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ABSTRACT
In the present work we raise the hypothesis that eye-movements when reading texts reveal
task performance, as measured by the level of understanding of the reader. With the objective
of testing that hypothesis, we introduce a framework to integrate geometric information of
eye-movements and text layout into natural language processing models via image processing
techniques. We evidence the patterns in reading behavior between subjects with similar task
performance using principal component analysis and quantify the likelihood of our hypothesis
using the concept of linear separability. Finally, we point to potential applications that could
benefit from these findings.

KEYWORDS: eye-tracking, natural language processing, image recognition.

TITLE AND ABSTRACT IN JAPANESE

視視視線線線ののの動動動きききとととテテテキキキススストトト素素素性性性ををを用用用いいいたたた読読読みみみ手手手ののの個個個性性性認認認識識識

本研究では、テキストを読む際の視線の動きから、テキストの理解度によって測定され
るような読み手のタスクパフォーマンスが予測可能である、という仮説を立てる。この
仮説を検証するため、我々はまず、画像処理技術を介して、視線の動きとテキスト配置
に関する位置情報を、自然言語処理のモデルとして統合する枠組を導入する。次に我々
は、近いタスクパフォーマンスの被験者間に共通した読解行動のパターンを主成分分析
によって同定し、この線形分離可能性を求めることで我々の仮説の蓋然性を定量的に示
す。最後に、我々はこれらの発見から恩恵を受け得る応用例について述べる。

KEYWORDS: 視線追跡、自然言語処理、画像認識.
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1 Introduction

Reading is a common activity that is part of the process of information transfer between humans.
However, despite of the important role it has played in recent history and its current wide use,
this process of information transfer is not well understood. The difficulty in modelling the
reading activity stems from the direct unobservability of human mental states and how the
information is decoded and integrated into the brain, or simply forgotten.

The reading act can be seen as an interaction between the reader and the writer where the
information and other aspects of the communication are transferred via the document. If we
could observe the detailed editing process of a writer, that would indeed give us valuable
information about the writer, useful to interpret the message to be sent. However, information
on the editing process is usually not available, but the final result in the form of a document is.
On the other side of the communication channel, the reader does not necessarily evidence any
reading actions except for the movements of the eyes, and that is all we have to understand the
reading process.

Several psycholinguistic studies (Rayner, 1998; McDonald and Shillcock, 2003) have shown
that document characteristics influence on cognitive processing and that they are reflected on
eye-movements in an on-line manner. There have been attempts to also quantify the influence of
textual linguistic characteristics on reading behavior for certain types of reading tasks (Martínez-
Gómez et al., 2012b), noting that although linguistic features of documents can be used to
explain eye-movements and reading behavior, there might be other influencing factors.

In our work, we consider the document and the eye-movements of the reader as the only
observable variables in the reading act, and our general objective is to unveil the hidden
variables intervening and influencing the interaction, such as writer’s and reader’s personal
characteristics. Examples of writer’s personal characteristics are writer’s intention, concerns or
emotional state, while reader’s characteristics could be the reading objective, nationality, domain
of expertise or literacy. We think that personal characteristics of readers define the mechanisms
of their cognitive activity, and that when performing certain tasks, the eye-movements may
reflect part of these personal characteristics. One of the hidden variables of the reader is the
task performance achieved after reading a text, which is an intimate piece of information about
the reader that could only be extracted so far by explicitly inquiring the subjects. Due to the
interest and the broad range of applications that could benefit from the recognition of reading
performance from eye-movements and document characteristics, we will narrow our study to
this variable.

The objective of this work is then to use the spatiotemporal data that can be obtained by an
eye-tracker when a subject reads a text and the linguistic information of the text itself, to
capture common patterns in reading behavior across subjects with similar task performance.
Thus, our hypothesis states that:

Hypothesis. Subjects with a high performance in reading tasks have characteristic patterns of
reading behavior and can be distinguished from the subjects with low performance.

There are multiple ways of measuring task performance in reading tasks. One could argue
that the reading objective defines how to measure performance. For example, the factors to
measure success when reading a document with the objective of writing a review or preparing
a presentation are clearly different. However, for the sake of simplifying and unifying our
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method to measuring task performance, we will resort to measuring the level of understanding
of subjects after reading a text.

In the next section, we describe the efforts from the psycholinguistic community in understand-
ing the relationship between eye-movements and cognitive processing, and how the present
work builds upon them. Section 3 introduces the models of reading behavior that are used to
capture patterns in the eye-movements. A description of the data collection and experiment
conditions can be found in Section 4 and the quantification of the likelihood of our hypothesis
can be read in Section 5. In Section 6, we point at our next steps in recognizing reader’s
personal characteristics and suggest some applications that could benefit from the current line
of investigation, followed by our conclusions at the end of the paper.

2 Related work

With the emergence of eye-tracking devices, the study on the relationship between eye-
movements and cognitive processes experienced important advances. An interesting survey
can be found in Rayner (1998) condensing the findings on characteristics of elemental eye-
movements, lexical processing and integration of information during reading tasks. In McDonald
and Shillcock (2003), it was shown that probabilistic language models implemented as bi-grams
could help to explain the on-line cognitive processing of our brains and predict fixation times.
That work suggested that statistical models can be used to model cognitive processing and that
hypotheses could be tested using evidence extracted from the observation of eye-movements.
Other models of eye-movements when reading were developed, being the E-Z reader (Re-
ichle et al., 2003) one of the most comprehensive. Remarkably, a corpus of eye-movement
data (Kennedy and Pynte, 2005) was also built to test previous computational models and
paving the way to establish a common ground of computational model development. Following
these ideas, we work under the assumption that eye-movements reflect cognitive processes and
that the analysis of these eye-movements and the linguistic features of the text can be used to
indirectly recognize the current mental state of the reader.

Cognitive load is an important variable that has received a significant amount of attention
since it is a good signal of task difficulty and cognitive demand. In Tomanek et al. (2010),
variations in eye-movements were used to build a cognitive cost model to predict human
annotation costs of named entities, while in Doherty et al. (2010), variations in eye-movements
were used to recognize hidden linguistic features from machine translation output such as
sentence understandability. Although these two works appear to share the same idea, they
point at different directions. The former uses linguistic features and eye-movements to unveil
hidden cognitive costs, while the latter uses certainty on cognitive load and eye-movements
to recognize textual characteristics such as sentence understandability. Both directions fall
within our research interests, but in the present paper we follow the philosophy of Tomanek
et al. (2010), in that we use observations of the text and the eye-movements to infer a hidden
personal characteristic such as the level of understanding.

The authors in (Biedert et al., 2012) assume that eye-movements reflect difficulties in under-
standing the document being read and attempt to automatically recognize the quality of the
text by integrating eye data from multiple readers. In that work, the authors investigate how
different features of the eye-movements can reflect the quality of the text, but do not take into
consideration the influence of lexical, syntactic and semantic complexity of the text on the
eye-movements. This idea is central to our work, and we will attempt to combine data from
eye-movements and linguistic features to obtain stronger predictors.
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Eye-movements have also proved to characterize individuals, and there is a growing list
of applications that would benefit from the refined user models that can be obtained by
automatically processing eye-movements on text and other media (Xu et al., 2008; Buscher
et al., 2008; Xu et al., 2009; Buscher and Dengel, 2009). With this motivation in mind, this
paper contributes to better recognize personal characteristics of readers by using information
from their eye-movements and the linguistic characteristics of the texts they read.

3 Methodology

3.1 Synthesizing images of linguistic and gaze evidence

With the objective of modelling the reading act, we first need to identify what variables are
present in the process. The interaction between the reader and the document has latent and
patent variables, where only the latter can be observed and measured. Nowadays, there is a
large quantity of text that is being consumed in the form of digital content that is projected on a
display, and it is reasonable to think that the structure, the contents and the linguistic features
of the document can be observed and automatically extracted in the form of statistical evidence.

In the present paper, we work under the assumption that eye-movements can also be observed by
means of an eye-tracker system. There are multiple eye-movements that have been recognized
and categorized (see (Rayner, 1998) for details), but we can roughly group them into fixations
and saccades. Fixations are periods of time where the subject looks still at a certain location, and
it is known to be used for object recognition in general tasks or for lexical processing in reading
tasks. Saccades, on the contrary, are sudden eye-movements that are used to change the fixation
location and it is believed that cognitive processing is suppressed during the eye-movement.

There is a strong need of finding a suitable, unified representation of linguistic and gaze data in
order to integrate these two sources of information. Gaze data can be naturally represented
using synthesized images out of the (x , y) coordinates of the position where the eye-tracker
“believes” the reader is gazing at. At a constant sampling rate, areas in the image where
the reader gazed at longer will have a larger amount of pixels with high values, each pixel
representing a gaze sample. There is, however, another aspect of the temporal data that can
be obtained by an eye-tracker that is related to the sequential order of the gaze samples. The
sequential order of the eye-movements is valuable to detect regressions, which are backward
saccades usually used by readers for disambiguation, refreshing previously read passages or
resolve apparent contradictions. Although these eye-movements are very interesting to infer
the current state of mind of readers, they will not be included in our data representations due
to their complex nature.

As it was pointed out by several authors(Hornof and Halverson, 2002; Hyrskykari, 2005), there
are important variable and systematic errors in gaze location that need to be taken into account
when working with eye-tracking systems. For the purpose of smoothing the effect that those
errors may cause on our operations, we apply a gaussian convolution (Haralick and Shapiro,
1992) to blur the image representation of the gaze evidence and adjust the intensity of the pixel
values to compensate for subjects that spent more or less amount of time on the document. The
left plot in Figure 1 depicts a typical image representation of raw gaze data from an eye-tracking
session of a subject reading a document, where fixations (little clusters of black dots) only occur
on words or phrases (since those were the only objects of interest displayed on the screen), and
text rows can be appreciated as fixations aligned horizontally. On the right plot, we depict the
adjusted blurred version of the raw gaze data.
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Raw gaze data Blurred gaze data

Figure 1: On the left, image representation of raw gaze data of an eye-tracking session. On
the right, blurred image representation used to preserve uncertainty on the variable error
introduced by the system. Pixel values are complemented for clarity.

Similarly, linguistic information can also be represented using synthesized images (Martínez-
Gómez et al., 2012b), where the area of a word or phrase is filled with pixel values whose
intensity is proportional to the quantification of a certain linguistic feature within the document.
It should be noted at this stage that the image representations of linguistic features only quantify
the presence of linguistic features within the document and does not take into account any
gaze evidence. For this strategy of representation, there will be a synthesized image for each
linguistic feature that we include in our model. The quantification of a linguistic feature
can be normalized so that it falls within the [0,1] interval and the distribution of the pixel
intensity values over that range can be adjusted in a similar manner as gaze images were, in
order to compensate for linguistic features that occur too often or too rarely in the documents.
An example of a binary feature that takes the values 1 or 0 to indicate whether a word is
a noun or not can be seen on the left plot in Figure 2. The right plot in Figure 2 shows an
image representation of a feature that quantifies the depth of a word in the parse tree of its
corresponding sentence, normalized to fall within the interval [0, 1].

In this work, we characterize reading behavior by the eye-movements of a subject when
reading, which are in turn characterized by the distribution of fixations on parts of the text
with certain linguistic features. It is thus useful to quantify this distribution of attention on
each linguistic feature. Once we obtained the image representations of gaze evidence and
the image representations of linguistic features, we combine these two sources of information
by computing how well each linguistic feature explains the eye-movements. In line with our
methodology, we will perform such combination by using image processing methods.

Within the image recognition field, image registration is the technique to find correspondences
between two or more images with the purpose of estimating transformations for spatial align-
ment or detect temporal changes using pixel intensity differences. Although there is a wide
variety of similarity measures that could be used to measure how well a certain linguistic feature
explains the eye-movements, we opted for adapting precision, recall and F1 scores as they are
known in natural language processing, to the comparison of image representations.
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Nouns Word depths

Figure 2: On the left, image representation of a linguistic feature indicating what words are
nouns (binary). On the right, image representation of a linguistic feature quantifying the word
depth in a parse tree (normalized). Again, pixel values are complemented for clarity.

Computing the precision of how an image representation of a linguistic feature (source image)
explains the image representation of gaze evidence (target image) consists in computing how
much of pixel intensity in the source image is present in the target image, divided by the total
amount of intensity across all pixels from the source image. Similarly, recall can be computed
as the amount of pixel intensity from the source image that is present in the target image,
divided by the amount of intensity across all pixels from the target image. Finally, the familiar
expression F1 = 2 · precision·recall

precision+recall
can be used to compute the F1 score, which is a value in the

interval [0, 1]. An example of the computation of precision, recall and F1 scores between images
of only four pixels can be found in Figure 3.

3.2 Representation of observations

A reading session consists of a subject reading a document. From every reading session, we
can obtain data from the eye-movements and data about the linguistic features of the text. As
we described in Section 3.1, we can synthesize an image representation of the data from the
eye-movements, and an image representation for each linguistic feature. Using the F1 score,
we computed how well the image representation of linguistic feature i match (or explains)
the image representation of the eye-movements, and obtained a number oi ∈ R such that
0≤ oi ≤ 1. If we match the image representation of every linguistic feature against the image
representation of the eye-movements, we can obtain a fixed-size feature vector o = [o1, . . . , oL]
that has as many components (or dimensions) as linguistic features (L). An overview of the
architecture can be found in Figure 4.

Thus in our model, the reading behavior of a subject reading a document is defined as o, which
represents the distribution of attention (eye-movements) on every linguistic feature. Using
fixed-size feature vectors to represent observations is a widely used technique that, although
it has a limited expressivity, it allows to use very well known efficient analysis and inference
techniques. Using this formalism, we will say that two subjects have similar reading behavior
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Figure 3: Example of computation of precision, recall and F1 score between a source and
a target image. On the top row, four pixels (complemented for clarity) are displayed, and
their corresponding pixel values on the bottom row. Precision = 1+0.7+0.5

1+0.7+0.6
= 0.96. Recall =

1+0.7+0.5
1+1+0.5

= 0.88. Thus, F1 = 0.92.

if they have similar feature vectors, as defined by a similarity metric in the feature space. For
the sake of readability and ease of interpretation in posterior sections, we chose the euclidean
distance between two observations o and o′ as a similarity measure, defined as:

dist(o,o′) =
p
( f1 − f ′1)

2 + · · ·+ ( fF − f ′F )
2 (1)

where the smaller the distance, the higher the similarity between o and o′ is.

As it has been said, each reading session is represented by a feature vector o that defines a
distribution on how well each linguistic feature helps to explain the gaze evidence from a
certain subject. Our hypothesis is that this representation helps to discriminate between subjects
with a low and a high task performance. In order to test this hypothesis, we will test for linear
separability, that is, how well we can separate subjects with a hypersurface1 in a certain reduced
dimensionality.

4 Experimental framework

In order to collect data for experimentation purposes, 9 subjects were asked to read news and
fiction documents in English following different reading strategies. Subjects were students from
China (1), Indonesia (1), Japan (4), Spain (1), Sweden (1) and Vietnam (1) in Bachelor, Master,
PhD and post-doctoral levels of education in computer science.

Three reading strategies were considered. The first strategy was precise reading, where subjects
were told to read two documents with the objective of maximizing their comprehension and that
their level of understanding would be tested after reading each document with yes-no questions,

1A straight line and a plane in 2 and 3 dimensions, respectively.
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Figure 4: Schema of the methodology used in this work to estimate the distribution on how each
linguistic feature explains subject’s reading behavior. First, a collection of image representations
of linguistic features is synthesized. Then, using the image F1 score function, each linguistic
feature is matched against the gaze data to obtain a measure on how well it explains reading
behavior. The result is a fixed-size feature vector o representing a reading session.

multiple-choice questions and free-answer questions. The second strategy was skimming, with
the objective of finding the answer to one or two questions (to each document, respectively) and
the accuracy and completeness of their answer was measured after subjects claimed that they
had found the necessary information to answer the questions. The third strategy was named
10-second reading, where subjects were given 10 seconds to obtain as much information as
possible from two documents (respectively), and were asked to show the amount of information
they got and were scored proportionally to correctness and completeness. Table 1 summarizes
basic statistics of the documents. The total duration of the reading sessions and question
answering to obtain subject’s level of understanding was, on average, 40 minutes.

Randomizing the presentation order of the documents is a standard practice in psycholinguistics.
In the present work, however, the presentation order was kept constant, due to concerns about
the effects of the randomization when working with a limited number of subjects. We believe
that the results are not affected by this decision, since subjects were compared within the same
document and reading strategy (thus, under the same experimental conditions).

In what follows, we assume that the score that subjects obtained in the questionnaires after
reading every document represents the subject’s level of understanding and that the highest
score among all subjects represents a 100% of understanding. There were two rules used to
partition subjects and test linear separability. In the first partition rule, we select the subjects
whose understanding was below 33%, and try to find a linear decision boundary (in the form
of a straight line or plane) that separates those subjects from the rest of the participants. In the
second partition rule, we select the subjects whose understanding is above 66%, and proceed to
test whether they can be linearly distinguished from the rest.
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Reading strategy Document Avg. tokens / sent. Num. sent. Avg. reading time

10-second reading
doc. 1 23.4 11 10 s.
doc. 2 22.6 14 10 s.

Skimming
doc. 3 20.9 13 70± 64 s.
doc. 4 11.8 20 52± 38 s.

Precise reading
doc. 5 30.2 11 116± 49 s.
doc. 6 20.3 12 95± 36 s.

Table 1: Statistics on the average number of tokens per sentence (Avg. tokens / sent.),
number of sentences (Num. sent.) and average reading time (Avg. reading time). Statistics
were collected across all subjects for the 6 documents used during the experiments, to record
eye-movements and obtain the linguistic features of those documents.

With the intention of capturing all possible linguistic influence on reading behavior, we collected
a set of lexical, syntactic and semantic linguistic features on every document. Among the
lexical linguistic features, we measured word length, whether the word contains a digit or not,
the presence of upper case letters or word unpredictability, as given by the perplexity from a
5-gram language model trained on a big corpus (Koehn, 2005) and smoothed using modified
Kneser-Ney technique (Chen and Goodman, 1999). Syntactic features were also included in our
model, such as whether a word is the head of a phrase, binary features indicating whether a
word has a certain Part-of-Speech (POS) tag, total height of the parse tree of the sentence each
word corresponds to, word position in the sentence, etc. We believe that semantic features also
may influence greatly on the eye movements, since it is reasonable to think that an important
part of the cognitive processing consists in an incremental integration of the information into the
personal knowledge base, right after the lexical and syntactic processing happens. However, due
to the difficulty in formally defining and properly quantifying semantic features, only two were
considered, namely the word ambiguity, as given by the number of senses in WordNet (Miller,
1995) that a word may have, and a feature indicating whether a word or phrase is a named
entity or not. The complete list of linguistic features included in our model can be found in
Table 2, and will be used to synthesize image representations and compute how well they help
to explain the gaze evidence.

Prior recording the eye-movements during the reading session, every subject was informed of
the dynamics of the reading tasks. Tobii TX300 and Text2.0(Biedert et al., 2010) were used to
capture the (x , y) coordinates of the gaze samples for every subject reading every document,
and the eye-tracker was calibrated before every subject read every document. In order to
avoid introducing tracking errors as much as possible, a chin rest was used for subjects to keep
their heads stable. A text-gaze aligner (Martínez-Gómez et al., 2012a) based on an image
registration method was also used to correct variable and systematic errors in the coordinates of
the gaze samples, and further corrections were manually performed when necessary. Finally, the
eye-tracking session data of a subject reading one of the documents in the 10-second reading
task was discarded due to unrecoverable errors during the eye-tracking session.

Pixel intensity values were normalized in the image representations of the eye-movements
and the image representations of the linguistic features, in order to compensate for subjects
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Category Linguistic feature Type

Lexical

word length Integer
contains digit Binary

word unpredictability Real
contains uppercase Binary

is all uppercase Binary

Syntactic

is head Binary
is POS $tag (23 features) Binary

height of parse tree of its sentence Integer
depth of the word in the parse tree Integer

word position in sentence Integer

Semantic
is named entity Binary

ambiguity: number of senses from WordNet Integer

Table 2: Lexical, syntactic and semantic linguistic features considered in this work. Examples
of POS $tag are “Nouns”, “Verbs” and “Prepositions”. Heads and parse trees were obtained
using an HPSG parser (Miyao and Tsujii, 2008).

spending different amount of time on the documents, and to account for rare or too-frequent
linguistic features that have a different amount of total pixel intensity in the image. Thus, the
intensity was adjusted in such a way that 1% of the highest and the lowest non-zero pixel values
were saturated (i.e. totally dark and totally white).

5 Results

5.1 Patterns in the variance

In our hypothesis, we stated that subjects with different task performance would have different
patterns in reading behavior. With the objective of revealing these differences at a preliminary
stage, we proceed to analyze the variability of the distribution of attention on the linguistic
features across all subjects participating in our experiments. Studying the variability of data
is of special interest because patterns in variance are usually good signals to be considered
to discriminate between subjects. Thus, Principal Component Analysis (PCA) (Jolliffe, 2002)
will be used to obtain the directions in the feature space where the covariance matrix of the
observations varies the most, as given by the eigen-vectors associated to the highest absolute
eigen-values.

Then, we can project the observations (our subjects) onto the two or three directions that
capture most of the variance. On the left plot of Figure 5, we can observe a projection onto the
two dimensions with highest variability, capturing 74.8% of the total variance across all subjects
in document 1 of the 10-second reading task. It can be appreciated that the three subjects with
the lowest level of understanding (marked as x) are located on the left part of the plot, clearly
separated from the rest of the subjects. On the right plot of Figure 5, subjects were projected
on the three directions that capture most of the variability for the same document, capturing
85.6% of the total variance.
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Figure 5: Principal Component Analysis on the covariance matrix of the subjects reading
document 1 during the 10-second reading task. Subjects with low level of understanding are
marked as x, and subjects with a high understanding are marked as o. On the left plot, a
projection onto two dimensions capture 74.8% of the variance; on the right plot, a projection
onto three dimensions capture 85.6%.

5.2 Separability

In order to reveal the differences in reading patterns (as described in Section 3.2), we will
test for linear separability of subjects in a low dimensional space resulting from a principal
component projection of the subjects. Despite of the apparently reduced number of subjects
participating in the experimentation, linear separability of a number of subjects (i.e. 8 or 9) in
a space of much smaller dimensionality (i.e. 2 or 3) is not likely to happen by pure chance.

The quantification of the linear separability can be found in Table 3. Subjects (observations
o) were projected onto two and three dimensions using their two and three directions of
highest variability respectively, following the PCA dimensionality reduction method. For every
projection and every document, two partition rules (as described in Section 4) were considered
to select the subset of subjects for which linear separability have to be tested. Then, a decision
line (in two dimensions) or a plane (in three dimensions) was obtained such that maximizes
the number of subjects from the subset of interest that are correctly separated from the rest
of the subjects, without allowing subjects that do not belong to the subset of interest to be
miss-classified. Every cell in Table 3 shows a fraction X/Y , where X denotes the number
of subjects from the subset of interest (i.e. subjects with the lowest or the highest level of
understanding) that were correctly separated from the rest of the subjects by using the best
possible linear separation, and Y denotes the total number of subjects in the subset of interest.

In an instance of a positive example from Table 3, there were 8 subjects reading document 1 in
10-second reading task and those subjects were projected onto two dimensions. Using partition
rule 1, the 3 subjects with the lowest level of understanding were selected, and all of them were
correctly linearly separated. A negative example can be found at the 2-dimensional projection
of the 9 subjects reading document 3 of the skimming task, where partition rule 1 is used to
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Partition rule 1 Partition rule 2
Reading strategy Document 2 Dim. 3 Dim. 2 Dim. 3 Dim. Num. subjects

doc. 1 3/3 3/3 2/2 2/2 8
10-second reading doc. 2 1/1 1/1 0/1 0/1 9

doc. 3 0/2 2/2 5/7 6/7 9
Skimming doc. 4 1/1 1/1 8/8 8/8 9

doc. 5 1/4 2/4 1/1 1/1 9
Precise reading doc. 6 1/1 1/1 1/1 1/1 9

Table 3: Quantification of the separability for subjects reading two documents following
10-second, skimming and precise reading tasks. Subjects have been projected in two and three
dimensions (Dim.), and linear separability have been tested for two different partition rules as
described in Section 4. At every cell, X/Y denotes that Y subjects were selected by the partition
rule to test their linear separability, and X of them were successfully separated from the rest of
the subjects.

select the subset of subjects with the lowest level of understanding. From Table 3, it can be read
that not a single subject with a low level of understanding can be linearly separated from the
rest, thus not being distinguishable from the other subjects by using the patterns on reading
behavior that are described in this paper. An illustration of these two examples can be found in
Figure 6.

It can be observed that the subjects with a level of understanding below one third of the highest
level of understanding can be linearly separated from the rest of the subjects in all documents
of the 10-second and skimming reading strategies. This linear separation was feasible in two
and three dimensions respectively2. At the precise reading strategy, only some subjects with the
lowest level of understanding were found to be linearly separable from the rest of the subjects,
indicating that the distribution of the attention over linguistic features only contains limited
information about reading performance and that the eye-movements might be influenced by
factors of different nature, which is consistent with (Martínez-Gómez et al., 2012b).

Table 3 also contains a quantification of how well subjects with a high level of understanding
could be linearly differentiated from the rest of the subjects (columns corresponding to partition
rule 2). Although it can be appreciated that results are not consistent across all reading tasks,
there is a positive trend of linear separability. In document 1 of the 10-second reading task,
two subjects were selected by the partition rule 2, and both of them were successfully linearly
separated from the rest of the subjects in 2 dimensions. In document 2, however, the partition
rule only selected one subject with the highest level of understanding, but neither projections
in 2 nor 3 dimensions allowed for linear separability. In document 3 of the skimming task, 7
subjects (out of 9) were selected as having the highest level of understanding, and 5 and 6 of
them were successfully linearly separated in 2 and 3 dimensions respectively. In document 4 of
the same task, the partition rule 2 selected 8 subjects, and all of them were linearly separated
from the remaining subject. Finally, in both documents of the precise reading task, only 1
subject in every document was selected as having the highest level of understanding, and the
subject was positively linearly separated from the rest of the subjects in 2 and 3 dimensions.

2Note that if a subset is linearly separable in n dimensions, then it is also linearly separable in n+ 1 or more
dimensions.
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Figure 6: On the left, a positive example of linear separability in a projection on two dimensions
of the subjects reading document 1 in the 10-second reading task. On the right, a negative
example of a projection on two dimensions of the subjects reading document 3 of the skimming
task, where subjects with low level of understanding (x) cannot be linearly differentiated from
the rest of the subjects (o), using the patterns in reading behavior described in this work.

6 Future work and applications

The work presented in this paper is a step towards recognizing personal characteristics by using
data extracted from the eye-movements in combination with the linguistic properties of the
documents being read. We believe that there are other personal characteristics that can be
extracted from eye-movements. Language ability is one of them, and it could be recognized by
analyzing the proportions in the quantity of attention paid on words or phrases with certain
linguistic features such as verbs or nouns. Subject’s domain of expertise could also be recognized
by analyzing fixation times on technical terms and comparing it to other subjects with different
known domains of expertise. We also believe that the reading intention of users is also reflected
on the eye-movements and it falls within our research road map. We are also interested in
designing models to explain how the pupil size diameter depends on the linguistic characteristics
and the amount of information contained in a text with the objective of quantifying the amount
of surprise that readers received when exposed to the documents.

There are multiple applications that could benefit from refined user models that account for
these personal characteristics such as user intention or domain of expertise. Information
recommendation systems are a clear example, since recognizing users’ intention is the first step
in satisfying their information needs. Assistive technologies for reading and writing could also
be developed since past records of users reading the same document would give hints on the
text areas that require the highest amount of attention to maximize the understanding of the
content, and writers could also use that information to optimize their documents for an efficient
or pleasant reading experience. Applications for diagnosing learning difficulties in children
and young people could also be developed following a similar strategy to the work it has been
presented in this paper.
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7 Conclusions

In the present work, we have introduced a method to represent subjects as fixed-size feature
vectors that denote the distribution on how well each linguistic feature explains the eye-
movements when reading a specific document. Information on gaze samples and linguistic
features was integrated in a common framework by means of their encoding into synthesized
images whose pixels quantify the strength of the statistical evidence. With the definition of
image precision, recall and F1 scores, we narrowed the gap between the image and natural
language processing fields. Although traditional statistical models could be used with similar
results, our method allows to include geometric information into our linguistic models in a
natural manner.

Examples of image processing techniques that resulted useful were the image registration to
perform text-gaze alignment, blurring images to carry the uncertainty of the error-correction
into our subsequent models, capabilities to adjust intensity of pixel values to compensate for
too common or too rare linguistic features, ease in visually analyzing our reading models and
more importantly, estimating how well each linguistic feature explains eye-movements data
without the need of testing for significant decreases in perplexity when those features are added
into the traditional statistical models.

We analyzed the variability on the distribution over the personal feature vectors by projecting
them onto a lower dimensional space for visual inspection. We observed patterns in the
distribution of those feature vectors across all subjects, found that they are characteristic of
every subject and that they relate to the subject’s level of understanding. Finally, we tested the
hypothesis that subjects with different levels of understanding can be distinguished from each
other by using the information extracted from the combination of eye-movements captured by
an eye-tracker and the linguistic information extracted from a document.

In order to test our hypothesis given the limited number of subjects, we used “linear separability”,
which is a very exigent condition to satisfy conditioned on the low dimensionality and the
number of subjects that we presented. We consistently succeeded in linearly discriminating
subjects with low level of understanding from the rest of the subjects at the 10-second and
skimming reading tasks. However, subjects with low task performance were not consistently
linearly separable for the task of precise reading, suggesting that other methods might be
necessary to discriminate them. Linear separability of subjects with high level of understanding
showed a positive but not decisive trend and we will say, for now, that subjects with lower
level of understanding are easier to recognize by their eye-movements on the documents they
read, when compared to subjects with high task performance. The ability to distinguish readers
according to their level of understanding can further be accomplished in a less exigent scenario
by relaxing the condition of separability into a higher dimensionality or non-linearity with a
larger number of subjects.

Until now, recognizing the level of understanding of a subject when reading a document was
only possible by requiring explicit feedback from subjects. The findings in this work demonstrate
that the cognitive activity associated to a low or high level of understanding influences subject’s
eye-movements and that those eye-movements can be characterized in some readings tasks
with the help of the linguistic characteristics of the text being read. Although the experiments
presented in this paper are still limited, we have evidenced strong patterns in eye-movements
that will allow us to unveil a larger portion of a person’s state of mind.
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