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ABSTRACT
In this work we present a novel approach to bootstrap domain specific terminology, namely
Structured Term Recognition, and we apply it to the medical domain. In contrast to previous
approaches, based on observing distributional properties of terminology with respect to their
contexts, our method analyzes the “internal structure” of multi-word terms by learning patterns
of word clusters. Evaluation shows that our method can be used to boost the performances of
term recognition systems based on dictionary lookup while extending the coverage of large
ontologies like UMLS.

KEYWORDS: terminology recognition, bootstrapping, medical terminology, named entity
recognition, joint inference.
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1 Introduction

Recognizing occurrences of domain specific terms and their types is important for many text
processing applications. This problem is not easy, particularly in domains like medicine, where
very rich terminology is generated by domain experts on a daily basis.

In spite of the large interest in statistical term recognition in Natural Language Processing
(NLP), state of the art approaches for term recognition in the medical domain are still based on
dictionary lookup with some heuristics for partial mapping (Aronson, 2001). In fact, very large
terminological resources, such as the Unified Medical Language System (UMLS) (Bodenreider,
2004), have been developed in the medical domain. The reason is that medical terminology can
not be identified by looking at superficial features only, such us capitalization of words, prefixes
and suffixes. In fact, diseases names, symptoms and most medical terms are not proper names,
so they are not capitalized. In addition, they are usually characterized by a rather complex
internal structure and composed by many words. In addition, distributional similarity metrics,
i.e. recognition approaches based on the analysis of the local context where the term is located,
work well when applied to single words or very frequent words, which is not the case for most
of the medical terms we are interested in.

In the context of the research on adapting a question answering system to the medical domain,
we encountered the term recognition problem in many places. For example, recognizing
names of diseases, symptoms and treatments is necessary to answer most of the Doctor’s
DilemmaTMquestions (American College of Physicians, 2012), an evaluation benchmark we
used to measure the ability of our system to answer medical questions. To assess the validity
of the answer “HFE hereditary hemochromatosis” with respect to the question “Metabolic
condition that can set off airport metal detector”, it is important to know that the answer
is a type of metabolic condition. One way to address this problem is to use medical lexica
where different terms are associated to semantic types, and then check whether the type of the
candidate answer matches the type required by the question.

On the other hand, UMLS is far from complete. Many disease names (especially multi-words)
are not recognized by dictionary lookup approaches. In many cases, specific terms are missing
(e.g. “HFE hereditary hemochromatosis” in the question above). The problem is particularly
evident when examining the answers to the Doctor’s Dilemma questions. Analyzing 704 doctor’s
dilemma questions where the system located the correct answer as candidate, in 16.5% of the
cases one of the correct answers was not in UMLS. About half of them were quantities (e.g.
20mg) while the remaining half were medical terms that are not in UMLS. On the latter subset
of questions, the end to end accuracy of the full QA system dropped by almost 50% if compared
to the performance on questions where the answer was an UMLS term. The explanation for this
drop in performance is mostly due to type recognition problems: the system is not able to select
the right answer on the basis of its type, for example confusing treatments with diseases.

This observation motivates the work presented in this paper. Our method is able to recognize
the type of domain specific terms based on an innovative principle, called Structured Term
Recognition (STR). We begin with a simple observation: in many technical domains - and in
the medical domain in particular, terms have repetitive patterns. For example, terms describing
cancer include “bladder cancer”, “brain tumor”, ”skin cancer” and “uterine sarcoma”. These
terms are all composed of a word indicating a part of the human anatomy followed by a word
similar to “cancer”. If the sequence of words “pituitary tumor” appears in text, and “pituitary”
is known to be an a word indicating a part of the anatomy, it is reasonable to identify this
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as a cancer term even if it is not in the dictionary of cancer terms. A simple baseline where
any noun phrase with the word “cancer” as it’s head is identified as a cancer term will lead to
such misidentifications as “some types of cancer” and “a different cancer”. In fact, syntactic
information alone is not enough to recognize technical terms, additional semantic information
reflecting the type of the term constituents should be considered.

Structured Term Recognition (STR) is a way to address this problem. It works by examining
the semantic structure of terms, acquiring semantic patterns describing it, and identifying new
terms with similar structure. In this paper we focus on multi-word terms, in the case of single
word terms our method becomes indistinguishable from prior work on extending a thesaurus
by distributional similarity.

Similar to other existing bootstrapping methods, STR begins with an existing dictionary and
uses patterns to extend its coverage. In contrast, it does not use contextual information or
shallow features describing the term itself, instead it uses “internal deep semantic” features
describing what a domain term should look like, i.e. its semantic pattern. Combinations of STR
and techniques based on contextual information are obviously possible. However, in this paper
we decided to focus on the contribution of the STR technique in isolation because we want
to show that in the medical domain this information is a strong indicator of the entity type if
well represented and handled. We present three different approaches to solve the problem, two
based on recognizing terms on the basis of the sequences of the word clusters and a third one
based on Probabilistic Context Free Grammars (PCFG) and we evaluate them on the task of
predicting the semantic group of a held out subset of terms extracted from UMLS.

The paper is structured as follows. Section 2 describe STR into details, while section 3 is about
evaluating our method. In section 4 a literature review is done, while section 5 concludes the
paper and highlight directions for future work.

2 Structured Term Recognition

The inputs of STR are a set of terms t ∈ T from a dictionary, each belonging to a set of types
Γ(t) = {γ1,γ2, . . .}, and a domain specific corpus U . Terms are composed of lists of words
t = w1, w2, . . . , wn as identified by a tokenizer. The union of all tokens for all of the terms is the
word set W .

The output of STR is a set of pattern-to-type mappings p 7→ γ that can be used to recognize
terms and their type in new texts. These terms are not necessarily present in U .

STR combines two key components:

1. Clustering words in W by their distributional and type similarity.

2. Constructing patterns describing terms in the dictionary.

(a) Sequences of Clusters are patterns.

(b) Patterns are the left hand side of PCFG rules.

2.1 Word Clustering

The goal of this component is to cluster the words in W into clusters C1, C2, . . . , Cn. Clusters
are partly determined by distributional similarity, meaning that words in the same cluster
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have similar meanings because they are substitutable in context. This follows a large body of
work in unsupervised clustering of words. Early work used distributional similarity to perform
part-of-speech induction (Schütze, 1993). Later work has developed automatic methods of
thesaurus construction using similar techniques (Lin, 1998).

Using a large, domain specific, unannotated corpus U , STR gathers vectors describing the
context in which each word is found. Since parsing is generally lower quality in non-newswire
domains, we do not use dependency based contexts. Instead the corpus is simply tokenized.
Contexts are built from a small window of surrounding words: two words to the left and
two words to the right. The information about the direction and distance from the word
is retained. For example, in the sentence “Early detection of cancer increases the odds of
successful treatment.” the contexts for the word “cancer” are given in table 1.

cancer
Direction Context Word
Left-2 detection
Left-1 of
Right-1 increases
Right-2 the

Table 1: Contexts for “cancer”

For each word we build a vector of contexts. Note here that in order to build the context vector
we do not restrict context words to words in W , instead we consider any possible token in the
large corpus. Each dimension of the vector is an individual context f and its value is the number
of times it occurred with the word. This vector of raw counts must be re-weighted, otherwise
very high frequency but uninformative contexts, such as “of” and “the”, will dominate. We use
Pointwise Mutual Information (PMI) as a re-weighting method. PMI measures the strength
of association between two events such as the occurrence of a word and the occurrence of a
context.

pmi(w; f ) = log
p(w, f )

p(w)p( f )
(1)

Equation 1 gives the formula for PMI, where p(w) is the frequency of the word in the corpus
divided by the number of words in the corpus and p( f ) is the frequency of the context divided
by the total number of contexts.

Once the context vectors for each word are gathered and re-weighted they can be compared for
similarity using the cosine similarity metric.

The domain specific dictionary may have many of the words in W mapped to types. However,
in general a word need not be mapped to one type. It may have multiple senses, each with a
distinct type. For each word we construct a type vector, where the dimensions are types and
the value is either a one or zero depending on whether the word is given as that type in the
dictionary. Since the dictionary groups words with similar meanings in the same type, words
with overlapping type vectors will have some meanings that are similar.
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2.2 Pattern Acquisition

The goal of this step is to learn a set of rules R = {p1 7→ γ1, p2 7→ γ2, . . . , pk 7→ γk} which are
able to recognize most terms in T and at the same time can be used to identify new terms in the
large corpus. This is done by generating a set of candidate rules and scoring them according to
how they perform on the training set. We trained two different models for clusters and patterns.

In the sequence of clusters model, each word is assigned to a single cluster, patterns are
sequences of clusters, and rules map a pattern to a type. Each possible sequence of clusters
maps to at most one type.

In the probabilistic context free grammar (PCFG) model, words are assigned to multiple clusters,
each assignment has some weight corresponding to a probability. The rules are a set of binary
PCFG rules where two non-terminals are mapped to a single non-terminal. All non-terminals
on the right hand side of such rules are types. Each possible sequence of clusters has a Viterbi
(most likely) parse ending in a single type.

2.3 Sequence of Clusters

For the Sequence of Clusters model, the clustering is a mapping function Θ : W → C assigning
each word in W to its corresponding cluster. The patterns are the mappings of each term t ∈ T
into its corresponding pattern P(t) = p = Θ(w1),Θ(w2), . . . ,Θ(w j), where t is the sequence
of words t = w1, w2, . . . , w j . A term is typed if there is a rule P(t) 7→ γ ∈ R. This typing is
correct (t ∈ Correct) if t has γ as a type in the dictionary, γ ∈ Γ(t), otherwise it is incorrect
(t ∈ Incor rect).

An example sequence of clusters pattern and some of its recognized terms are given in Table
2. The clusters are named according to their most frequent members. So “{sensation, fear,
feeling}” is the cluster that includes those words, as well as other distributionally similar words.

Pattern
{spastic, flaccid, tonic} {sensation, fear, feeling} {tenderness, headache, tremor}
Recognized Terms
horizontal gaze paresis
tonic reflex spasm
dural puncture headache
exertional heat exhaustion
charley horse cramps

Table 2: Example pattern and recognized terms

The training seeks to create rules and word-to-cluster mappings to maximize intra-cluster
similarity and the performance of the rules on the training data. The intra-cluster similarity is
measured by the cosine of each word to its cluster’s centroid. The performance of the rules is
given by |Correct|−|Incor rect|+θREG · |R|. The θREG is a regularization parameter to penalize
the creation of too many rules.

2.3.1 Non-Joint Optimization

A straightforward way of doing this is to first optimize intra-cluster similarity, which can easily
be converted to the objective function in spherical KMeans. We use GMeans (Dhillon et al.,
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2001), a variant of KMeans that uses first variation to escape from some local maxima, to cluster.
Then, given fixed word-to-cluster assignments, the optimal set of rules may be found in linear
time. By mapping each term to its pattern and constructing a hash map from patterns to sets of
terms we can determine for any possible θREG if mapping the pattern to the most frequent type
γts in its term set will improve rule performance. This method is fast, but it does not perform
nearly as well as a joint optimization.

2.3.2 Joint Optimization

Our method of joint optimization is to cast the problem as a MAP (Maximum a posteriori)
inference task in probabilistic logic and use a general purpose probabilistic inference engine to
do the optimization. Different sets of word-to-cluster mappings and rules are different possible
worlds. The probability of a world is given by the objective function and the inference attempts
to find the most likely world.

The objective function is precisely described by the formulas in Figure 1, which closely matches
the description given to the probabilistic inference engine. In this description, all variables are
implicitly universally quantified. The quantity preceding the “#” in the formulas that have them
is a weight, every true grounding of the formula on the right adds the quantity on the left to
the weight of the possible world. Like Markov Logic (Richardson and Domingos, 2006), the
semantics of the weight are that it is the log of an unnormalized probability. Note that unlike
Markov Logic, we are not limited to first order logic.

θDC · cosine(v, cv) # inCluster(w, c)∧ distVect(w, v)∧ distCent roid(c, cv)
cluster(c)⇒ distCent roid(c, sum({v : inCluster(w, c)∧ distVect(w, v)}))

θT C · cosine(v, cv) # inCluster(w, c)∧ t ypeVect(w, v)∧ t ypeCent roid(c, cv)
cluster(c)⇒ t ypeCent roid(c, sum({t v : inCluster(w, c)∧ t ypeVect(w, t v)}))

wordAt(t, i, w)∧ inCluster(w, c)⇒ t ypeAt(t, i, c)
term(t)⇒ pat ternO f (t,makePattern({(i, c) : t ypeAt(t, i, c)}))

θA · scoreType(t,γ) # isRule(p,γ)∧ pat ternFor(p, t)
θREG # isRule(p,γ)

Figure 1: Logical description of the Sequence of Clusters model

There are three basic parts: the first four lines give the objective function for spherical KMeans,
lines 1 and 2 using distributional similarity and lines 3 and 4 using type vector similarity. The
next three lines evaluate the performance of the patterns on the training data. The final line is
the regularization, penalizing the creation of too many patterns.

The predicates distVect, t ypeVect, cluster, term, wordAt are given as evidence to the infer-
ence. Each word is related to its normalized distribution vector and type vector by distVect and
t ypeVect respectively. A term, position and word at that position are related by wordAt. The
function makePattern takes a set of index/cluster pairs and produces a sequence of clusters as
a string so that for every term t, pat ternO f (t, P(t)). The distribution and type centroids are
found by summing the corresponding vectors from the words in the clusters. Since cosine is
our similarity metric, it is not necessary to renormalize these vectors. The function scoreType
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implements the logic of returning a 1 for a correct type mapping, −1 for an incorrect type
mapping and 0 for a ; type mapping.

The θ parameters control the balance of the different components of the optimization. We
selected values of θDC = 1,θT C = 1,θA = 1,θREG = −3.

The predicates inCluster, isRule are the proposal predicates. The basic inference algorithm is
to make proposals which are then either accepted or rejected. We have three proposals: move
a word to a different cluster, create a rule, and remove a rule. A proposal is accepted if and
only if it improves the objective function. The proposals are described formally in Table 3. The
variables in the proposal formula are bound to a random true grounding of the formula. Then
the remove list is set false and the add list is set true.

Proposal Formula Remove Add
inCluster(w, c1)∧ cluster(c2)∧ c1 6= c2 inCluster(w, c1) inCluster(w, c2)
pat ternFor(p, t)∧ γ ∈ Γ(t)∧¬isRule(p,γ) ; isRule(p,γ)
isRule(p,γ) isRule(p,γ) ;

Table 3: Proposals for the Sequence of Clusters Model

A key optimization is to not recompute the centroid of each cluster on every proposal. Instead, it
is recomputed with a probability that decreases as the size of the cluster increases. The intuition
behind this idea is that the centroid does not change much if the size of the cluster is large.

A final step in sequence of clusters is to find the optimal pattern set given the word-to-cluster
assignments, as in the non-joint approach. This step can also accommodate different precision-
recall trade-offs by varying the θREG parameter.

In the sequence of clusters model we restrict our attention to terms of length two and three so
that each sequence of clusters will have many terms that match it.

2.4 Probabilistic Context Free Grammar

In order to address longer terms, and to improve performance we developed a Probabilistic
Context Free Grammar (PCFG) for terms. This grammar is binary with non-terminals consisting
of types and clusters.

For all words in the dictionary as terms, we fix their cluster assignments to their types,
initially with equal weight. Formally, for all single-word terms w and all types γ ∈ Γ(w),
inCluster(w,γ, 1). We used the results of the previous model to assign clusters to the remain-
ing words. This is a soft clustering.

An example PCFG parse is given in Figure 2. The non-terminal labeling a terminal (word) may
be either a cluster or a type, but the non-terminal labeling a pair of non-terminals is always a
type.

The objective function is to maximize the correctness of the Viterbi parses on the training data.
The objective function is precisely described in Figure 3.

As before the predicates wordAt, term are given as evidence. Now term relates a term to its
length. The function maxType takes a set of type/weight pairs and returns the type with the
largest weight or ; if the set is empty. The key predicate is char t which holds the chart parse as
a set of ground predicates where char t(t, i, j,γ, x) indicates that for term t the type γ spans
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Figure 2: Example PCFG parse

wordAt(t, i, w)∧ inCluster(w,γ, x)⇒ char t(t, i, (i + 1),γ, x)
isRule(γ1,γ2,γp, xp)∧ char t(t, i, j,γ1, x1)∧ char t(t, j, k,γ2, x2)⇒

t ypeAt(t, i, k,γp, (x1 + x2 + xp))

t ypeAt(t, i, j,γ, z)⇒ char t(t, i, j,γ, max({x : t ypeAt(t, i, j,γ, x)}))
term(t, l)⇒ vi tParse(t,maxType({(γ, x) : char t(t, 0, l,γ, x)}))

θA · scoreType(t,γ) # vi tParse(t,γ)
θREG # isRule(γ1,γ2,γp, xp)

Figure 3: Logical description of the PCFG model

i to j with log likelihood x . The proposal predicates are isRule, inCluster. The weights of
rules and proposals are the log of their probability. The proposals are: change the weight of a
parse rule or cluster assignment, add a parse rule, and remove a parse rule. Table 4 gives these
proposals formally. The function random(x , y) produces a random number between x and y .

Proposal Formula Remove Add
inCluster(c, w, x) inCluster(c, w, x) inCluster(c, w, random(−2, 2))
isRule(γ1,γ2,γp, x) isRule(γ1,γ2,γp, x) isRule(γ1,γ2,γp, random(−2,2))
γ1 ∈ C ∪ Γ∧ γ2 ∈ C ∪Γ∧ γp ∈ Γ ; isRule(γ1,γ2,γp, random(−2,2))
isRule(γ1,γ2,γp, x) isRule(γ1,γ2,γp, x) ;

Table 4: Proposals for the PCFG Model

Another key optimization is the use of declarative variable coordination inspired by the impera-
tive variable coordination of Factorie (McCallum et al., 2009). The formulas with a “⇒” may
be read as infinite weight implications, but unlike other approaches to combining hard and
soft formulas we never consider states where the hard formulas are violated. Instead, for every
true grounding of the left hand side, we immediately create a grounding of the right hand side.
If all the left hand sides supporting a coordinated predicate become false, the corresponding
coordinated predicate also becomes false. It may be more clear to consider the predicate on the
right hand side as being defined by the disjunction of all its left hand sides.

Because the speed of the training is closely related to the length of the terms we only train on
terms up to length four. However, we test the model on all terms.

950



3 Evaluation

The patterns found by the STR algorithm produce a term recognition function, able to decide
the type of a term t = w1, ww , . . . , w j by simply checking for a rule P(t) 7→ γ in the case of
sequence of clusters, or by parsing the term with a chart parser in the PCFG model. We evaluate
the quality of this recognition function by testing it on a held out set of terms in the dictionary.
As with training, we consider a mapping correct if it maps the term to one of the types given in
the dictionary.

3.1 Experimental Setup

For our input dictionary we use the Unified Medical Language System (UMLS). UMLS is an
ontology of mostly medical terms called atoms. There is a type hierarchy with 133 semantic
types these are collected into 15 semantic groups. The semantic groups are a flat and clear
division of semantic types. Each UMLS atom may have multiple semantic types and possibly
multiple semantic groups. In our test set 7.2% percent of the atoms had multiple semantic
groups.

First we selected the multi-word UMLS atoms that occur in our corpus at least 20 times. Our
corpus is 3.3 GB of text from Medline abstracts and medical textbooks. This first step is necessary
because many UMLS atoms are not terms that occur in text and therefore there is no benefit
to recognizing them. This set of UMLS atoms is then divided into a training and test set with
90 percent in training and the remaining 10 percent in test. We trained STR to recognize the
semantic group of the terms in the training set, then evaluated the resulting rules on the test
set. This produced a training size of around 72,000 terms.

3.2 Results

For the sequence of clusters model we obtain a precision recall curve by varying the pattern
regularization parameter θREG . For the PCFG model we vary the parse score threshold to obtain
a precision-recall trade-off.

Figure 4: Precision Recall Curves
With a θREG = −20 we obtain a precision of 90.3% and a recall of 25.3%. Setting the
regularization parameter to zero maximizes recall at 48.2% with precision decreasing to 79.9%.
With the parse score threshold of 3.5, we obtain a precision of 83.6%, but a very low recall,
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Figure 5: Performance per Term Length

4.3%. Dropping the threshold entirely gives a precision of 74.1% and a recall of 57.5%. Both
of these models substantially outperform the non-joint method described in Section 2.3.1. A
baseline model of selecting the most frequent semantic group would perform at precision =
recall = F1 score = 23.8%. With a test set of approximately 8,000 all of these differences are
highly significant.

Note that while the sequence of clusters model is evaluated only on length two and three terms,
the PCFG model is evaluated on all terms. Figure 5 compares the performance of each model
on different term lengths.

The performance of all models improves as the amount of optimization time increases. The
learning curve for the sequence of clusters model is given in Figure 6. Note that the x-axis is
the number of proposals, not the number of training instances. Performance grows from an F1
score of 49.4% with 500 thousand proposals to an F1 score of 60.2% after 27 million proposals.

The performance per group is given in Figure 7. The groups are listed in order of their frequency
in the dictionary. There is a clear effect of term frequency on performance with all but one of
the top performing half of groups in the top half of term frequency.

The performance of the PCFG model is broken down by group in Figure 8. The recall and F1
scores on “Genes and Molecular Sequences” and “Devices” show large gains relative to the
sequence of clusters model. There is again a clear effect of term frequency.

Performance is generally lowest on the semantic groups that are not specifically biomedical: Ob-
jects, Devices, Phenomena, Activities & Behaviors, Organizations, Occupations and Geographic
Areas. Other than a lower frequency in UMLS, this is likely due to a lower amount of regular
structure in these less technical terms.

952



Figure 6: Learning Curve for Sequence of Clusters Model

Figure 7: Performance per Group for Sequence of Clusters

Figure 8: Performance per Group for PCFG
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4 Related Work

The goal of our work is to extend UMLS with additional terms mapped to types. Other work
has pursued similar goals. This section provides a state of the art about.

4.1 Automatic Term Recognition

There is a large body of work on Automatic Term Recognition ATR and term clustering. In
STR we identify that a sequence of words is a term and that it has a particular type in a single
process. ATR operates by first gathering strings that are terms and then clustering them, or
extending existing clusters where each cluster of terms are terms of a common type.

After terms are identified, some measure of term similarity is applied to cluster the terms or
extend existing clusters of terms. Some methods of term similarity are contextual, lexical and
pattern-based. Contextual similarity uses information about what words appear before and
after the term (Maynard and Ananiadou, 2000), or what words are nearby in a dependency
parse (Grefenstette, 1994). The frequency of each of these contexts is a dimension in a vector
describing the distribution of the term. These vectors can then be compared for similarity
using some vector similarity function. Lexical similarity examines what words are in common
between two terms. For example, two terms with the same head word are likely to have the
same type. Pattern-based similarity (Nenadić et al., 2002) uses lexico-syntactic patterns like
the such-as pattern “X such as Y and Z”. These patterns can be used as evidence that the terms
appearing as Y and Z have the same type.

ATR deals primarily with frequent words. The term must be frequent enough to be identified as
a term and in the case of contextual similarity must be frequent enough to build a meaningful
distribution vector. Only the lexical similarity metric examines the words inside the term and
this metric only considers lexical matches between the words of the term, not the types of the
words or the structure of the words in the term. The main advantage of this type of work is that
it can proceed without an existing term dictionary.

4.2 Supervised Named Entity Recognition

Our methods are also similar to Named Entity Recognition (NER). NER is the task of identifying
mentions of rigid designators, especially people, places and organizations (Coates-Stephens,
1992). Recently, biological types such as protein, DNA and cell line have gained attention
(Settles, 2004). Unlike automatic term recognition, where the goal is to build a dictionary
of terms, NER typically proceeds from a corpus annotated with mentions and their types and
learns a model for detecting future mentions.

One common model is the linear chain Conditional Random Field (CRF) (McCallum and Li,
2003). This is the discriminatively trained variant of the Hidden Markov Model (HMM) (Bikel
et al., 1997). In the simplest version of such models, each word belonging to a mention for
some type is tagged with that type’s identifier. One weakness of this simple version is that in the
case where two mentions of a certain type are contiguous, it is not possible to tell where one
begins and the other ends - or even that there are two mentions rather than one. To alleviate
this problem, and enrich the model, more complex tag sets are used. A model might have a tag
for the beginning, inside and end of each type of entity. This enables the model to learn words
that are more likely to begin and end mentions, effectively learning a little of the structure of
the entities.
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NER systems have also addressed the lexical composition of mentions for each type. For example,
organization names often include the name of a person or a place (Wolinski et al., 1995). Even
common nouns such as “associates” can indicate that a mention is of type organization (Wolinski
et al., 1995).

In the biomedical domain, supervised CRFs have shown success at identifying genes and
proteins. Using an annotated corpus from Medline abstracts, state of the art systems reach
F-Scores of 78.4% for protien names (Tsai et al., 2006). Unfortunately, over a broader set of
medical term types, basic linear chain CRF models cannot generalize beyond the terms in the
training data (Zhang et al., 2010), with only a handful of new, correct medical terms identified
from thousands of candidate new terms.

Unlike most NER systems our focus is on terms composed primarily of common nouns. While
NER systems are trained on a labeled corpus, STR instead uses a term dictionary and an
unlabeled corpus.

4.3 Bootstrapping Named Entity Recognition

Other work has identified and typed named entities based on an existing list of entities for
each type. Usually, NER bootstrapping focuses on building a gazetteer of relatively common
entities given a very small initial set of entities for each type. One approach is to use a small
set (4) of example entities and search the web for documents that contain all of the example
entities (Nadeau et al., 2006). The resulting documents are likely to contain lists or tables of
the entities for the relevant type. By using an HTML context classifier trained with the context
of the search entities as positive examples, other entities in the same HTML contexts may be
extracted (for example “<td> x </td>”). The extracted entities are added to the list of known
entities enabling additional search queries to be generated.

Mutual bootstrapping (Riloff and Jones, 1999) simultaneously learns entities of the selected
type and patterns for identifying the entities. From a small set of seed entities, lexico-syntactic
patterns are learned that suggest an entity of the appropriate type. For example, the noun
phrase following “headquarted in” is likely to be a location. Extraction patterns are scored
by their frequency and (estimated) reliability and entities are scored by the weighted sum of
patterns that identify them. This scoring helps to alleviate the core problem of bootstrapping:
semantic drift and also allows for a precision/recall trade-off.

A related bootstrapping approach (Kozareva, 2006) trains an NER classifier based on the current
gazetteer then runs the classifier over text and adds the new terms recognized by the classifier to
the gazetteer. This method requires a recognition system that goes beyond dictionary matching
and uses context to a significant degree. The features used by the classifier include capitalization,
trigger words specific to locations, organizations and people, and whether words in the noun
phrase belong to a gazetteer for the type of interest.

Unlike traditional NER bootstrapping, STR assumes an existing large dictionary with hundreds
if not thousands of examples per type. STR can identify the long tail of entities that may never
occur in an easily interpretable list, table or lexico-syntactic pattern.

4.4 Joint Clustering

Other work has pursued different goals using related methods. The segmentation and de-
duplication of citations has received considerable attention as a joint inference task. The
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decisions of linking author, title, venue and citation records are all interdependent, since linking
two citations implies that the fields composing the citations should also be linked. The task of
segmenting the citations and identifying their fields is also influenced by the record linking. An
easily segmented citation linked to a difficult case may make the difficult case much easier.

Using Markov Logic a joint entity linking model showed improvement in citation, author and
venue linking over an independent model based on the field similarities alone (Singla and
Domingos, 2006). Imperatively-Defined Factor Graphs (IDFs) produced still higher performance
by incorporating features that could not be tractably expressed in factor graph systems that
fully ground the network before inference (Singh et al., 2009).

5 Conclusion and Future Work

In this paper we presented a novel approach to semi-supervised term recognition. Unlike
previous approaches we induced structure of the known terms to predict new terms. This
enables type recognition for terms that appear only once in the corpus. We compared three
different methods. All of them substancially improved over a most frequent baseline. We
proposed two methods based on recognizing sequences of clusters. The one based on joint
optimization significantly increased both precision and recall over the same method based on
static clustering, reaching 90% precision at almost 30% recall. PCFG grammars allow us to
achieve better recall (60%) with reasonably high precision (75%). In addition, PCFG allows us
to recognize terms of any length.

The results shown by this paper are only partial as they do not take into account the role of
context in disambiguating the types of terms. This limitation is intentional because: (i) we are
interested in recognizing the type of answers independently of their context in cases when they
are generated from databases or other non-textual material (ii) we are interested in exploring
to what extent the internal structure of terminology can be used to express the semantics of
terms.

In the future we will integrate STR with existing approaches of contextual, lexical and pattern-
based term recognition. In addition, we will apply our technique to more fine grained type
systems and other domains.

The type of structure learned is currently very simple, either a sequence of word clusters or a
binary grammar. Other types of regularities exist, such as reordering. The pair of terms “leg
pain” and “pain in leg” as well as many other similar pairs suggest a general alternation rule.
We are going to explore this direction in order to learn transformational rules that can lead to
identification of synonyms, hypernyms and to a better understanding on the underlying linguistic
phenomena characterizing the generation and recognition of domain specific terminology.
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