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ABSTRACT
Standard word sense disambiguation (WSD) data sets annotate each word instance in context
with exactly one sense of a predefined inventory, and WSD systems are traditionally evaluated
with regard to how good they are at picking this sense. Recently, the notion of graded word
sense assignment (GWSA) has gained attention as a more natural view of the contextual
specification of word meaning; multiple senses may apply simultaneously to one instance of a
word, and they may be applicable to different degrees. In this paper, we apply three different
WSD algorithms to the task of GWSA. The three models belong to the class of knowledge-based
models in the WSD terminology; they are unsupervised in the sense that they do not depend on
annotated training material. We evaluate the models on two recently published GWSA data sets.
We find positive correlations with the human judgments for all models, and develop a metric
based on the notion of accuracy that highlights differences in the behaviors of the models.
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1 Introduction

The problem of word sense disambiguation (WSD) is a central topic in computational linguistics,
with a long-standing, rich history of research (see McCarthy, 2009; Navigli, 2009). Typically, the
WSD task is designed such that each target word in context is assigned a single word sense from
a predefined sense inventory. However, several word senses may be simultaneously present in a
contextual instance of a word, which holds in particular in connection with fine-grained sense
inventories, like the one provided by WordNet (Fellbaum, 1998). The single-sense restriction
typically leads to a somewhat arbitrary overspecification of word meaning, which may be
detrimental to the use of WSD systems in practical applications. Moreover, both agreement
between human annotators and accuracy of WSD systems tend to be rather low, which stands in
contrast to the strong intuition that words in context generally have a well-understood meaning.

Recently, the notion of graded word sense assignment (GWSA) has been brought into discussion
by Erk et al. (2009, 2012), and two closely related GWSA data sets are now available. The
underlying assumption of GWSA is that a word in context may in fact evoke more than
one sense, and the different senses may participate in the meaning of the word to different
degrees. To produce the aforementioned data sets, annotators were presented target instances,
i.e., lemmas in the context of a sentence, and asked to assign a value, which indicates the
applicability of the sense in the context, on a scale from 1 to 5 to each WordNet sense of the
lemma independently. The annotation method allows more than one word sense for a given
target instance to be assigned a high applicability score, and it induces an ordering of the word
senses on the level of single instances. Erk et al. (2009) give the example of “paper” occurring
in a sentence which clearly identifies a scientific context. All three annotators agree that the
WordNet sense scholarly article fully applies and consistently assign a score of 5. However, the
senses essay and medium for written communication are also assigned high scores by some of the
annotators. This reflects these annotators’ intuitions that several senses apply simultaneously,
and induces an ordering of the senses’ applicabilities.

A first, supervised, computational model for GWSA is presented by Erk and McCarthy (2009).
In this paper, we explore models that are unsupervised in the sense that they do not depend on
annotated training material; in the WSD terminology, they belong to the class of knowledge-
based WSD systems. More specifically, we address the task of ranking the WordNet senses of a
lemma for each of its instances, according to the degree of applicability of the respective senses
in context. We evaluate our models against the data sets provided by Erk et al. (2009, 2012),
and use the ranking induced by the average scores for each word sense as a gold standard. We
carry out the evaluation for three different systems: two related models, which are based on the
individual similarity scores between the contextualized vector representation of a target word
in context and vector representations computed for the respective word senses (Thater et al.,
2011; Li et al., 2010), plus a reimplementation of the approach of Sinha and Mihalcea (2007),
a representative of the larger class of graph-based approaches to WSD. Our major findings are
first, that the knowledge-based systems show positive correlation with the human judgments,
and second, that there are interesting differences in performance between the different types of
systems according to our metric of Adjusted Accuracy.

2 Related Work

The only WSD system that has been evaluated on the full GWSA data set of Erk et al. (2009)
so far is the supervised model of Erk and McCarthy (2009). Thater et al. (2010) describe an
approach to unsupervised GWSA on the basis of a syntactically informed distributional similarity
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model. The evaluation was carried out for three selected verb lemmas, and therefore has the
character of a case study only. The study of Jurgens (2012), which explores the application of
word sense induction techniques to GWSA, has a similar status: Since he needs a large part of the
GWSA data set as a sense mapping corpus, only a very small amount of data is left for evaluation.

3 Modeling

This section reviews the three knowledge-based WSD algorithms that we use in our study, and
which we chose for the following reasons: (1) They are knowledge-lean, i.e., the only resource
required is a semantic lexicon (such as WordNet), and they can be implemented quickly. (2)
They exhibit state-of-the-art performance on the SemEval-2007 coarse-grained WSD task.

3.1 Vector Space-based WSD System

We use the vector-space model (VSM) of Thater et al. (2011), which is closely related to
the models of Thater et al. (2010) and Erk and Padó (2008). The general idea behind
VSMs of word meaning is to represent words by vectors in a high-dimensional space. These
vectors record co-occurrence statistics with context words in a large unlabeled text corpus,
and their relative directions are taken to indicate semantic similarity. The particular model
used in our experiments is the one of Thater et al. (2011), which provides context-specific
(contextualized) vectors for words in their syntactic context. It can be applied to WSD and
GWSA in a straightforward way: given a target word in a sentential context, we extract a set
of sense paraphrases for each sense of the target from WordNet. We then compute the cosine
similarities of all sense paraphrases and the contextualized vector of the target word, and set
the similarity of the sense to be the average of the best two sense paraphrases. In the case
of standard WSD, the VSM predicts the sense with the highest score; in the case of GWSA, the
scores assigned to the senses induce a ranking. In rare cases, the VSM fails to make predictions,
i.e., when the dependency tree for the input sentence does not assign the correct POS to the
target word, or when no useful sense paraphrases can be extracted from WordNet.

3.2 Topic Model-based WSD System

Li et al. (2010) use topic models (Blei et al., 2003), which represent text corpora using
generative probability distributions, as the central component of their WSD system. Topics
are distributions over words and each document is modeled as a mixture of latent topics. Li
et al. (2010) extract one sense paraphrase per word sense from WordNet. The topic model is
used to estimate a vector of the topic distribution for the context of the target word (usually
the sentence in which it occurs) and a vector for the sense paraphrase of the candidate sense.
The cosine between these vectors is taken as the final score for the word sense. This algorithm
naturally produces a ranking of word senses. We closely follow the experimental settings (for
Model II) reported by Li et al. (2010), but we were not able to fully reproduce their system. For
SemEval-2007, Li et al. (2010) report an F1-measure of 79.99% for their Topic Model system.
Our reimplementation achieved an F-measure of 71.7%. Hence, the Topic Models approach
might yield better performance using different parameter settings. We noticed that due to the
sampling step inside the algorithm, the results varied by small, but non-negligible, amounts. We
thus sum up the scores produced by the system across multiple (ten) runs in order to predict a
more reliable ranking. This results in a slight increase of performance.
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3.3 Graph-based WSD System

To date, many graph-based WSD algorithms have been proposed, (among others by Sinha
and Mihalcea, 2007; Agirre and Soroa, 2009; Navigli and Lapata, 2010; Tsatsaronis et al.,
2010; Ponzetto and Navigli, 2010). We chose to reimplement the approach of Sinha and
Mihalcea (2007) for several reasons. First, it is based on the PageRank algorithm, which is
easy to understand and implement; second, a reference implementation was made available
by the authors, which allowed for clarification in several issues; and third, its performance
is robust. The algorithm consists of the following steps, which we illustrate using Figure 1.
(1) Construction of the graph. When disambiguating a word (e.g. “order”), a graph is built
using a context of N (2 in the example) content words on either side of the word. For each
content word, the admissible word senses are added to the graph as nodes. Undirected edges
are introduced between nodes that were not introduced for the same word and whose content
words are not more than M (2 in the example) content words apart in the surface string. The
edge weights are determined using the Extended Lesk Similarity (Banerjee, 2003) between
the two synsets of the two nodes’ word senses.1 The setting we used for the SemEval-2007
experiments was N=6 and M=3; for the GWSA task, we report results for N=2 and M=2. The
parameters were tuned on the respective data sets. (2) Scoring using a graph-based centrality
algorithm (ten iterations of PageRank). (3) Assignment of word senses. In a standard WSD
setting, the system picks the sense of the target word whose node has been assigned the highest
score. In GWSA, we simply assign the scores of the respective nodes to the senses.

Figure 1: Example graph used in the PageRank algorithm.

4 Evaluation

4.1 Data Sets

WSsim-1: (Erk and McCarthy, 2009) present the first data set for the evaluation of GWSA. A
total of 430 sentences for 11 different lemmas were extracted from SemCor and Senseval-3.
Three untrained annotators provided judgments of the applicability of word senses of the
lemmas in the context of the sentence on a scale from 1 to 5, where 1 means that the sense is
not present at all in the sentence and 5 means that the sense totally matches the meaning of
the word in the context. We refer to the task of ranking the senses of a word (lemma) in the
context of a particular sentence as the lemma-sentence ranking task.

1We are using the WordNet::Similarity toolkit of (Pedersen et al., 2004). We also experimented with other sense
similarity measures, but the method suggested by Sinha and Mihalcea (2007) worked best with PageRank.
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WSsim-2: In this round of data collection, eight annotators judged the applicability of the
senses of 26 lemmas in 10 sentences each, resulting in a set of 260 sentences (Erk et al., 2012).
Otherwise, the annotation procedure was identical to WSsim-1.

4.2 Correlation Analysis of Sense Ranking

Erk and McCarthy (2009) propose Spearman’s rank correlation coefficient (ρ) as a measure
of a system’s performance on the GWSA task. ρ compares two rankings while abstracting
away from the absolute values of judgments. We used the R mathematical package to compute
ρ for the rankings of the senses for each lemma-sentence task and then average across all
sentences (see Table 1). As an upper bound, we report the correlations achieved by the human
annotators (compare to Tables 9 and 10 of (Erk et al., 2012)). Significance is hard to show due
to the small number of senses to be ranked (on average 6.1 senses per lemma in WSsim-1 and
10.6 in WSsim-2). The upper part of Table 1 shows the performance of the supervised system
reported by Erk and McCarthy (2009), Prototype 2/N, as well as a sense frequencies baseline,
whose sense frequencies have been estimated on SemCor and the training part of Senseval-3
(minus the sentences used in WSsim-1), while the lower part of the table shows the correlations
achieved by our implementations of knowledge-based systems. Erk and McCarthy test their
system only on the sentences for 8 out of the 11 lemmas of WSsim-1 and the numbers are
therefore not directly comparable. The supervised system (Prototype 2/N) performs best, but
the knowledge-based systems also show meaningful correlations with the human judgments.
The VSM performs surprisingly well; the Topic Models system outperforms the PageRank system.
It is worth noting that the sense frequencies baseline performs much better on WSsim-1 than
on WSsim-2 for the lemma-sentence task, the reason being that the frequencies have been
estimated in-domain for WSsim-1.

WSsim-1 WSsim-2
Model ρ sign. ρ sign.

Average of humans* 0.555 30.4 0.641 48.3
Prototype 2/N (E&K) 0.478 22.8 - -
Sense Frequencies (SF) 0.357 10.7 0.245 14.2
VSM (Thater et al.)⋆ 0.305 12.7 0.389 21.4
Topic Models (Li et al.)\† 0.241 11.6 0.256 15.0
PageRank (Sinha et al.)† 0.210 4.0 0.097 4.6

Table 1: Spearman’s rank correlation coefficient (ρ) by lemma-sentence compared to the av-
erage scores of all human annotators. The columns labelled “sign.” show the percentage of the
sentences in which the sense ranking correlation was significant. *Correlation of scores of one an-
notator with the average scores of the other annotators (omitting cases where annotators did not
produce valid rankings). ⋆Performance of the VSM is reported on the 99% (WSsim-1) and 93%
(WSsim-2) of the sentences for which the model creates a ranking. †Our reimplementations.

5 Analysis

5.1 Analysis of Data

As we have seen in section 4.2, the correlation between the human annotators is by no means
perfect: it is hard to quantify the actual degree of applicability on the scale proposed by Erk
et al. (2012) in many cases. In order to gain some more understanding about how the human
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annotators use the scale and to what extent the (correlation) analysis of systems using the
WSsim-2 data set is meaningful, we created the plot shown in Figure 2.

In the lemma-sentence task, two annotators define the same ranking for a pair of senses if one
assigns the scores 3-4 and the other assigns 4-5. For this reason, we look at the scores given
to a sense pair by one annotator, and whether the ranking of these two senses is concordant
with the ranking of the average of all other annotators. Each pair of senses of the ranking of
one annotator is sorted into one of the diagram’s cells depending on the scores assigned to
the two senses; if there is no tie, we find the position on the y-axis using the higher score and
the position on the x-axis using the lower score, thus producing a diagonal matrix. We then
compare the ranking of the first annotator to the ranking resulting from the average of the
other annotators and increment the cell’s count if the pair is concordant. In each cell, we add
up the numbers of concordant pairs over all the annotators. Finally, we divide each cell’s count
by the total number of pairs that fell into the cell in order to decrease the bias caused by score
combinations that occur more often. From this analysis, we can conclude that humans agree
more often on the ordering of two senses if they assign scores at the two ends of the scale (the
cell 5-1 has the highest proportion of concordant pairs), but that they use the intermediate
scores rather interchangeably. There is high agreement for cell 1-1 (88.5%) out of the 100,217
pairs that fell into this cell. Cell 2-2 also shows high agreement, but note that only 1,684 pairs
fell into this cell. However, we can see that in WSsim-2, annotators seem to make a clear
distinction whether a sense applies to some extent (scores 2-5) or does not apply at all (score
1). Based on this analysis, we propose a new way of judging a system’s performance from an
application point of view in section 5.2.

1 2 3 4 5

5
0.912 0.860 0.754 0.605 0.337

16,914 2,034 1,480 1,084 838

4
0.684 0.567 0.498 0.320
6,984 1,283 963 394

3
0.482 0.347 0.435

11,024 1,868 800

2
0.179 0.733

14,433 1,684

1
0.885

100,217

Figure 2: Analysis of the percentage of concordant pairs for sense pairs given particular scores
in the data set for GWSA by (Erk et al., 2012). Normalized concordance matrix, summed over
all annotators. The total counts of (concordant and discordant) pairs per cell, summed over all
annotators, are reported in italic.

5.2 Accuracy-based Analysis using Graded Annotations

As we have seen above, human annotators use the scores 2-5 as an indicator that the sense is
present at least to some extent in WSsim-2. Using fine-grained sense inventories such as Word-
Net, it is very hard even for humans to argue which of the senses is more present in a particular
context. From a practical point of view, it may be sufficient if the sense to which a system as-
signed the highest score is present at least to some extent according to the humans’ annotations.
We propose to evaluate systems – in addition to the correlation analysis – according to this

334



criterion. This analysis allows to treat the GWSA data set as the gold standard for an evaluation
similar to the coarse-grained WSD task of SemEval-2007, with the difference that SemEval-2007
uses predefined sense clusters, while in the GWSA data set, clusters are formed per context.
Erk et al. (2009) show that it is not possible to form clusters out of the GWSA annotations that
are applicable across the instances. Hence, we believe that the GWSA data sets are a valuable
resource for evaluating WSD system performance in a coarse-grained but context-sensitive way.

For each treshold from 2 to 5 (in steps of 0.5), we create a gold standard in which all senses
that received an average score ≥ the threshold are counted as correct, and then we evaluate
accuracy as the percentage of lemma-sentence tasks in which the sense scored highest by a
system is in this set of correct senses. For lower thresholds, the probability of picking a correct
sense is higher as the set of correct senses is larger. Hence, we adjust our measure of accuracy
inspired by Cohen’s κ (Cohen, 1960). For each threshold t and for each lemma-sentence
task i, we partition the set of graded senses Si into two sets Si,score≥t and Si,score<t . Then, the
probability of choosing a correct sense by chance for this task becomes

P t,i
chance =

|Si,score≥t |
|Si |

.

The average chance of picking a correct sense at threshold t is

P t
chance =

∑N t

i=1 P t,i
chance

N t .

where N t is the total number of lemma-sentence tasks at threshold t in which P t,i
chance > 0. We

exclude the cases where the set of true positives is empty because the system cannot possibly
pick a “correct” sense. The accuracy of a system at threshold t is computed as

Acc t =

∑N t

i=1 1si∈Si,score>=t

N t

with 1 being the indicator function and si being the sense that was scored highest by the system
for the lemma-sentence task i. We then compute the Adjusted Accuracy at threshold t, which is
plotted in Figure 3 , as

Ad jAcc t =
Acc t − P t

chance

1− P t
chance

.

The threshold-accuracy plots show how much better than chance a system is at predicting a
sense that has a score above a certain threshold. As an upper bound, for each annotator, we
regard the average of the other annotators as the gold standard and compute the Adjusted
Accuracies, which range from 62% (for t = 4.5) to 76% (for t = 2). For t = 5, humans achieve
a remarkable average Adjusted Accuracy of 73%.

5.3 Discussion

Referring to Figure 3, it is interesting to note that the shape of the curve for PageRank is much
lower for all t < 5 than the other systems’ curves. It shows a sharp increase when setting t = 5,
which suggests that unlike the other systems, the graph-based PageRank algorithm is better
suited for the standard WSD task of picking one best-fitting sense2, while its ranking ability is
not as good past the top rank as the other systems’. These findings are also supported by the
observation that PageRank outperforms our reimplementation of the Topic Models approach on

2Sinha and Mihalcea report an F1-measure of 52.55% on the fine-grained WSD task of Senseval-2, and our PageRank
system achieves an F1-measure of 76.0% on the coarse-grained WSD task of SemEval-2007.
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Figure 3: Adjusted Accuracy of
picking a “correct” sense as the
highest-ranked sense at various
thresholds. Computed using the
WSsim-2 data set. The numbers of
sentences for which the set of “cor-
rect” senses Si,score≥t is non-empty
at the respective thresholds are 259,
256, 252, 238, 204, 150, and 46.

the SemEval-2007 coarse-grained task (F-measure of PageRank: 76% vs. Topic Models: 71.7%).
A possible reason for this behavior might be the interaction of all the senses of the target word
in one graph in PageRank. In contrast, the Topic Models and the VSM methods score only one
sense at a time. When comparing to PageRank, the Topic Models system correlates more closely
with the human average judgments per lemma-sentence. The same holds for a comparison
using our metric of Adjusted Accuracy. We would like to note that none of the algorithms were
tuned specifically for the GWSA task, with the exception of setting M and N of PageRank.

The VSM approach outperforms the two other knowledge-based systems of our study in all
metrics presented in this paper. The VSM method has been developed mainly for tasks involving
fine-grained lexical distinctions and has shown excellent performance on other lexical semantic
tasks as well. Our comparison suggests that the model is good at capturing subtle distinctions
between senses. It is also worth noting that the VSM is the only system that does not rely on
WordNet’s glosses, which in some cases contain examples that may be misleading for a system
looking for topical information.

6 Conclusion

We explored the applicability of three knowledge-based WSD systems to the task of graded word
sense assignment. We found a positive rank correlation between each of the systems’ outputs
and the human annotators’ judgments. However, the performance levels of the individual
systems were quite different. The most successful model (Thater et al., 2011) does not reach
the supervised approach, but outperforms a sense frequencies baseline on the WSsim-2 data set.
In addition, we showed that systems that are good at standard WSD (like the PageRank-based
system) are not necessarily strong on the GWSA ranking task. We conclude that the use of
the GWSA data sets with correlation and accuracy analyses as presented in this paper sheds a
different light on the performance of WSD systems, by providing an in-depth analysis of their
ranking behavior instead of treating WSD as a standard classification problem.
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