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ABSTRACT
In most summarization approaches, sentence ranking plays a vital role. Most previous work ex-
plored different features and combined them into unified ranking methods. However, it would
be imprecise to rank sentences from a single point of view because contributions from the fea-
tures are onefold in these methods. In this paper, a novel supervised aggregation approach for
summarization is proposed which combines different summarization methods including Lex-
PageRank, LexHITS, manifold-ranking method and DivRank. Human labeled data are used to
train an optimization model which combines these multiple summarizers and then the weights
assigned to each individual summarizer are learned. Experiments are conducted on DUC2004
data set and the results demonstrate the effectiveness of the supervised aggregation method
compared with typical ensemble approaches. In addition, we also investigate the influence of
training data construction and component diversity on the summarization results.
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1 Introduction

Multi-document summarization aims to generate a compressed summary by extracting the
major information from a collection of documents sharing the same or similar topics. With
the massive explosion of information on the web, e.g., news, blogs and microblogs, multi-
document summarization, as an effective solution for information explosion, provides im-
proved mechanisms for understanding documents and reducing information overload. There-
fore it has attracted considerable attention recently.

Generally speaking, summarization can be categorized into two types: extractive summariza-
tion and abstractive summarization. Extractive summarization generates summary directly
by choosing sentences from original documents while abstractive summarization requires for-
mulating new sentences according to the text content. Although abstractive summarization
could be more concise and understandable, it usually involves heavy machinery from natural
language processing (Hahn and Mani, 2000). In this paper, we mainly focus on extractive
multi-document summarization.

In extractive summarization tasks, sentence ranking is the issue of most concern (Wei et al.,
2009). A number of methods have been proposed in the literature from different aspects
to rank sentences. Feature-based approaches rank sentences by exploring combination of
different features of sentences such as term frequency, sentence position, length and etc.
Graph-based ranking approaches aim to design different strategies to rank sentences using ran-
dom walk model to capture relations between sentences, i.e., LexPageRank (Erkan and Radev,
2004), TextRank (Mihalcea and Tarau, 2004) and DivRank (Mei et al., 2010). Nowadays,
some machine learning algorithms have also been applied in summarization for learning op-
timal feature weights automatically, for instance, some leaning to rank models (Svore et al.,
2007; Jin et al., 2010; Shen and Li, 2011) have been introduced in summarization tasks.

Most previous work concentrated on exploring different features, and the features were com-
bined in unified ranking strategies for summarization. However, to identify the importance of
sentences from a single point of view would be difficult (Wong et al., 2008) because contribu-
tions from the features are onefold in these methods. To address this problem, it is natural to
propose an ensemble approach which combines different summarization methods to rank the
sentences. Ensemble methods have been used in a variety of applications including web search,
spam detection and collaborative filtering. Specific to ranking problems, ensemble ranking or
ranking aggregation methods have been widely studied in many different tasks especially in in-
formation retrieval. However, there are limited work attempts on applying ensemble methods
to summarization. In (Wang and Li, 2010) and (Wang and Li, 2011), a weighted consensus
method was proposed to aggregate multiple summarization methods. Although the ensemble
method used in these work outperforms individual summarizers and some other combination
methods, there exists a serious drawback in unsupervised methods: because the assignment of
weights to different summarizers is based on the consensus, contribution from some summa-
rizer containing inferior ranking results may lead to an inaccurate final result.

In order to deal with the drawbacks in unified ranking strategies and unsupervised aggrega-
tion methods, we propose a supervised aggregation framework for summarization in this study.
Taking a summarization task as a ranking problem, we combine several different summariz-
ers, learn the weights assigned to each summarizer with human labeled data and then rank
sentences according to their combined scores. This aggregation approach generates promising
results by aggregating several different summarization methods. Experiments on DUC2004
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data set have been conducted and the results demonstrate the effectiveness of the proposed
supervised summarization aggregation method which outperforms typical ensemble schemes
under various evaluation metrics. In addition, the influence of schemes to construct training
data and component diversity on the summarization results has also been investigated.

The rest of this article is organized as follows. We briefly review the related work in Section 2
and the supervised aggregation framework for summarization is introduced in Section 3. We
present the supervised aggregation summarization method implementation in Section 4 and
experiments are discussed in Section 5. Finally, we draw a conclusion of this study.

2 Related work

The related work will be introduced from two aspects, first we describe some representa-
tive summarization methods and then the typical work about rank aggregation are presented
briefly.

2.1 Multi-document summarization

Multi-document summarization is a process to generate a summary by reducing documents in
size while retaining the main characteristics of the original documents. In order to archive this
goal, different features and ranking strategies have been studied.

Traditional feature-based ranking methods explored different features of sentences to score
and rank the sentences. One of the most popular feature-based methods is centroid-based
method (Radev et al., 2004). Radev et al. implemented MEAD as a cetroid-based summarizer
by combining several predefined features including TF*IDF, cluster centroid and position to
score the sentences. Lin and Hovy (Lin and Hovy, 2002) used term frequency, sentence po-
sition, stigma words and simplified Maximal Marginal Relevance (MMR) to build the NeATS
multi-document summarization system. High frequent words were proved crucial in reflecting
the focus of documents (Nenkova et al., 2006) and You Ouyang et al. studied the influence of
different word positions in summarization (Ouyang et al., 2010).

Graph-based ranking algorithms nowadays are successfully applied in summarization and Lex-
PageRank (Erkan and Radev, 2004) is the representative work which is based on the PageR-
ank algorithm (Page et al., 1999). Graph-based ranking algorithms take global information
into consideration rather than rely only on vertex-specific information, therefore have been
proved successful in multi-document summarization. Some methods have extended the tra-
ditional graph-based models recently including multi-layer graph incorporated with differ-
ent relationship (Wan and Yang, 2008), multi-modality graph based on the manifold-ranking
method (Wan and Xiao, 2009) and DivRank (Mei et al., 2010) introducing the time-variant
matrix into a reinforced random walk to balance prestige and diversity.

Topic model has also been exploited in summarization recently. The query Latent Dirich-
let Allocation (qLDA) model was proposed in (Tang et al., 2009), and this model takes
into account the query information to extract query-oriented summaries. HIRESUM model
(Haghighi and Vanderwende, 2009) was presented based on hierarchical Latent Dirichlet Allo-
cation (hLDA) to represent content specificity as a hierarchy of topic vocabulary distributions.
Celikyilmaz and Hakkani-Tur also utilized a hLDA-style model to devise a sentence-level proba-
bilistic topic model and a hybrid learning algorithm for extracting salient features of sentences
to generate summaries (Celikyilmaz and Hakkani-Tur, 2010).
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To date, various machine learning methods, including unsupervised and supervised methods,
have been developed for extractive summarization by learning to summarize documents auto-
matically. For instance, Shen et al. proposed a conditional random field (CRF) based method
which treats summarization task as a sequence labeling problem (Shen et al., 2007). The struc-
tural SVM approach was explored in (Li et al., 2009) to enhance diversity, coverage and bal-
ance of summary simultaneously. Learning to rank (Li, 2011) methods that are widely studied
in information retrieval community have been applied in summarization (Svore et al., 2007;
Jin et al., 2010; Shen and Li, 2011). These studies have used different learning strategies to
rank sentences for summarizing documents.

In order to identify the importance of sentences from multiple aspects, aggregation methods
can be used in summarization to combine results from different summarizers. However, aggre-
gation methods for summarization are seldom been discussed in previous work. An exception
is proposed in (Wang and Li, 2011), in this study a weighted consensus summarization based
on optimization was applied in summarization by aggregating four different summarization
methods.

2.2 Rank aggregation

Rank aggregation is aimed at combining results of objects from multiple ranking functions to
generate a better one and it has been applied into a variety of applications including informa-
tion retrieval and collaborative filtering. In general, rank aggregation can be categorized into
two types: order-based and score-based (Liu et al., 2007). Order-based aggregation method
takes order information as input from individual rankers and score-based method utilizes rank-
ing scores from component rankers.

In most existing unsupervised rank aggregation methods, the final ranking decisions depend
on majority voting. Median rank aggregation (Van and Erp, 2000) sorts entities based on the
medians of their ranks in all the ranking lists. To treat different ranking lists with different
weights, Klementiev, Roth and Small proposed an unsupervised aggregation algorithm named
ULARA (Klementiev et al., 2007) to learn the weights of ranking lists online by optimizing the
weighted Borda count. However, as mentioned in the Introduction, a serious drawback exists
in unsupervised aggregation methods, that some inferior rankers may influence the overall
performance.

In order to improve the quality of ranking aggregation, some supervised learning methods
have also been proposed. The work in (Liu et al., 2007) incorporated labeled data into a
supervised rank aggregation method to minimize disagreements between ranking results and
labeled data. (Chen et al., 2011) proposed a semi-supervised rank aggregation approach and
the work minimizes the weight disagreements of different rankers to learn the aggregation
function. In the semi-supervised case, the preference constraints on several item pairs were
incorporated and the intrinsic manifold structures of items are also taken into account. In
(Hoi and Jin, 2008), a different semi-supervised method was proposed, which learns query-
dependent weights by exploring the underlying distribution of items to be ranked and assigns
two similar retrieved items with similar ranking scores.

Since ranking sentences plays an important role in summarization tasks, we can regard each
result from an individual system as a ranking of sentences (Wang and Li, 2011). Then, ag-
gregation methods can also be applied to summarization to combine multiple ranking results
into an aggregation ranking to generate the combined results. However, aggregation meth-
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ods for summarization are seldom been discussed in the literature. (Wang and Li, 2010) and
(Wang and Li, 2011) are attempts and, in their work, a weighted consensus method was pro-
posed for summarization and an unsupervised iteration method was applied to solve the op-
timization problem. Different from the unsupervised aggregation method used in these work,
this paper proposes a supervised aggregation framework for summarization which combines
different summarization methods and learns weights automatically with human labeled data.

3 Supervised summarization aggregation framework

In this section, we first state the problem by describing the general framework of aggrega-
tion method for summarization and then the proposed supervised summarization method is
introduced in details.

3.1 Problem statement

First we consider the general framework of summarization aggregation that combines results
from multiple summarizers, and each summarizer can produce a score list for sentences of a
document cluster. An illustration of the framework is given by Figure 1. Suppose we have M
document clusters {c1, c2, ..., cM} in the training data and the ith document cluster contains Ni
sentences {si

1, si
2, ..., si

Ni
}. Each sentence si

j is associated with a label l i
j to denote whether it will

be chosen as a summary sentence and the labels are categorized into three types as follows.

l i
j =




+1 summary;

0 possible summary;

−1 non-summary.

(1)

Figure 1: The framework of supervised aggregation for summarization.

Let R = {r1(·), r2(·), ..., rK(·)} denotes the set of K summarization methods and each method
can produce a score list. The task of summarization aggregation is to combine the score lists
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given by methods in R to produce better ranking results than any individual summarizer. In
this study, we express the aggregation in a linear combining method and the combined ranking
function can be denoted as

f (s) =
K∑

k=1

wk rk(s), (2)

where wk is the weight assigned to the kth individual summarization method. Thus, to learn
the combination weights wk (k = 1,2, ..., K) is pivotal in the aggregation method.

For simplicity, the aggregation score of sentence si
j can be rewritten in a matrix form:

f (si
j) = xi

jw, (3)

where w= [w1, w2, ...wK]T is the combination weights vector. xi
j is a K-dimensional vector for

representing the ranking scores computed by K different summarizers and denoted as

xi
j = [x

i
j,1, x i

j,2, ..., x i
j,K] = [r1(s

i
j), r2(s

i
j), ..., rK(s

i
j)]. (4)

3.2 Method description

In the supervised ranking aggregation method, we apply Ranking SVM (Joachims, 2002) di-
rectly. Ranking SVM trains the ranking model by decomposing a ranking list into the ordered
pairs of items. In the document cluster ci , given two sentences si

j and si
k with their score vectors

xi
j and xi

k, the training example can be built as the form (xi
j −xi

k, z i
jk) and the training label z i

jk
is defined as:

z i
jk =

(
+1 if si

j ≻ si
k;

−1 if si
k ≻ si

j .
(5)

where si
j ≻ si

k denotes that sentence si
j is ranked higher than si

k. By defining the new training
examples, the mathematical formulation of Ranking SVM is shown below, where the linear
scoring function introduced in Formula (2) is used:

min
w

1

2
∥w∥2 + C

M∑
i=1

Ni∑
j=1

Ni∑
k= j+1

ξi
jk

s.t. z i
jk(w · (xi

j − xi
k))≥ 1− ξi

jk, i = 1,2, ..., M ,

ξi
jk ≥ 0, j < k and j, k ∈ [1,2, ..., Ni].

(6)

where function complexity regularizer ∥w∥2 is introduced to guarantee the generalization ca-
pacity and ξi

jk is the slack variables. C is a parameter that allows trading-off margin size
against training error. Authors in (Hoi and Jin, 2008) pointed out that the above optimization
problem has a drawback in training efficiency because the number of training pairs is quadratic
of the number of items. Following their improved approach which can decrease the number of
constraints significantly, we first build a relevance matrix Ai for ith document cluster to replace
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above training labels, and the elements in the matrix are defined as follows.

Ai
j,k =





+1 if l i
j = 1 and l i

k =−1;

−1 if l i
j =−1 and l i

k = 1;

1/2 if l i
j = 1 and l i

k = 0;

−1/2 if l i
j = 0 and l i

k = 1;

0 otherwise.

(7)

where l i
j represents the label assigned to sentence s j in the document cluster ci and is defined

in Formula (1).

Furthermore, a ranking matrix R is defined to denote the ranking results generated by the set
of summarizers. For document cluster ci , matrix Ri, j stands for the ranking results output by
summarizer r j(·), j = 1,2, ..., K . Specifically, Ri, j

k,l = 1 if sentence si
k obtains higher score than si

l
by r j(·), and 0 otherwise. Next the matrix is normalized by a column-based normalization to

be a transition matrix R̃i, j , i.e.
∑Ni

k=1 R̃i, j
k,l = 1.

After introducing the relevance matrix A and ranking matrix R, the original Ranking SVM
shown in Formula (6) can be reformulated as:

min
w

1

2
∥w∥2 + C

M∑
i=1

ξi

s.t. sim([Ai]T , [
K∑

j=1

w jR̃
i, j])≥ 1− ξi , , i = 1,2, ..., M ,

ξi
jk ≥ 0, j < k and j, k ∈ [1,2, ..., Ni].

(8)

where sim(·, ·) is a function that measures the similarity between two matrices: the transposi-
tion of relevance matrix Ai and the combined ranking matrix

∑K
j=1 w jR̃

i, j . In the experiments,
we follow (Hoi and Jin, 2008) by using trace function to measure the similarity of the two ma-
trices. Compared with Formula (6), the number of constraints is significantly decreased from
O (MN2

i ) to O (M).
4 Supervised summarization aggregation method implementation

4.1 Construction of training data

In order to apply supervised aggregation approach in summarization, we need to construct the
training set in the form {(si

1, l i
1), (s

i
2, l i

2), ..., (si
Ni

, l i
Ni
)} where si

j is the jth sentence in the docu-
ment cluster ci and l i

j is the label assigned to the sentence. To capture the features contained
in suboptimal sentences, we label sentences using three categories mentioned in Section 3.1:
summary (+1), possible summary (0) and non-summary (-1).

Given a document cluster c which includes N sentences {s1, s2, ..., sN} and the corresponding
human generated summary set H = {H1, H2, ..., Hm} (Hi is the human summary generated
by the ith linguist), we compute the score score(s|H) for each sentence s in document clus-
ter c to measure whether it can be chosen as the summary sentence. Motivated by ROUGE
evaluation methods (Lin and Hovy, 2003), our scoring methods compute the combination of
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multiple n-grams (1-gram and 2-gram are used in this study) probabilities of each sentence to
be recognized as a summary sentence based on the human summary set.

First we compute the probability of an n-gram t under a human summary Hi as:

p(t|Hi) = t f (t)/|Hi |, (9)

where t f (t) is the frequency of t in Hi and |Hi | is the number of n-grams (n is corresponding
to the length of t) in Hi . In the data set, several human summaries are provided for each doc-
ument cluster, and both average and maximum schemes introduced in (Ouyang et al., 2007)
can be utilized1. The average scheme to obtain the probability of t under all human summaries
is described as:

pavg(t|H) =
∑
Hi∈H

p(t|Hi)/|H|, (10)

where |H| is the number of summaries in the human summary set. And for maximum scheme
the computation method is defined as:

pmax(t|H) =max
Hi∈H

p(t|Hi) (11)

Motivated by the ROUGE evaluation metrics, we take into account both 1-gram and 2-gram to
calculate the final score for each sentence in the following formula.

Score(s|H) = α
∑

t1−gram∈s

p(t1−gram|H) + (1−α)
∑

t2−gram∈s

p(t2−gram|H), (12)

where α is used to control the ratios of these two types of n-grams in computing scores. Since 1-
gram based ROUGE score has been shown to agree with human judgment most (Lin and Hovy,
2003), in our experiments α is set empirically to be 0.7.

4.2 Individual summarization methods

To evaluate the proposed supervised aggregation method for summarization, we introduce
four typical summarization approaches (i.e., LexPageRank, LexHITS. Manifold-ranking, and
DivRank) in the system implementation. In this section, we briefly describe these approaches
which all have been proved effective in summarization task.

1. LexPageRank
LexPageRank (Erkan and Radev, 2004) is a graph-based summarization method by intro-
ducing PageRank into summarization, which computes sentence scores by making use of
the voting or recommendations between sentences. Sentences are used as nodes in the
graph and the computational process can be described as:

PR(si) = λ ·
∑
j: j ̸=i

PR(s j) ·w ji +
(1−λ)
|S| , (13)

where PR(si) is the score of sentence si and |S| denotes the number of sentences in a
document cluster. w ji represents the weight (e.g., cosine similarity) between sentence
s j and si and λ is the damping factor to control the probability to walk to a random
sentence.

1The experimental comparison of two schemes will be described in Section 5.3.2
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2. LexHITS
Similar to LexPageRank, HITS (Kleinberg, 1999) algorithm can be applied in summariza-
tion task as well and correspondingly is named LexHITS. In LexHITS, sentences denote
both authority nodes and hub nodes and the iteration process is written as follows.

Auth(T+1)(si) =
∑
j: j ̸=i

wi j ·Hub(T)(s j)

Hub(T+1)(s j) =
∑
i:i ̸= j

w ji · Auth(T )(si)
, (14)

where Auth(T)(si) and Hub(T)(si) represent the authority score and hub score of sentence
si at the T th iteration, respectively. wi j denotes the weight between sentence si and s j
same as Formula (13). Then sentences are ranked according to their authority scores.

3. Manifold
Manifold-ranking based method (Zhou et al., 2004) is a universal ranking algorithm and
can capture the underlying manifold structure of data. Authors in (Wan et al., 2007)
used manifold-ranking approach for summarization. First the similarity matrix W is
built and the element wi j denotes the weight between sentence si and s j like the settings
in LexPageRank and LexHITS. Then normalize W by W̃ = D−1/2W D−1/2 in which D
is the diagonal matrix with (i, i)-element equal to the sum of the ith row of W . By
incorporating a n-dimensional vector y , the score of each sentence can be iterated as:

M F (T+1)(si) = α
∑
j: j ̸=i

w̃i j M F (T )(s j) + (1−α)yi , (15)

where M F (T)(si) denotes the manifold-ranking score of sentence si at the T th iteration
and w̃i j is the element in the normalized matrix W̃ . α is a parameter between 0 and 1.

4. DivRank
DivRank (Mei et al., 2010) belongs to the time-variant random walk process family
which incorporates a variable to record the number of times of nodes having been vis-
ited. DivRank can balance prestige and diversity simultaneously by decreasing the visit-
ing times of certain nodes. The iteration process of DivRank can be described as follows:

DRT+1(si) = (1−λ)p∗(si) +λ
∑
j: j ̸=i

w ji · N T (si)

DT (s j)
DRT (s j), (16)

where DRT (si) denotes the DivRank score of sentence si at the T th iteration and p∗(si)
represents the prior value of sentence si . N T (si) is the number of times the walk has
visited si up to time T and DT (s j) =

∑
k:k ̸= j wk jN

T (sk). Similarly, w ji is the weight
between sentence s j and si and denotes the transition probability from s j to si .

4.3 Aggregation methods

Aiming to compare the proposed supervised aggregation method with other aggregation meth-
ods, we implement several aggregation methods using different ensemble strategies in the
experimental studies including average scores, Round Robin (RR), unsupervised learning algo-
rithm for rank aggregation (ULARA), and Weighted consensus summarization (WCS). A brief
description of these aggregation methods is presented in this section.

2233



1. Average Score (Avg_Score)
This method normalizes the raw scores generated by different summarization systems

between 0 and 1, and then uses the average score Avg_Score(s) =
∑K

k=1 scorek(s)
K

to rank
the sentences. In the formula, K is the number of summarization systems and scorek(s)
is the score of sentence s from kth summarization system.

2. Round Robin (RR)
Refer to (Wang and Li, 2011), RR chooses the first sentence produced by the first sum-
marizer and then the first sentence by the second summarizer. After all the first sentence
are selected in the first round, the second round chooses the second sentences in the
same way until reaching the summary length limit.

3. ULARA
Unsupervised learning algorithm for rank aggregation (ULARA) is proposed in
(Klementiev et al., 2007). ULARA applied a linear combination of the individual ranking
approaches to form the aggregation result by rewarding ordering agreement between dif-
ferent rankers. By minimizing the weighted variance-like measures, the optimal weights
assigned to component rankers are obtained.

4. Weighted Consensus Summarization (WCS)
WCS algorithm (Wang and Li, 2011) utilizes a weighted consensus scheme to combine
the results from individual summarizers. In this algorithm, the contribution from each
summarization system is determined by its agreement with other systems. By minimiz-
ing the weighted distance between the consensus ranking and the individual ranking
lists generated by different summarization systems, the weights that will be assigned to
individual summarizers are obtained.

5. Supervised Summarization Aggregation Method (SSA)
SSA is the supervised aggregation method for summarization described in Section 3.

In the experiments, we study the summarization performance of the implemented individual
and aggregation systems, and compare the proposed supervised summarization aggregation
method with other combination methods.

4.4 Redundancy removal

In order to choose more informative but less redundant sentences as the final summary, a
redundancy removal step is conducted to impose the diversity penalty. In the experiments,
we use the diversity penalty algorithm proposed in (Wan et al., 2007) to remove redundant
sentences by introducing a penalty degree factor ω. The algorithm is described briefly in
Algorithm 1.

5 Experiments

5.1 Data set

To evaluate the summarization results empirically, we use DUC20042 data set since generic
multi-document summarization is one of the fundamental tasks in DUC2004. The data set

2http://duc.nist.gov/
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Algorithm 1 Redundancy Removal Algorithm
1: Initialize set SA = ;, SB = {s1, s2, ..., sn}, and every sentence si in set SB has a score score(si)

which initially is computed by the score function r(·);
2: Sort sentences in set SB according to their scores in descending order;
3: Choose sentence s∗ with the highest score in set SB and move it from SB to SA;
4: for s j ∈ SB do
5: score(s j) = score(s j)−ω ·w ji · r(si)
6: end for
7: Go to step 2 and iterate until SA reaches the length limit of a summary or SB = ;.

provides 50 document clusters and every generated summary is limited to 665 bytes. In the
experiments, we randomly choose 40 document clusters as training data and the remaining 10
clusters are used as the testing data. For consistency, all the evaluation results are based on
the testing set.

5.2 Evaluation methods

ROUGE (Lin and Hovy, 2003) (Recall Oriented Understudy for Gisting Evaluation) is widely
applied for summarization evaluation by DUC. Therefore, we use the ROUGE toolkit3 to eval-
uate the summarization results. It evaluates the quality of a summary by counting the over-
lapping units between the candidate summary and model summaries. ROUGE implements
multiple evaluation metrics to measure the system-generated summarization such as ROUGE-
N, ROUGE-L, ROUGE-W and ROUGE-SU. ROUGE-N is an n-gram recall measure computed as
follows:

ROUGE − N =

∑
S∈re f

∑
n−gram∈S Countmatch(n− gram)∑

S∈re f

∑
n−gram∈S Count(n− gram)

(17)

where n represents the length of n-gram, and Countmatch(n− gram) is the maximum number
of n-grams co-occurring in the candidate summary and reference summaries. Count(n−gram)
is the number of n-grams in the reference summaries.

The ROUGE toolkit can report separate scores for 1, 2, 3 and 4-gram and among these different
metrics, unigram-based ROUGE score (ROUGE-1) has been shown to correlate well with hu-
man judgments. Besides, longest common subsequence (LCS), weighted LCS and skip-bigram
co-occurrences statistics are also used in ROUGE. ROUGE can generate three scores, i.e. recall,
precision and F-measure, for each of the methods. In the experimental results we show three of
the ROUGE metrics: ROUGE-1 (unigram-based), ROUGE-2 (bigram-based), and ROUGESU4
(extension of ROUGE-S, which is the skip-bigram co-occurrences statistics) metrics.

5.3 Evaluation results

5.3.1 Performance comparison

The proposed supervised summarization aggregation method is compared with different aggre-
gation schemes including average score, round robin, ULARA, and WCS which are introduced
in Section 4.3. In order to analyze the improvement of the aggregation method, we also list the

3ROUGE version 1.5.5 is used in this study, and it can be found on the website http://www.isi.edu/licensed-
sw/see/rouge/
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performance of all the individual methods. Besides, we also use Lead method as the baseline.
The lead baseline takes the first sentences one by one in the last document in a document set,
where documents are assumed to be ordered chronologically. Table 1 shows the comparison
results (F-measure) on DUC2004 data set in ROUGE-1, ROUGE-2 and ROUGE-SU4 along with
corresponding 95% confidence intervals and Figure 2 gives an illustration of the comparison
on ROUGE-1 metric (LexPR is short for LexPageRank shown in the figure).

Systems ROUGE-1 ROUGE-2 ROUGE-SU4

Lead
0.31861

(0.30886 - 0.32820)
0.06814

(0.06102 - 0.07631)
0.10554

(0.09953 - 0.11208)

LexPageRank
0.36211

(0.35081 - 0.37384)
0.07808

(0.07027 – 0.08675)
0.11982

(0.11311 - 0.12717)

LexHITS
0.35285

(0.33981 - 0.36551)
0.06911

(0.06137 – 0.07675)
0.11485

(0.10771 - 0.12233)

Manifold
0.37809

(0.36785 - 0.38866)
0.08046

(0.07220 – 0.08890)
0.12577

(0.11952 - 0.13224)

DivRank
0.37442

(0.36076 - 0.38693)
0.08255

(0.07400 – 0.09058)
0.12503

(0.11721 - 0.13248)

Avg_Score
0.37814

(0.36716 - 0.38914)
0.08690

(0.07900 – 0.09520)
0.12823

(0.12155 - 0.13490)

RR
0.36809

(0.35489 - 0.38028)
0.08095

(0.07255 – 0.08984)
0.12412

(0.11672 - 0.13141)

ULARA
0.37971

(0.36720 - 0.39183)
0.09010

(0.08186 - 0.09837)
0.13163

(0.12399 - 0.13880)

WCS
0.38227

(0.37019 - 0.39334)
0.09133

(0.06669 - 0.11785)
0.13285

(0.11178 - 0.15798)

SSA
0.39766

(0.36761 - 0.42835)
0.09528

(0.07186 - 0.12093)
0.13939

(0.11906 - 0.16217)

Table 1: Overall performance comparison on DUC2004

From the comparison results, it can be seen that the proposed supervised summarization aggre-
gation (SSA) method can outperform all the other ensemble methods and individual summa-
rization approaches on all the three metrices. This comparison indicates that by incorporating
human labeled data, supervised aggregation method has an advantage over unsupervised en-
semble methods, i.e., when identifying the reliability of score list from a single summarizer,
human labeled data could serve as an precise guidance. Moreover, almost all the aggregation
methods perform better than individual summarization systems except the round robin method
and this result is consistent with the comparison in (Wang and Li, 2011). For one thing, the
results demonstrate that generally ensemble methods can effectively enhance the performance
since these methods make the best of individual summarization methods which rank sentences
from different aspects. For another, the poor performance of round robin method may result
from that simply choosing the sentence with highest score in every round ignores the relation-
ship among different score lists and the inaccuracy or overlap of the top sentences can lead to
the poor effect as well.
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Figure 2: The comparison results of all the methods.

5.3.2 Influence of training data construction schemes

As mentioned in Section 4.1, there are two schemes to construct the training data (i.e., average
and maximum). Average scheme chooses the average probability of an n-gram under all human
summaries as the measure and maximum scheme applies the maximum probability value to
represent the probability of an n-gram under all human summaries.

From the comparison shown in Table 2, we observe that the maximum scheme performs better
than the average one. By analyzing the definition of two schemes, maximum tends to assign
sentences with a higher value when compared with the average scheme and therefore it can
choose more potential summary sentences into positive training set and produce better results.

Schemes ROUGE-1 ROUGE-2 ROUGE-SU4
maximum 0.39766 0.09528 0.13939
average 0.39394 0.09306 0.13859

Table 2: Results of different schemes on DUC2004

5.3.3 Influence of component diversity

In the experimental study, we exploit four different summarization methods which are proven
effective in summarization and they rank sentences from different aspects by utilizing diverse
strategies. Therefore differences in algorithms and implementation make the ensemble process
can comprehensively take into consideration multiple ranking strategies.

The LexPageRank summarization method scores sentences by making use of the voting or
recommendations between sentences, and thus the global information of all the sentences can
be in full use. LexHITS method assigns each sentence two properties, i.e., hub and authority,
which can take into account the mutual relationship between sentences and provide a better
view of the relationships embedded in the sentences. Manifold-ranking based method is based
on a universal ranking algorithm and can capture the underlying manifold structure of data,
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thus some implicit relationships between sentences are exploited. DivRank can be regarded
as an expand version of LexPageRank which incorporates a variable to record the number of
times of nodes having been visited. Through this improvement, the diversity and prestige of
sentences to be chosen can be guaranteed simultaneously.

In this set of experiments, we further investigate the influence of different combinations of
component methods4. We use the proposed framework to combine any three of all summariza-
tion methods and compare the results with the combination scheme using all the four methods.
Table 3 shows the comparison results.

Systems ROUGE-1 ROUGE-2 ROUGE-SU4
LH+MF+DR 0.39394 0.09306 0.13859
LPR+MF+DR 0.39393 0.09397 0.13834
LPR+LH+DR 0.38829 0.08172 0.12807
LPR+LH+MF 0.39383 0.09355 0.13916
All 0.39766 0.09528 0.13939

Table 3: Comparison results of different component combinations on DUC2004

From the table, it can be seen that different component summarization methods have less
impact on the results in general and this may due to the small number of testing data. However,
from the little fluctuation we can observe that aggregating all the individual methods can
perform the best results. It is worth mentioning that the performance of LPR+LH+DR is
relatively poor, and this result may owe to losing the Manifold-ranking based method which
performs best among all the four methods.

Conclusion and perspectives

In this paper, we propose a supervised aggregation summarization framework by combin-
ing the results from four typical multi-document systems including LexPageRank, LexHITS,
Manifold-ranking method and DivRank. To evaluate the proposed appraoch, we compare it
with several combination methods, e.g., average score, round robin, unsupervised learning
algorithm rank aggregation (ULARA) and weighted consensus summarization (WCS). And the
experimental results on DUC 2004 data set demonstrate the effectiveness of our proposed
framework. In addition, irrespective of the specific individual summarization methods used
in this study, the supervised aggregation framework for summarization can also incorporate
some more delicate and effective summarizers and generate more promising summary.

In this study, we investigate the supervised summarization aggregation approach to learn
weights automatically by incorporating human labeled data. Since labeled sentences would
be time-consuming and costly, in the future we will explore semi-supervised method which
can decrease the amount of labeled data required. Moreover, more effective individual sum-
marization approaches would be exploited and added into the ensemble method.
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