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ABSTRACT
Citations are a valuable resource for characterizing scientific publications that has already
been used in applications such as summarization and information retrieval. These applications
could be even better served by expanding citation information. We aim to achieve this by
extracting and classifying citation information from the text, so that subsequent applications
may make use of it. We make three contributions to the advancement of fine-grained citation
classification. First, our work uses a standard classification scheme for citations that was
developed independently of automatic classification and therefore is not bound to any particular
citation application. Second, to address the lack of available annotated corpora and reproducible
results for citation classification, we are making available a manually-annotated corpus as a
benchmark for further citation classification research. Third, we introduce new features
designed for citation classification and compare them experimentally with previously proposed
citation features, showing that these new features improve classification accuracy.
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1 Introduction

Citations are a valuable resource for characterizing scientific publications and their links to
each other. They have been exploited for a number of natural language processing (NLP) and
information retrieval (IR) applications, including summarization (Qazvinian and Radev, 2008;
Qazvinian et al., 2010)[CJPF]1, improved indexing and retrieval (Ritchie et al., 2006)[CJPF], and
building integrated research databases (Nanba et al., 2004)[CJPF]. Bibliometric measures that
quantify the impact of publications (e.g., Moed, 2005)[CJPF]are also based on citations.

Most of this work does not differentiate between uses of citations, e.g., whether a citation is
more or less important to the paper or whether the paper’s authors support or refute the claims
made in the cited work. However, recently a number of research groups have attempted to
classify citations with respect to dimensions like importance and relation to cited work (Teufel
et al., 2006b; Dong and Schäfer, 2011; Sugiyama et al., 2010; Abu-Jbara and Radev, 2012)[CEPF].
By adding such fine-grained information to individual citations, the various applications of
citation analysis can be better served; e.g., citations that are foundational to a paper may
constitute better summary sentences for the cited paper.

Thus, there are clear potential benefits to fine-grained citation analysis; and a number of case
studies have been published that demonstrate this potential (Nanba et al., 2004; Teufel et al.,
2006b)[CEPF]. However, fine-grained citation analysis is currently not widely used in applications
that access and analyze the scientific literature. In this paper, we identify a number of potential
reasons for this state of affairs and propose solutions.

The first problem with current fine-grained citation analysis is that prior work has tended
to develop custom classification schemes for a particular application. This means that the
development cycle for a citation classifier must be started from scratch for each new application.
In contrast to this prior work, we base our work on a standard classification scheme for citations
from information science, the classification scheme of Moravcsik and Murugesan (1975)[CERF]

(henceforth MM). We believe it is important to use an annotation scheme that is not bound to
automatic citation classification for one particular task such as IR or bibliographic measures.
Instead, it should be expressive enough to handle citations across many tasks. The MM scheme
comprises four different dimensions or facets, which allows us to annotate the quality of the
cited work along with its relation to the citing work. This gives the classification flexibility, so
that it can be used in different application scenarios; e.g., some facets of the citation are more
relevant for IR in digital libraries, while others are more useful in automatic summarization.

The second reason that fine-grained citation analysis has not seen widespread adoption is that it
remains a challenge to accurately and automatically classify citations according to a predefined
classification scheme (Teufel et al., 2006b)[CEPF]. We address this problem by introducing
several novel features designed specifically for use in citation classification. Some of these new
features are needed to support the more flexible and generic MM facet classification scheme.
In particular, we extract novel features that capture the relationship between the citing paper
and the cited paper. Identifying this relationship helps in understanding what motivated an
author to reference the cited work. We also investigate how different features perform across
the four facets, and how other variables, like the size of the context from which we extract
features, affect the classification. We go on to compare different feature sets used for citation

1The citation annotation, described later in Sections 2 and 3, has likewise been applied to the citations in this
paper. The following abbreviations apply: C=conceptual; O=operational; E=evolutionary; J=juxtapositional; R=organic;
P=perfunctory; F=confirmative; N=negational.
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classification. In particular we compare different lexical, syntactic, and positional features. To
our knowledge this is the most extensive investigation of the comparative utility of features for
citation analysis to date.

The final barrier to widespread adoption of fine-grained citation analysis is the fact that progress
in the field has been hampered by the lack of a standard annotated corpus. Although all of the
previous work we cover has used corpora of NLP articles for citation analysis experiments, none
has tried reusing an existing corpus or annotation scheme. This makes accurately comparing
results impossible, which in turn makes it difficult to gauge the advancement of the state of
the art. Authors have focused on developing new annotation schemes, but no work has gone
into building resources that allow the research community to evaluate and compare different
citation classification methods.

As we will show below, results are also difficult or impossible to reproduce because existing
citation approaches have not been described in sufficient detail and resources created or used
for the approach have not been published. To address the lack of reproducible experiments in
citation classification, we are making available, in conjunction with this paper, the manually-
annotated corpus and feature vectors that produce the results reported here.2 We hope that
this corpus can provide a benchmark for further advances in citation classification.

The rest of the paper is structured as follows. Sections 2 and 3 cover the details of our annotation
scheme and corpus, followed by a detailed description of the features used for classification
in Section 4. Section 5 presents the different classification experiments we conduct with a
discussion of the results in Section 6. Section 7 discusses related work. Finally, we close with a
summary and an outline of future work.

2 Annotation scheme

In selecting our fine-grained classification scheme, we focused on two criteria. The first criterion
is that we should consult the field of research that has the most expertise and the longest
research record in developing classification schemes for citations. This field is information
science. We have chosen the scheme proposed by Moravcsik and Murugesan (MM) because it
adequately represents scientific literature for a broad range of citation classification scenarios.
Furthermore, it is a well-established annotation scheme that is widely cited and used inside and
outside of the information science community.

The second criterion for selecting the scheme was that it should be flexible and adaptable
for different citation use cases. The MM scheme achieves this in that it is composed of four
independent or orthogonal facets. For each facet, it assigns a label from a set of two labels. The
scheme can be summarized with the four questions they posed: (i) Is the reference conceptual
or operational? (ii) Is the reference organic or perfunctory? (iii) Is the reference evolutionary
or juxtapositional? (iv) Is the reference confirmative or negational?

The conceptual vs operational facet – CONC-OP – asks: “Is this an idea or a tool?,” where
examples of tools are MRI in brain imaging and part-of-speech (POS) taggers in NLP. The organic
vs perfunctory facet – ORG-PERF – distinguishes those citations that form the underpinnings
of the citing work from more cursory citations. The evolutionary vs juxtapositional facet –
EVOL-JUX – highlights the relationship between the citing and cited papers. If the citing paper
builds on the cited work, it is EVOL while it is JUX if it presents an alternative to the cited

2http://www.ims.uni-stuttgart.de/~jochimcs/citation-classification.
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work. Finally, CONF-NEG, the confirmative vs negational facet, captures the completeness and
correctness of the cited work. A NEG citation usually is not derogatory, it may simply say that
the cited work is weaker than the citing work or is otherwise missing some critical point. These
distinctions are covered in more detail in the annotation guidelines.2

These four facets can be thought of as orthogonal dimensions along which citations can vary.
This is the basis for flexible and adaptable citation analysis; e.g., a facet that is not relevant for
a particular application can simply be omitted. If interactions between two facets are important
for another application, they are made available by the citation classifier without complicating
the model or its training.

Although there are now four facets to annotate for each citation instead of a single label, the
annotation task is not more difficult. Making a binary decision is easier than trying to pick
a label from ten possibilities with subtle differences between some of them. Yet, with the
combination of different facets we still can achieve a finer-grained label.

It is also important to note that this classification has no undefined class. Several previous
annotation schemes have a default label, neutral or other, that is assigned to a citation when no
other classes can be. In the work we have seen that uses such annotation schemes, more than
half of the citation instances are assigned this undefined label. In these cases, summarization or
IR systems that want to make use of citation information obtain no useful information from the
citation classifier for more than half of citations.

3 Corpus

Our corpus, like corpora from some previous studies (Athar, 2011; Dong and Schäfer, 2011)[CEPF],
is taken from NLP literature. Specifically, we have taken the 2004 ACL proceedings from the
ACL Anthology Reference Corpus (ARC) (Bird et al., 2008)[OEPF]. NLP literature was chosen
because our annotators (NLP students) are more familiar with this data and can make more
informed decisions when annotating the citations.

Some statistics on the number of documents and citations in the corpus can be found in Table 1.
Each citation in the corpus has been independently annotated by at least two of six annotators.
Gold labels are chosen by a simple majority vote and in the case of ties the votes of more
experienced annotators are weighted higher. The annotators were given guidelines to help
ensure consistent annotation. We built a browser-based annotation tool that displays the full
text of the paper, so that the annotators can look at the wider context of the citation when
necessary. In many cases the context necessary for annotation is only one sentence, but it will
often span sentences or fill a paragraph.

section docs citations
main ACL 57 1668
student 6 101
poster/demo 21 239
total 84 2008

CONC OP EVOL JUX
1792 216 1804 204

ORG PERF CONF NEG
203 1805 1836 172

Table 1: ACL 2004 corpus (left) and summary of annotated citations (right).

As mentioned in Section 2, no facets were left undefined. This reduces the classification to
only two classes and avoids a neutral class. For our purposes it is reasonable to avoid having a
neutral class; e.g., a citation that is not explicitly CONF should still be implicitly considered
CONF because including the citation is still an endorsement of the cited work.
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Fleiss’s κ values of the annotation are .42 (CONC-OP), .45 (EVOL-JUX), .18 (ORG-PERF) and
.41 (CONF-NEG). These numbers indicate that the difficulty of the annotation task varies for the
different facets, with ORG-PERF being most difficult.3 Due to the highly skewed distribution,
κ suffers from prevalence (Eugenio and Glass, 2004)[CEPF], yet three of the facets still have
moderate agreement (according to Landis and Koch (1977)[CEPF]), and ORG-PERF has slight
agreement. We feel that the observed agreement4 is high enough that we can rely on the gold
labels for evaluation.

We are releasing the corpus along with this paper.2 To the best of our knowledge this corpus is
the first to be annotated by individuals other than the study’s authors. It is important to have
independent annotators to limit any bias in the gold-standard annotation. One consequence of
this is that our inter-annotator agreement scores are lower than those previously published as
the previous annotation came from the developers of the respective annotation schemes and
from the authors reporting on the classification experiments using them.

4 Description of features

Our goal is to accurately classify citations according to MM, the annotation scheme described
in Section 2. We make the assumption that the necessary clues for correctly labeling citations,
both manually and automatically, can be found in the context of the citation, i.e., the running
text surrounding the citation. If we are able to extract the right clues from the citation context
we can accurately label the citation’s use.

Because there is not yet a standard corpus for the task of automatic citation classification,
the results from previous work are difficult to compare. Previous studies have used different
corpora, different annotation schemes, different feature sets, and different classifiers. In an
effort to borrow from – and eventually compare ourselves to – previous work, we investigate
some of the features used previously and introduce our own. The reader may want to refer to
the overview of features in Table 2 as we describe the features in what follows.

Lexical features. Much of the earlier work on automatic citation classification (Dong and
Schäfer, 2011; Nanba and Okumura, 1999; Teufel et al., 2006b)[CEPF] relied on cue words
and phrases (cuesk). These were often implemented as follows. For a class (e.g., Dong and
Schäfer’s idea class), a list of of cues (e.g., the word “following”) are defined that indicate that
class. Finally, a Boolean feature (e.g., cuesidea) is set to true if any word from the list is in the
citing context. This results in k Boolean features where k is often the number of classification
labels (although it can be greater, see Dong and Schäfer (2011)[CEPF]).

Different length n-grams were later used by Athar (2011)[CJPF]with results indicating that com-
bined unigram, bigram, and trigram features (1+2+3-gram) performed better than unigrams
(1-gram) and unigrams plus bigrams (1+2-gram).

We use only unigrams because they perform at least as well as using unigrams, bigrams and
trigrams in our experiments, without introducing a much larger, sparsely-populated feature set.
Unigrams should also be quite robust and perform reasonably well across the four facets.

Word-level linguistic features. Part-of-speech (POS) tags of the words in the citation sentence
were used as features by Athar (2011)[CJPF](POS and 1-gram+POS). Select linguistic features

3MM’s definition was “is the reference truly needed for the understanding of the referring paper,” so the annotation
hinges on the understanding of the individual annotator, resulting in higher disagreement.

4Agreements were: .86 (CONC-OP), .88 (EVOL-JUX), .72 (ORG-PERF), .91 (CONF-NEG)
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feature
name source

type or
description

class example value

le
xi

ca
lf

ea
ts

. cuesk NO99, TST06,
DS11

Boolean k Boolean features: one for each
group of cue words/phrases

1-gram Ath11, own hard unigrams
1+2-gram Ath11 hard language unigrams & bigrams

1+2+3-gram Ath11 hard language like unigrams, bigrams, & trigrams

w
or

d-
le

ve
ll

in
gu

is
ti

c
fe

at
s.

POS Ath11 NN, JJ, IN POS tags
1-gram+POS Ath11 quality+NN, new+JJ POS tag-word conjunctions

tense TST06 present, past verbal tense
voice TST06 active, passive verbal voice
modal TST06 can, may modal verb (if any)

has-modal own Boolean sentence has modal verb
root own have, present dependency root node

main-verb own present, use main verb
has-1stPRP own Boolean first person POS
has-3rdPRP own Boolean third person POS
comp/sup own more, better comparative/superlative POS

but own Boolean has “but”
has-cf own Boolean has “cf.”

lin
g.

st
ru

ct
ur

e
fe

at
s.

dep-rel Ath11 pobj:to:information Stanford typed dependencies
(de Marneffe et al., 2006)

POS-patternk DS11 Boolean k Boolean features: one for each
POS tag pattern

is-constituent own Boolean citation is a constituent
self-comp own Boolean author linked to comparative
other-comp own Boolean citation linked to comparative

other-contrast own Boolean citation is in contrastive clause
self-good own Boolean author linked to positive sentiment

lo
ca

ti
on

fe
at

s. section DS11 Introduction, Method 1 of 6 possible section headings
paper-loc TST06 unknown citation position in paper

paragraph-loc TST06 unknown citation position in paragraph
section-loc TST06 unknown citation position in section
sentence-loc own beginning, middle, end location in the first quarter, middle

half (25%-75%), and last quarter

fr
eq

ue
nc

y
fe

at
s.

popularity DS11 Integer citations in the same sentence
density DS11 Integer citations in the same context (sen-

tence and its neighbors)
avgDensity DS11 Real average density of neighboring

sentences

se
nt

.
fe

at
s.

scilex Ath11 unknown scientific polarity lexicon
cpol Ath11 unknown general polarity lexicon

positive-words own best, advantage general positive lexicon
negative-words own problem, against general negative lexicon

ot
he

r
fe

at
s. self-cite TST06 Boolean citation to own work

has-resource own Boolean resource entity found with NER
has-tool own Boolean tool entity found with NER

Table 2: Feature list (grouped by feature class). NO99=Nanba and Okumura (1999); TST06=Teufel et al.
(2006b); Ath11=Athar (2011); DS11=Dong and Schäfer (2011). “unknown” = exact definition of the
feature (e.g., Boolean or Real) is unknown. Examples of possible feature values are given in italics where
appropriate.
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related only to the main verb were shown to be effective by Teufel et al. (2006b)[CEPF], e.g.,
tense (tense), voice (voice), and modality (modal).

We also include modality in our feature set (has-modal) along with separate features for
the main verb (main-verb) and the root (root) as determined by the MATE dependency
parser (Bohnet, 2010)[OEPF]. We do not include POS as features per se, but some features
are triggered by the occurrence of selected POS: 1st and 3rd person pronouns (has-1stPRP,
has-3rdPRP); and comparatives and superlatives (comp/sup). Comparatives and superlatives
can help distinguish CONF from NEG. Pronouns on the other hand may be useful in classifying
EVOL-JUX, e.g., first person pronouns are used when clarifying the differences between proposed
and cited approaches. We add two other features for the contrastive conjunction “but” (but)
and the abbreviation “cf.” (has-cf). In our analysis of citations we looked at the role of
contrastive conjunctions in citation sentences and found these simple features to be useful.

Linguistic structure features. Dependency relations (dep-rel) were used as features and
showed a marked improvement over the baseline by Athar (2011)[CEPN]. Dong and Schäfer
(2011)[CEPF]used seven regular expression patterns of POS tags (POS-patternk) to capture
syntactic information (e.g., “.*(VHP|VHZ) VV.*”); then k= 7 Boolean features marked the
presence (or absence) of these patterns.

We add other new features related to the linguistic structure of the citation sentence. For
is-constituent, the citation is labeled as a constituent if the authors appear outside of the
parentheses with only the date in parentheses, e.g., “Gusfield (1997) showed that . . . ”, or if
the citation acts as a placeholder for the cited work following a preposition, e.g., “. . . following
the experiments in (Kaplan et al., 2004)”. These cases are distinguished from citations like:
“. . . are two popular examples of kernel methods (Fukunaga, 1990; Cortes and Vapnik, 1995)”.
We are relying here on a certain style of writing and citation format, like that found in ACL
proceedings. We expect this feature to help for ORG-PERF as organic citations are more likely
to show up as constituents in citation sentences.

The personal pronoun and comparative features mentioned above (has-1stPRP, has-3rdPRP,
and comp/sup) are useful features, but we would like to extract a more specific feature that
links them. We want features that indicate that the citing work is better than the cited work.
To obtain these features we parse the sentence and extract relations from the parse tree. For
the author/comparative relation, we first find the comparative in the sentence and traverse the
tree to find the subject of the phrase that contains that comparative. If the subject refers to the
author of the paper (e.g., with a first person pronoun), we set the self-comp feature to true.

We also found that JUX citations are often set apart using contrastive conjunctions, e.g., while
or despite. We again traverse the parse tree to extract the relationship between contrastive
conjunctions and the citation (other-contrast), where the citation or cited authors show up
in the dependent clause governed by the contrastive conjunction. The feature is set to true if
the citation is found among the descendants of the contrastive conjunction.

Location features. The section of the paper in which the citation is located (section) was
used as a feature by Dong and Schäfer (2011)[CEPF]. Teufel et al. (2006b)[CEPF]also included lo-
cation features at different granularities: within the paper (paper-loc), within the paragraph
(paragraph-loc), and within the section (section-loc).

We include a different location feature approximating where the citation is found in the sentence
(sentence-loc): beginning, middle, or end. This feature is motivated by the fact that citations
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at the end of the sentence are predominantly PERF.

Frequency features. Dong and Schäfer (2011)[CEPF]used the number of citations in a single
sentence (popularity) and in the citation sentence plus its neighboring sentences (density)
as features. They also included a third feature for the average density of neighboring sentences
(avgDensity).

Sentiment features. Athar (2011)[CEPF]included two different polarity lexicons. One is hand-
crafted and specific to the scientific domain (scilex). The other is the large general purpose
polarity lexicon from Wilson et al. (2005)[OEPF] (cpol). He also tried features (neg) that
account for negation. This was done by appending “_neg” to the end of the 15 lexical items
that follow any negation term.

We were not able to obtain the scientific polarity lexicon, but use the polarity lexicon from
Wilson et al. (2005)[OEPF]to extract sentiment features. Our polarity features are represented
as a bag of words (BOW) where the citation context words present in the polarity lexicon are
added to the BOW features positive-words or negative-words according to their polarity.
Although CONF-NEG is not strictly a matter of sentiment, we still apply this feature hoping for
improvements on this facet.

Self-reference feature. Teufel et al. (2006b)[CEPF]used a feature, self-cite, that indicates if
one of the citing authors also (co-)authored the cited work. This feature is unique in that it is
the only feature based on the reference and not the individual citation and therefore not taken
from the context in which it is found.

NER features. Using lexical features alone, there are a number of words that help indicate
OP (operational) citations in NLP, e.g., “parser”, “tagger”, “corpus”. We decide to take this a
step further and train a named-entity recognition (NER) system to identify NLP named entities.
We identify two types of NLP named entities: corpora and tools. First, we create a gazetteer
of NLP tools and corpora from an online list of these resources.5 Next, we tag a portion of
our corpus using the gazetteer list to label any occurrence of the words in the list and then
manually check those labeled instances to be sure they are correctly labeled. In this way we can
expediently create training data, with an emphasis on precision over recall. Finally, we train
the SuperSenseTagger (Ciaramita and Altun, 2006)[OEPF]on this annotated portion, and tag the
remaining part of the corpus. NER is not central to our task, so we did no direct evaluation of
it; we looked only to see if it might lead to improvements in our classification. We include two
features, has-resource and has-tool, for the two types of entities.

The NER features we extract are related only to the NLP domain. However, this approach for
acquiring named entities is not domain dependent and can be used to develop a reasonably
efficient NER system using lists of tools or resources from any domain.

5 Experiments

In this section we will outline our classification experiments and then discuss the results in
Section 6. We use the term feature set to describe a collection of features used by us or in
previous studies; we use the term feature class to describe a collection of similar features as they
are organized in Section 4 and in Table 2.

Setup. All our experiments were conducted on the corpus described in Section 3. We trained
the Stanford MaxEnt classifier (Manning and Klein, 2003)[OEPF] for each of the four facets

5http://nlp.stanford.edu/links/statnlp.html
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in a 5-fold cross validation setup with default settings except that we set the regularization
parameter σ = 10 based on previous experiments.

Feature set comparison. In our first set of experiments we test our own feature set and the
feature sets described in previous studies. Each of these feature sets is a subset of the features
described in Section 4 and is identified below by some of its more distinguishing features; e.g.,
NgramDep refers to the feature set that mainly uses n-grams and dependencies.

CueVerbLoc. This feature set is intended to mimic (Teufel et al., 2006b)[CEPF] to the extent
this is possible. It includes cue phrase features (cuesk), the verbal features tense, voice,
and modal as well as paper-loc. The cue phrases used in (Teufel et al., 2006b)[CJPF]are not
available so we applied automatic feature selection using mutual information (MI) (Manning
et al., 2008)[CEPF]to select the most informative unigrams, bigrams, and trigrams for each class
label. We borrow from the manual feature selection in (Teufel et al., 2006b)[CEPF]by assigning
cue phrases to each of the labels (8 in our case – Teufel et al. used 12) and limiting the number
of cue words to 75 per label. Some examples for OP cues are wordnet, and parser.

NgramDep. This feature set corresponds to (Athar, 2011)[CEPF]. It includes lexical features:
unigrams, bigrams, and trigrams (1+2+3-grams) and the dep-rel features. Athar (2011)[CJPF]

tested other features, but we have only reimplemented those that improved results.

CueFreqPOS. This feature set is based on (Dong and Schäfer, 2011)[CEPF]. It includes a list of
cue words (cuesk), then the frequency features popularity, density, avgDensity, and
the syntactic feature POS-patternk.

PREV. This feature set combines all features previously used for citation classification into one
feature set (i.e., CueVerbLoc + NgramDep + CueFreqPOS).

OWN. The feature set OWN includes all the features we have introduced in our work – those
marked “own” in Table 2. Some features were designed to help one facet or another, but we
use them all together here for all facets.

We note here that by reimplementing features from previous work we claim only to extract
the same or similar information as the original authors. Due to sometimes major differences
in the corpus, annotation scheme, and classifier used, we are not able to reproduce the same
conditions that led to previous results. We are instead more interested in the types of features
that seem to perform best on our dataset with our annotation scheme.

Citation context size. The tests just described are run with a fixed context size of one sentence.
It is not clear how much context is best for feature extraction, so in another set of experiments
we fix the feature set and test the features extracted from different sized context windows.
In previous work, different sized context windows were used by different studies, e.g., Athar
(2011)[CEPF]used only the sentence containing the citation while Dong and Schäfer (2011)[CEPF]

used up to three sentences. Kaplan et al. (2009)[CEPF]and Abu-Jbara and Radev (2012)[CEPF]have
illustrated the difficulties in delineating the exact boundary for each individual citation context,
while Athar and Teufel (2012)[CEPF]tried different fixed context sizes for citation classification.
We follow this general idea and test context lengths of 1, 2, and 3 sentences.

Feature class comparison. In addition to comparing our own feature set with those from
previous work, we also want to investigate what feature classes assist most in the classification.
We perform this analysis by examining the impact of the seven feature classes described in
Section 4. More specifically, we compare the results of their individual performance using only
features in the feature class (Table 4, top), and their ablation from the entire feature set using all
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features except those in the feature class (Table 4, center). Finally, we extend the ablation study,
successively removing all feature classes in order of importance (i.e., by their contribution to F1
score) (Table 4, bottom).

6 Results and Discussion
Feature set results. The results for the different feature sets when using one sentence of context
are found in Table 3. All of the F1 results presented in this paper are macro-averaged F1. We have
included two baseline experiments. We use a majority baseline (BL) that labels each citation
with the label occurring most often in the corpus, e.g., for CONC-OP, all citations are labeled
CONC. We also include results for unigram, bigram, and trigram features (Ngram), which is the
baseline used by Athar (2011)[CJPN]. The results in Table 3 show that our feature combination
outperforms both baselines and all reimplemented feature sets for all four facets. With two
exceptions (Ngram for EVOL-JUX and PREV for ORG-PERF), these results are significant.6

The greatest improvement over the baseline is with the OWN features for CONC-OP. Several
of the other feature sets also do better on CONC-OP than BL, but OWN is still significantly
better than PREV, the combination of all other feature sets. Simple BOW features along with
our new features (e.g., has-resource and has-tool) increase F1 by 7 points over PREV. As
an example, in a sentence citing “The Penn TreeBank (Marcus et al., 1993),” the citation is
incorrectly classified using PREV. The NER tool recognizes Penn TreeBank as a corpus, which
results in the OWN feature has-resource to be set to true and a correct classification of the
citation as OP.

EVOL-JUX proves to be more difficult than CONC-OP with either no or very small improvements
over BL for all feature sets except for Ngram and OWN. The BOW features from our OWN
feature set are responsible for most of the improvement of F1 from 47.3 to 52.9. BOW features
contribute to the improvement with OWN features for all four facets.

OWN features improve F1 by 10.7 (from 47.3 to 58.0) over the BL for ORG-PERF, and are also
better by 3.2 (54.8 vs 58.0) than PREV. Some features that contribute to the better results are
root and main-verb with values such as “describe” and “present”; these appear to be useful
in identifying ORG citations. In this facet, the feature set CueFreqPOS sees its most significant
improvement over BL. This is due in a large part to the frequency features that are not found in
other feature sets.

Finally, CONF-NEG is the most difficult facet. All feature sets except our own performed only as
well as or even worse than BL. OWN features improve F1 by 3.3 (from 47.8 to 51.1), which is
due in part to the location feature that finds citations in the middle of sentences to be CONF,
while NEG citations are more likely to come at the beginning.

To get an idea of a possible upper bound for this task, we include a human classifier (“Human”
in Table 3): we take the annotation from the most experienced annotator and consider it as
classification output. CONC-OP is the “easiest” facet for the human classifier to label, similar to
automatic classification. However, the most difficult facet for automatic classification, CONF-
NEG, appears to be straightforward for the human classifier. This is consistent with the high
observed agreement for CONF-NEG (.91, footnote 4).

Context size results. For OWN, we tested three different context sizes c: c ∈ {1, 2, 3} sentences.
We found that c = 1 is best for CONC-OP (significant) and ORG-PERF; and c > 1 is better for

6p < .05. All significance tests in this paper use the approximate randomization test (Noreen, 1989)[CEPF].
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CONC-OP EVOL-JUX ORG-PERF CONF-NEG
baseline (BL) ∗47.2 ∗47.3 ∗47.3 ∗47.8
Ngram ∗53.2 50.7 ∗51.3 ∗47.8
CueFreqPOS ∗48.4 ∗49.4 ∗54.1 ∗47.7
NgramDep ∗53.3 ∗47.3 ∗50.5 ∗47.8
CueVerbLoc ∗51.1 ∗47.3 ∗47.3 ∗47.8
PREV ∗61.2 ∗48.5 54.8 ∗47.5
OWN 68.2 52.9 58.0 51.1
Human 94.7 91.1 91.7 93.5

Table 3: F1 for different feature sets. Marked with ∗: significantly worse than OWN (p < .05). Underlined:
best performing feature set per facet.

CONF-NEG (significant) and EVOL-JUX. These results suggest that context size is an important
factor, but one that does not have a uniform effect on the four facets. The online appendix
describes these experiments in more detail.2

Feature class results. In the discussion of the feature class results we will refer to the line
numbers in Table 4. The table presents F1 results using only a single feature class (lines 1–7);
F1 using all features (“All”) and F1 using all features except the listed feature class (lines 8–14);
and finally, extended ablation results where a feature class is successively removed from “All”
(seven classes) until one feature class remains (lines 15–21). Our goal is to get a better idea of
which feature classes are informative for a given facet.

CONC-OP. LEXICAL features appear to be the most important for this facet. Alone they do well
against the baseline (61.6 vs 47.2, line 1) and when removed from the entire feature set F1
drops more than for any other feature class (from 64.5 to 58.2, line 8). Both of these ∆’s are
significant. The feature class NER has the second highest F1 (54.1, line 7) when used alone,
which makes sense as it was designed for this facet. Removing NER features hurts F1 (down to
64.0, line 14), but not significantly. Using only WORD-LEVEL or STRUCTURE features also leads
to significant improvement: increases of 4.8 (line 2) and 4.3 (line 3). After that, SENTIMENT

features improve F1 but not significantly (line 6), while the LOCATION and FREQUENCY features
show no difference from the BL (lines 4–5). The ablation results show that after the significant
contributions of the LEXICAL features, the removal of other feature classes does not affect the
results much: Removing STRUCTURE, LOCATION, and SENTIMENT features actually increases F1
(lines 10, 11, 13), and the ablation of WORD-LEVEL, FREQUENCY, and NER features shows no
significant change (lines 9, 12, 14).

EVOL-JUX. For this facet, three of the seven feature classes, LOCATION, FREQUENCY, and NER, lead
to no change from the baseline when run alone (lines 4, 5, 7). Another three feature classes,
LEXICAL, WORD-LEVEL, and SENTIMENT, significantly improve over BL (lines 1, 2, 6). Conversely,
the FREQUENCY features, with no improvement alone, help improve results of the entire feature
set; when those features are removed, F1 drops by 2.2 (from 53.4 to 51.2, line 12). Also, the
SENTIMENT features, which do well against the baseline (line 6), hurt F1 when added to the full
feature set (decrease by -0.7, line 13).

ORG-PERF. Individually, the feature classes LEXICAL, WORD-LEVEL, and STRUCTURE all had signif-
icant improvements (lines 1–3). The other four classes do not help for this facet (lines 4–7).
However, in the ablation results, omitting these feature classes also increases F1 (lines 8–10).
Only removing LOCATION significantly decreases F1 (line 11). This result indicates that several of
the feature classes are correlated for classifying this facet. They contain useful information for
the task (as indicated by good performance when used individually), but mutual correlation has
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the effect of bad generalization when all of them are used together. The results show that this
type of analysis (which has not been performed before for citation classification) is important
to understand how features impact performance and what steps are needed to achieve better
performance.

CONC-OP EVOL-JUX ORG-PERF CONF-NEG
BL 47.2 47.3 47.3 47.8

F1 ∆ BL F1 ∆ BL F1 ∆ BL F1 ∆ BL
1 LEXICAL †61.6 †14.4 †52.7 †5.4 †56.1 †8.8 47.7 0.0
2 WORD-LEVEL †52.0 †4.8 †52.4 †5.0 †51.6 †4.2 49.7 2.0
3 STRUCTURE †51.5 †4.3 48.8 1.5 †52.0 †4.7 47.8 0.0
4 LOCATION 47.2 0.0 47.3 0.0 47.3 0.0 47.8 0.0
5 FREQUENCY 47.2 0.0 47.3 0.0 47.3 0.0 47.8 0.0
6 SENTIMENT 48.0 0.9 †52.7 †5.3 47.2 -0.1 †49.9 †2.1
7 NER †54.1 †7.0 47.3 0.0 47.3 0.0 47.8 0.0

CONC-OP EVOL-JUX ORG-PERF CONF-NEG
All 64.5 53.4 59.2 48.9

F1 ∆ All F1 ∆ All F1 ∆ All F1 ∆ All
8 LEXICAL ∗58.2 ∗6.2 53.3 0.1 60.2 -1.0 49.5 -0.6
9 WORD-LEVEL 64.0 0.4 53.6 -0.3 59.3 -0.1 48.9 0.1

10 STRUCTURE 66.7 -2.2 53.1 0.3 59.5 -0.3 ∗48.8 ∗0.1
11 LOCATION 65.0 -0.5 53.2 0.1 ∗55.8 ∗3.4 49.6 -0.6
12 FREQUENCY 64.4 0.1 51.2 2.2 58.3 0.9 49.8 -0.9
13 SENTIMENT 65.0 -0.5 54.1 -0.7 59.2 0.0 49.0 0.0
14 NER 64.0 0.4 53.7 -0.3 58.8 0.4 49.4 -0.5

CONC-OP EVOL-JUX ORG-PERF CONF-NEG
All 64.5 All 53.4 All 59.2 All 48.9

15 LEXICAL ∗58.2 FREQUENCY 51.2 LOCATION ∗55.8 STRUCTURE ∗48.8
16 NER ∗53.6 STRUCTURE ∗50.3 LEXICAL ∗55.4 WORD-LEVEL 48.2
17 STRUCTURE ∗50.3 LEXICAL 50.6 STRUCTURE ∗53.0 LOCATION 47.4
18 WORD-LEVEL ∗47.9 NER 50.7 WORD-LEVEL ∗48.6 NER 47.4
19 SENTIMENT ∗47.2 LOCATION 52.7 SENTIMENT ∗47.3 SENTIMENT 47.4
20 FREQUENCY ∗47.2 SENTIMENT 52.4 FREQUENCY ∗47.3 FREQUENCY 47.7
21 LOCATION ∗47.2 WORD-LEVEL ∗47.3 NER ∗47.3 LEXICAL 47.8

Table 4: Top. Results when a single feature class is used. Middle. Ablation results: F1 and decrease in F1

when each feature class is ablated; i.e., each result shown is a classification result using six feature classes.
Bottom. Extended ablation results: Left columns indicate the feature class removed. Marked with †:
significantly better than BL (p < .05); marked with ∗: significantly lower than All (p < .05). Underlined:
best performing feature class per facet (largest ∆).

CONF-NEG. Only SENTIMENT (line 6) and WORD-LEVEL (line 2) improve over BL and the remain-
ing five feature classes do only as well as BL. Removing four of the seven feature classes actually
seems to improve F1 (lines 8, 11, 12, 14), with F1 only increasing by adding WORD-LEVEL or
STRUCTURE features (lines 9–10).7 In fact, it seems that including the feature classes LEXICAL,
STRUCTURE, LOCATION, FREQUENCY, and NER might only be detrimental for this facet, as F1 using
only SENTIMENT features is 49.9 (line 6) compared to using all features at 48.9 (“All”).

To further analyze the relative importance of a feature class for a facet we extend the ablation
results by successively removing that feature class whose removal results in the lowest F1,
among the possible ablations, until all have been removed (Table 4, lines 15–21). E.g., in
CONC-OP we start with all features (F1 = 64.5) and calculate F1 after removing each of the
feature classes individually. In this case, removing LEXICAL leads to the largest drop in F1, from

7Lines 9–10 have different F1 (48.9 vs 48.8) but the same ∆=0.1 due to rounding.
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64.5 to 58.2 (line 15). In the next iteration, we again compare F1 after removing each of the
six remaining feature classes. Removing NER features results in the lowest F1 (now 53.6, line
16), and we proceed by removing one of the five remaining feature classes, etc. These results
support what was discussed for the top and middle portions of Table 4, but present it as a
list of the feature classes in descending order of importance. This table helps us to compare
different facets; we can easily see that LEXICAL and NER features are important for CONC-OP,
while LOCATION features are not. Compare this to CONF-NEG where LEXICAL and NER features are
not important and WORD-LEVEL is higher in the list. Note also, that F1 does not always decrease
(e.g., removing LEXICAL for EVOL-JUX). Some combinations of subsets of features will perform
better than the previous superset. In this case, we see that after having removed STRUCTURE,
removing any other feature class can only improve results.

The results in this section give us some valuable insight into how to design features for citation
classification. First, we consider the first three feature classes, LEXICAL, WORD-LEVEL, and
STRUCTURE. All three contain quite general text classification features, and consequently are
quite robust and informative across the four facets of citations that we consider. WORD-LEVEL

seems to be the most robust across all four facets, while LEXICAL has the largest ∆ BL values
for three of the four facets (i.e., CONC-OP, EVOL-JUX, and ORG-PERF). The last four feature
classes – LOCATION, FREQUENCY, SENTIMENT, NER – represent different citation features which
seem to impact certain citation facets. NER was designed particularly for CONC-OP and does
in fact contribute most to that facet; LOCATION helps only ORG-PERF (i.e., the position of the
citation indicates its importance) where it contributes significantly to a combination of features;
similarly FREQUENCY contributes significantly to a combination of features for EVOL-JUX; and
finally, SENTIMENT is important for EVOL-JUX and CONF-NEG, as expected. There is no single
feature class that is the most important for all facets, which lends credence to the claim that
these facets capture different properties of citations. We conclude that our multi-faceted
scheme benefits from a diverse feature set and that although general, easily-extractable features
help classification more consistently, the extraction of more specific features is important for
improvements on certain classification tasks.

7 Related Work

Information scientists started labeling and studying citations long before automatic text classifi-
cation became a reality. Garfield (1964)[CEPF]originally introduced 15 different motivations for
why an author might cite a paper; Weinstock (1971)[CEPF]then revisited this classification as he
explored the emergence of citation indexes. Several studies following Weinstock also aimed to
characterize the function of citations (as opposed to the motivation). One example is the MM
scheme we adopt here. Chubin and Moitra (1975)[CEPF]attempted to simplify and flatten MM
using six categories. Spiegel-Rösing (1977)[CEPF]produces another classification scheme with 13
categories that she uses to evaluate one journal’s scholarly contributions. Further comparison
of previous citation studies can be found in (Liu, 1993)[CEPF]and more recently in (Bornmann
and Daniel, 2008)[CEPF]. We note that several other studies (Cano, 1989; McCain and Turner,
1989)[CEPF]have also reused or refined MM in some way, which reinforces our choice. As stated
earlier in Section 2, we feel that the multi-faceted composition of MM provides us with a more
flexible annotation scheme and a powerful one that can easily represent the quality of a citation
as well as its relation to the citing author.

These early annotation schemes were manually applied to a limited amount of scientific
literature and did not consider automatic application on large amounts of text. One early
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application of automatic citation classification (Nanba and Okumura, 1999)[CEPF] used an
annotation scheme with only three classes (Basis, Compare, Other) that are reportedly based on
the 15 classes from Weinstock (1971)[CEPF]. Teufel et al. (2006a)[CEPF]introduce a much more
complete annotation scheme with 12 classes designed for IR. They thoroughly motivate and
analyze their annotation scheme and report inter-annotator agreement of κ=.72. More recently,
sentiment analysis has been applied to citations. Athar (2011)[CEPF]classifies citations as positive,
negative, and objective, and finds marked improvement in classification using dependency
relation features. Athar and Teufel (2012)[CEPF]extend this work and consider context windows
of different widths. For each of these three studies the largest class is the one with the least
informative label: Nanba and Okumura’s Other is 52% of citations; Teufel et al.’s Neutral is
63%; and Athar’s objective is 86%. This means that an application receives little information
about a majority of citations. In contrast, our annotation scheme does not have a neutral label
and always assigns a multi-faceted label that will contain some useful information as no facet
can be left undefined.

Dong and Schäfer (2011)[CEPF]conducted a classification study using their own classification
scheme with four labels relating to the function of the MM organic/perfunctory facet. In addition
to adding new syntactic features (POS-patternk, see above), they tested ensemble-style
self-training to overcome the problem of limited annotated data. Their paper also included a
new dataset with annotated citing sentences. It is important to use previously-tested, publicly-
available data, however, their dataset does not contain the full corpus from which they extracted
features. Due to this restriction we cannot extract many of the features that they use (e.g.,
features in the LOCATION and FREQUENCY classes). The annotation in their dataset is also attached
to the sentence and not individual citations. This makes it impossible to classify individual
citations and prevents us from using the citation-specific features that we have developed (OWN
features in STRUCTURE class, e.g., is-constituent). We have conducted experiments on the
Dong and Schäfer dataset and include those experiments in the online appendix.2 We believe
that annotating and classifying citing sentences (as opposed to citations) is not specific enough
for tasks like IR and bibliometrics. Thus, it is essential that we have a citation-annotated corpus
for accurate classification.

As we have argued above, the motivation for our work is to provide a generic classification
scheme that is established and accepted in information science in the hope that it can be used
for a wide range of applications.

Conclusion

In this paper, we address the task of citation classification for applications that access and
analyze the scientific literature. Our work uses MM, a standard classification scheme for
citations that was developed independently of automatic classification and therefore is not
bound to any particular citation application. We introduce new features designed for citation
classification and show that they improve performance as measured by F1. To address the
lack of available annotated corpora and reproducible results for citation classification, we are
publishing, along with this paper, a manually-annotated corpus as a benchmark for further
citation classification research. In future work, we want to further extend the feature set to
improve classification and show the benefits of our system for applications like bibliometrics.
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