 77.2 79.8 78.1 59.0 67.2 71.8 53.4 61.2

Approach OrgBased In Work For
Prec. Rec. F1 Prec. Rec. F1

Kes BL + WN 79.0 70.7 74.6 77.4 62.2 69.0
Kes BL + Dep + WN 68.6 62.8 62.3 78.7 65.0 71.2

Kessp
BL + WN 68.4 69.1 68.7 71.7 65.2 68.3

Kessp
BL + Dep + WN 68.8 68.8 68.8 74.3 65.1 69.4

KM10 Pipeline 70.6 60.2 64.6 74.1 66.0 69.7
KM10 CardPyramid 66.2 64.1 64.7 73.5 68.3 70.7

RY07-Pipeline 77.8 42.1 54.3 60.8 44.4 51.2
RY07 Joint 79.8 41.6 54.3 72.0 42.3 53.1

G10 MC |K∗SL 68.3 61.5 64.7 75.4 67.1 71.0

Table 3: Comparison with existing state-of-the-art systems (Average F1)

positives, which explains the higher precision. But since there are a small number of training
examples (for a 5-fold cross validation, each fold has an average of 60 training instance), the
recall is low. In the case of OrgBased_In and Located_In we observe two outcomes. First, for
e1→ e2 the precision is little higher than the recall, unlike the other three relations. Even if we
add features in the sequence kernel the concept of fuzzy matching is not helping to improve the
recall for these two relations. We notice that a lot of of positive examples for these two relations
are connected either by a single word or by punctuation. Consider the following examples, a)
[Havana]ei [Radio Rebelda Network]ej in spanish GMT..., and b) [George Lucas]ei , a [Modesto]ej .
Even if we add POS, Chunk, Dep features besides the word features, it will not help the classifier
to improve the recall as there is not much useful information available. A single letter token
like a is like a stop-word and does not help in classification. Thus, the recall does not change
for these cases. Second, we notice that the dependency feature is not contributing much to
these two relations. Stanford Parser does not recognize punctuation as relation markers. To
test our hypothesis we observe that for these two relations (containing shorter sequences) the
original gap sequence word kernel performs close to the baseline kernel (around 58% F1 for
Located_In and around 62.1% for OrgBased_In). However, for OrgBased_In we achieve a very
high precision at the same time. WordNet hypernym help to match non-obvious terms like
(Federation and Nation), (Citizen and National). In the case of e2→ e1 for Located_In, entities
are mostly linked via the "possession" type of dependency relation. However, a lot of negative
examples are linked like that; so by adding the dependency feature for e2 → e1, we observe
that the precision slightly decreases.

In order to compare the results with state of the art systems (Kate and Mooney, 2010; Roth and
Yih, 2007; Giuliano et al., 2007), Table 3 shows the average scores of the relation directions
(however our folds of the 5-fold cross validation are not the same as their folds which were not
available). For Entity Sequence Kernels we present the results of BL+WN and BL+WN+Dep.

397

For Roth and Yih (2007), we report the results they obtain using their most sophisticated model
which they call “E↔ R" (RY07 in Table 3). For Kate and Mooney (2010) we show both the
results of their card-pyramid method that performs joint modeling of entities and relations, and
their pipeline approach (KM10 in Table 3). For (Giuliano et al., 2007) (G10 in Table 3) we use
the results of their MC |K∗SL model which is the closest to ours (it uses entity boundaries but no
entity types during training). Our method performs the best for three out of the five relations
(OrgBased_In, Work_For, Located_In). For the other two relations our average F1 is very close to
the best results, being 3rd for Kill, 2nd for Live_In.

5 Related Work

Recently there has been a lot of research on relation extraction using kernel methods. In this
section we review mainly two lines of work closely related to ours.

In Section 4 we have introduced several state-of-the-art approaches to relation extraction which
have used the RY corpus. Roth and Yih (2007) have adopted an integer linear programming
framework for joint extraction of entity and relations. Kate and Mooney (2010) have imple-
mented a card-pyramid parsing technique where each candidate sentence is represented as a
binary directed graph. The entities are placed on the leaf nodes and relations are on the higher
levels in the graph. Giuliano et al. (2007) et al. have studied the relation extraction problem
using a pipeline architecture, similar in nature to our approach but using linear kernel with
only basic features. They ran an independent NER to recognize the entities in the sentences
and used these new recognized entities as possible entity mentions for the relation extraction.
However, we have not conducted any NER experiments to recognize entities and thus have used
the available correct boundaries of entities in our research. Both Kate and Mooney (2010) and
Giuliano et al. (2007) have mentioned the directionality issue of the relations but they only
presented the micro-average F1 scores.

In terms of methodology, the closest approaches to ours are the ones using sequence kernels
for relation extraction. Inspired by the string kernel of Lodhi et al. (2002), Bunescu and
Mooney (2005a) created subsequence patterns between entities to extract top-level relations
from the ACE dataset. In our work we use entity sequence kernes, and only consider the entity
boundaries as given, and not entity types as in (Bunescu and Mooney, 2005a). Bunescu and
Mooney (2005b) present a shortest path (between the entities) dependency tree kernel and
evaluate it on the ACE 2002 dataset. However, as pointed out by (Giuliano et al., 2007) due
to the varied datasets (e.g. ACE, SemEval) employed for these research it is a hard task to
compare one against another. The generic trend is usually similar — sequence kernels have
more flexibility and thus gap sequence kernels find similar subsequences and often results in a
higher recall (Wang, 2008).

6 Conclusion

We have presented an approach for relation extraction using semantic and syntactic features
augmented with an entity sequence kernel. To the best of our knowledge, this paper presents
the first in depth study of how the order of the candidate entities influences relation directionality
and how various factors might contribute to the accuracy of results for each relation direction.
Our proposed entity sequence kernel outperforms state-of-the-art methods for three out of the
five relations under study. We plan to further explore the shortest path dependency kernel with
different kernel combination schemes in future work.

398

References

Bunescu, R. and Mooney, R. J. (2005a). Subsequence kernels for relation extraction. Proceed-
ings of the 19th Conference on Neural Information Processing Systems (NIPS).

Bunescu, R. C. and Mooney, R. J. (2005b). A shortest path dependency kernel for relation ex-
traction. Vancouver, BC. Proceedings of the Joint Conference on Human Language Technology
/ Empirical Methods in Natural Language Processing (HLT/EMNLP).

Chang, C.-C. and Lin, C.-J. (2001). Libsvm: a library for support vector machines.

Giuliano, C., Lavelli, A., and Romano, L. (2007). Relation extraction and the influence of
automatic named-entity recognition. ACM Transactions on Speech and Language Processing
(TSLP), 5(2).

Kate, R. J. and Mooney, R. J. (2010). Joint entity and relation extraction using card-pyramid
parsing. Number 203-212, Uppsala, Sweden. Proceedings of the Fourteenth Conference on
Computational Natural Language Learning (CoNLL-2010).

Lodhi, H., Saunders, C., Taylor, J. S., Christianini, N., and Watkins, C. (2002). Text classification
using string kernels. Journal of Machine Learning Research, 2:419–444.

Roth, D. and Yih, W. (2004). A linear programming formulation for global inference in natural
language tasks. Proc. of the Annual Conference on Computational Natural Language Learning
(CoNLL), pages 1–8.

Roth, D. and Yih, W. (2007). Global inference for entity and relation identification via a linear
programming formulation. Introduction to Statistical Relational Learning.

Wang, M. (2008). A re-examination of dependency path kernel for relation extraction. In
Proceedings of IJCNLP.

Zhang, M., Zhoua, G., and Aw, A. (2008). Exploring syntactic structured features over parse
trees for relation extraction using kernel methods. Information Processing and Management,
44(2):687–701.

399

