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Abstract 

Annotating scientific publications with 

keywords and phrases is of great 

importance to searching, indexing, and 

cataloging such documents. Unlike 

previous studies that focused on user-

centric annotation, this paper presents our 

investigation of various annotation 

characteristics on service-centric anno-

tation. Using a large number of publicly 

available annotated scientific publica-

tions, we characterized and compared the 

two different types of annotation 

processes. Furthermore, we developed an 

automatic approach of annotating 

scientific publications based on a 

machine learning algorithm and a set of 

novel features. When compared to other 

methods, our approach shows significant-

ly improved performance. Experimental 

data sets and evaluation results are pub-

licly available at the supplementary web-

site
1
. 

1 Introduction 

With the rapid development of the Internet, the 

online document archive is increasing quickly 

with a growing speed. Such a large volume and 

the rapid growth pose great challenges for docu-

ment searching, indexing, and cataloging. To 

facilitate these processes, many concepts have 

been proposed, such as Semantic Web (Berners-

Lee et al., 2001), Ontologies (Gruber, 1993), 

Open Directory Projects like Dmoz
2
, folksono-

                                                 
1
 http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/indexing 

2
 http://www.dmoz.org/  

mies (Hotho et al., 2006), and social tagging sys-

tems like Flickr and CiteULike. Annotating doc-

uments or web-pages using Ontologies and Open 

Directories are often limited to a manually con-

trolled vocabulary (developed by service provid-

ers) and a small number of expert annotators, 

which we call service-centric annotation. By 

contrast, social tagging systems in which regis-

tered users can freely use arbitrary words to tag 

images, documents or web-pages, belong to us-

er-centric annotation. Although many advantag-

es have been reported in user-centric annotation, 

low-quality and undesired annotations are always 

observed due to uncontrolled user behaviors (Xu 

et al., 2006; Sigurbjörnsson and Zwol, 2008). 

Moreover, the vocabulary involved in user-

centric annotation is arbitrary, unlimited, and 

rapid-growing in nature, causing more difficul-

ties in tag-based searching and browsing (Bao et 

al., 2007; Li et al., 2007). 

Service-centric annotation is of importance for 

managing online documents, particularly in serv-

ing high-quality repositories of scientific litera-

ture. For example, in biomedicine, Gene Ontolo-

gy (Ashburner et al., 2000) annotation has been 

for a decade an influential research topic of un-

ifying reliable biological knowledge from the 

vast amount of biomedical literature. Document 

annotation can also greatly help service providers 

such as ACM/IEEE portals to provide better user 

experience of search. Much work has been de-

voted to digital document annotation, such as 

ontology-based (Corcho, 2006) and semantic-

oriented (Eriksson, 2007). 

This paper focuses on service-centric annota-

tion. Our task is to assign an input document a 

list of entries. The entries are pre-defined by a 

controlled vocabulary. Due to the data availabili-

ty, we study the documents and vocabulary in the 
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biomedical domain. We first analyze human an-

notation behaviors in two millions previously 

annotated documents. When compared to user-

centric annotation, we found that the two annota-

tion processes have major differences and that 

they also share some common grounds. Next, we 

propose to annotate new articles with a learning 

method based on the assumption that documents 

similar in content share similar annotations. To 

this end, we utilize a logistic regression algo-

rithm with a set of novel features. We evaluate 

our approach with extensive experiments and 

compare it to the state of the art. The contribu-

tions of this work are two-fold: First, we present 

an in-depth analysis on annotation behaviors be-

tween service-centric and user-centric annotation. 

Second, we develop an automatic method for 

annotating scientific publications with significant 

improvements over other systems. 

The remainder of the paper is organized as fol-

lows: We present several definitions in Section 2 

and the analysis of annotation behaviors in Sec-

tion 3. In Section 4, we presented the logistic 

regression algorithm for annotation. Benchmark-

ing results are shown in Section 5. We surveyed 

related work in Section 6 and summarized our 

work in Section 7. 

2 Definitions 

A controlled vocabulary: V, a set of pre-

specified entries for describing certain topics. 

Entries in the vocabulary are organized in a hie-

rarchical structure. This vocabulary can be mod-

ified under human supervision.  

Vocabulary Entry: an entry in a controlled 

vocabulary is defined as a triplet: VE = (MT, 

synonyms, NodeLabels). MT is a major term de-

scribing the entry, and NodeLabels are a list of 

node labels in the hierarchical tree. An entry is 

identified by its MT, and a MT may have mul-

tiple node labels as a MT may be mapped to sev-

eral nodes of a hierarchical tree.  

Entry Binary Relation: ISA(VEi, VEj) means 

entry VEj is a child of entry VEi, and SIB(VEi, 

VEj) meaning that VEj is a sibling of entry VEi. A 

set of relations determine the structure of a hie-

rarchy.  

Entry Depth: the depth of an entry relative to 

the root node in the hierarchy. The root node has 

a depth of 1 and the immediate children of a root 

node has a depth of 2, and so on. A major term 

may be mapped to several locations in the hie-

rarchy, thus we have minimal, maximal, and av-

erage depths for each MT.  

Given the above definitions, a controlled vo-

cabulary is defined as {<VEi, ISA(VEi,VEj), 

SIB(VEi,VEj)>|any i, j }. The annotation task is 

stated as follows: given a document D, predicting 

a list of entries VEs that are appropriate for anno-

tating the document. In our framework, we ap-

proach the task as a ranking problem, as detailed 

in Section 4. 

3 Analyzing Service-centric Annotation 

Behavior 

Analyzing annotation behaviors can greatly faci-

litate assessing annotation quality, reliability, and 

consistency. There has been some work on ana-

lyzing social tagging behaviors in user-centric 

annotation systems (Sigurbjörnsson and Zwol, 

2008; Suchanek et al., 2008). However, to the 

best of our knowledge, there is no such analysis 

on service-centric annotation. In social tagging 

systems, no specific skills are required for partic-

ipating; thus users can tag the resources with ar-

bitrary words (the words may even be totally ir-

relevant to the content, such as “todo”). By con-

trast, in service-centric annotation, the annotators 

must be trained, and they must comply with a set 

of strict guidelines to assure the consistent anno-

tation quality. Therefore, it is valuable to study 

the differences between the two annotation 

processes. 

3.1 PubMed Document Collection 

To investigate annotation behaviors, we down-

loaded 2 million documents from PubMed
3
, one 

of the largest search portals for biomedical ar-

ticles. These articles were published from Jan. 1, 

2000 to Dec. 31, 2008. All these documents have 

been manually annotated by National Library 

Medicine (NLM) human curators. The controlled 

vocabulary used in this system is the Medical 

Subject Headings (MeSH


)
4
, a thesaurus describ-

ing various biomedical topics such as diseases, 

chemicals and drugs, and organisms. There are 

25,588 entries in the vocabulary in 2010, and 

there are updates annually. By comparison, the 

vocabulary used in user-centric annotation is re-

                                                 
3
 http://www.ncbi.nlm.nih.gov/pubmed/ 

4
 http://www.nlm.nih.gov/mesh/ 
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markably larger (usually more than 1 million tags) 

and more dynamic (may be updated every day). 

3.2 Annotation Characteristics 

First, we examine the distribution of the number 

of annotated entries in the document collection. 

For each number of annotated entries, we 

counted the number of documents with respect to 

different numbers of annotations. The number of 

annotations per document among these 2 million 

documents varies from 1 (with 176,383 docu-

ments) to 97 (with one document only). The av-

erage number of annotations per document is 

10.10, and the standard deviation is 5.95.  

 
Figure 1. The original distribution and simulated 

normal distribution. Each data point denotes the 

number of documents (y-axis) that has the cor-

responding number of entries (x-axis). 

 

As illustrated in Figure 1, when there are more 

than 4 annotations, the distribution fits a normal 

distribution. Comparing with user-centric annota-

tion, there are three notable observations: a), the 

maximal number of annotations per document 

(97) is much smaller (in social tagging systems 

the number amounts to over 10
4
) due to much 

less annotators involved in service-centric anno-

tation than users in user-centric annotation; b), 

the number of annotations assigned to documents 

conforms to a normal distribution, which has not 

yet been reported in user-centric annotation; c), 

similar to user-centric annotation, the number of 

documents that have only one annotation ac-

counts for a large proportion.  

Second, we investigate whether the Zipf law 

(Zipf, 1949) holds in service-centric annotation. 

To this end, we ranked all the entries according 

to the frequency of being annotated to docu-

ments. We plotted the curve in logarithm scale, 

as illustrated in Figure 2. The curve can be simu-

lated by a linear function in logarithm scale if 

ignoring the tail which corresponds to very infre-

quently used entries. To further justify this find-

ing, we ranked all the documents according to 

the number of assigned annotations and plotted 

the curve in logarithm scale, as shown in Figure 

3. Similar phenomenon is observed. In conclu-

sion, the Zipf law also holds in service-centric 

annotation, just as reported in user-centric anno-

tation (Sigurbjörnsson and Zwol, 2008).  

 
Figure 2. The distribution of annotated entry 

frequency. X-axis is the rank of entries (ranking 

by the annotation frequency), and y-axis is the 

frequency of an entry being used in annotation.  

 

Figure 3. The distribution of the number of an-

notated entries. X-axis is the rank of a document 

(in log10 scale), and y-axis is the number of anno-

tations assigned to documents (in log2 scale). 

 

Furthermore, as mentioned in Section 2, the 

vocabulary corresponds to a hierarchy tree once a 

set of binary relations were defined.  Thus we 

can easily obtain the minimal, maximal, and av-

erage depth of an entry. The larger depth an entry 

has, the more specific meaning it has. 

Therefore, we investigate whether service-

centric annotation is performed at very specific 

level (with larger depth) or general level (with 

smaller depth). We define prior depth and anno-

tation depth for this study, as follows: 
( )
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AnnoDepth Pr( )* ( )     (2)
VE V

VE Dep VE
∈

=∑  

( )
Pr( )                               (3)

( )
VE V

f VE
VE

f VE
∈

=
∑

 

where Dep(VE) is the minimal, maximal, or av-

erage depth of an entry, f(VE) is the usage fre-

quency of VE in annotation, and |V| is the num-

ber of entries in the vocabulary. The two formu-

las are actually the mathematical expectations of 

the hierarchy’s depth under two distributions re-

spectively: a uniform distribution (1/|V|) and the 

annotation distribution (formula (3)). As shown 

in Table 1, the two expectations are close. This 

means the annotation has not been biased to ei-

ther general or specific level, which suggests that 

the annotation quality is sound.  
Dep(VE) PriorDepth AnnoDepth 

MAX 4.88 4.56 

MIN 4.25 4.02 

AVG 4.56 4.29 

Table 1. Annotation depth comparison. 

 
Figure 4. The imbalance frequency (y-axis) of 

annotated categories (x-axis). 

3.3 Annotation Categorization Imbalance 

We investigate here whether service-centric an-

notation is biased to particular categories in the 

hierarchy. We define a category as the label of 

root nodes in the hierarchy. In our vocabulary, 

there are 11 categories that have at least one an-

notation. The complete list of these categories is 

available at the website
5
. Three newly created 

categories have no annotations in the document 

collection. The total number of annotations with-

in a category was divided by the number of en-

                                                 
5
 http://www.nlm.nih.gov/mesh/2010/mesh_browser/MeSHtree.Z.html 

tries in that category, as different categories may 

have quite different numbers of entries. If an en-

try is mapped to multiple locations, its annota-

tions will be counted to corresponding categories 

repeatedly.  

From Figure 4, we can see that there is imbal-

ance with respect to the annotations in different 

categories. Category “diseases” has 473.5 anno-

tations per entry (totally 4408 entries in this cat-

egory). Category “chemicals and drugs” has 

423.0 annotations per entry (with 8815 entries in 

total). Due to the fact that diseases and chemicals 

and drugs are hot scientific topics, these catego-

ries are largely under-annotated. The most fre-

quently annotated category is: “named groups” 

(7144.4 annotations per entry), with 199 entries 

in total. The issue of imbalanced categorization 

may be due to that the topics of the document 

collection are of imbalance; and that the vocabu-

lary was updated annually, so that the latest en-

tries were used less frequently. As shown in (Si-

gurbjörnsson and Zwol, 2008), this imbalance 

issue was also observed in user-centric annota-

tion, such as in Flickr Tagging. 

4 Learning to Annotate 

As shown in Section 3, there are much fewer an-

notations per document in service-centric annota-

tion than in user-centric annotations. Service-

centric annotation is of high quality, and is li-

mited to a controlled vocabulary. However, ma-

nual annotation is time-consuming and labor in-

tensive, particularly when seeking high quality. 

Indeed, our analysis shows that on average it 

takes over 90 days for a PubMed citation to be 

manually annotated with MeSH terms. Thus we 

propose to annotate articles automatically. Spe-

cifically, we approach this task as a ranking 

problem: First, we retrieve k-nearest neighboring 

(KNN) documents for an input document using a 

retrieval model (Lin and Wilbur, 2007). Second, 

we obtain an initial list of annotated entries from 

those retrieved neighboring documents. Third, 

we rank those entries using a logistic regression 

model. Finally, the top N ranked entries are sug-

gested as the annotations for the target document.  

4.1 Logistic Regression 

We propose a probabilistic framework of directly 

estimating the probability that an entry can be 

used to annotate a document. Given a document 
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D and an entry VE, we compute the probability 

Pr(R(VE)|D) directly using a logistic regression 

algorithm. R(VE) is a binary random variable 

indicating whether VE should be assigned as an 

annotation of the document. According to this 

probability, we can rank the entries obtained 

from neighboring documents. Much work used 

Logistic Regression as classification: Pr(R=1|D) 

>∆ where ∆ is a threshold, but it is difficult to 

specify an appropriate value for the threshold in 

this work, as detailed in Section 5.5. 

We applied the logistic regression model to 

this task. Logistic regression has been successful-

ly employed in many applications including mul-

tiple ranking list merging (Si and Callan, 2005) 

and answer validation for question answering 

(Ko et al., 2007). The model gives the following 

probability: 

1 1

Pr( ( ) | ) exp( * ) 1 exp( * )       (4)
m m

i i i i

i i

R VE D b w x b w x
= =

 
= + + + 

 
∑ ∑

where x= (x1, x2, …, xm) is the feature vector for 

VE and m is the number of features.  

For an input document D, we can obtain an in-

itial list of entries {VE1,VE2,…,VEn} from its 

neighboring documents. Each entry is then 

represented as a feature vector as x= (x1, x2, …, 

xm). Given a collection of N documents that have 

been annotated manually, each document will 

have a corresponding entry list, {VE1, 

VE2,…,VEn}, and each VEi has gold-standard la-

bel yi=1 if VEi was used to annotate D, or yi=0 

otherwise. Note that the number of entries of la-

bel 0 is much larger than that of label 1 for each 

document. This may bias the learning algorithm. 

We will discuss this in Section 5.5. Given such 

data, the parameters can be estimated using the 

following formula:  

( )* *

, 1 1

, arg max log Pr( ( ) | )          (5)
jLN

i j
w b j i

w b R VE D
= =

= ∑∑
�

�

 
where Lj is the number of entries to be ranked for 

Dj, and N is the total number of training docu-

ments. We can use the Quasi-Newton algorithm 

for parameter estimation (Minka, 2003). In this 

paper, we used the WEKA
6
 package to imple-

ment this model. 

4.2 Features 

We developed various novel features to build 

connections between an entry and the document 

                                                 
6
http://www.cs.waikato.ac.nz/ml/weka/ .  

text. When computing these features, both the 

entry’s text (major terms, synonyms) and the 

document text (title and abstract) are tokenized 

and stemmed. To compute these features, we 

collected a set of 13,999 documents (each has 

title, abstract, and annotations) from PubMed. 

Prior probability feature. We compute the 

appearance probability of a major term (MT), 

estimated on the 2 million documents. This prior 

probability reflects the prior quality of an entry. 

Unigram overlap with the title. We count the 

number of unigrams overlapping between the MT 

of an entry and the title, dividing by the total 

number of unigrams in the MT. 

Bigram overlap with the document. We first 

concatenate the title and abstract, then count the 

number of bigram overlaps between the MT and 

the concatenated string, dividing by the total 

number of bigrams in the MT. 

Multinomial distribution feature. This fea-

ture assumes that the words in a major term ap-

pear in the document text with a multinomial 

distribution, as follows:  
#( , )Pr( | )

Pr( | ) | | !*     (6)
#( , )!

w MT

w MT

w Text
MT Text MT

w MT∈

= ∏

 
#( , )

Pr( | ) (1 ) Pr ( )   (7)
#( , )

i

c

iw

w Text
w Text w

w Text
λ λ= − +
∑

 
where: 

#(w,MT) - The number of times that w appears in 

MT; Similarly for #(w,Text); 

|MT| - The number of single words in MT; 

Text - Either the title or abstract, thus we have 

two features of this type: Pr(MT|Title) and 

Pr(MT|Abstract); 

Prc(w) - The probability of word w occurring in a 

background corpus. This is obtained from a uni-

gram language model that was estimated on the 

13,999 articles; 

λ – A smoothing parameter that was empirically 

set to be 0.2. 

Query-likelihood features. The major term of 

an entry is viewed as a query, and this class of 

features computes likelihood scores between the 

query (as Q) and the article D (either the title or 

the abstract). We used the very classic okapi 

model (Robertson et al, 1994), as follows: 

( ) 0.5
( , )*log

( ) 0.5
( , )   (8)

| |
0.5 1.5* ( , )

(| |)

q Q

N df q
tf q D

df q
Okapi Q D

D
tf q D

avg D

∈

 − +
 + =

 
+ + 

 

∑
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where:  

tf(q,D) - The count of q occurring in document D;  

|D| - The total word counts in document D;  

df(q) - The number of documents containing 

word q;  

avg(|D|) - The average length of documents in 

the collection;  

N - The total number of documents (13,999).  

We have two features: okapi(MT, Title) and 

okapi(MT, Abstract). In other words, the title and 

abstract are processed separately. The advantage 

of using such query-likelihood scores is that they 

give a probability other than a binary judgment 

of whether a major term should be annotated to 

the article, as only indirect evidence exists for 

annotating a vocabulary entry to an article in 

most cases. 

Neighborhood features. The first feature 

represents the number of neighboring documents 

that include the entry to be annotated for a doc-

ument. The second feature, instead of counting 

documents, sums document similarity scores. 

The two features are formulated as follows, re-

spectively: 

{ }( | ) | ,     (9)
i i i k

freq MT D D MT D D= ∈ ∈Ω  

; 

( | ) ( , )          (10)
i i k

i

MT D D

sim MT D sim D D
∈ ∈Ω

= ∑  

where Ωk is the k-nearest neighbors for an input 

document D and sim(Di,Dj) is the similarity score 

between a target document and its neighboring 

document, given by the retrieval model.  

Synonym Features. Each vocabulary entry 

has synonyms. We designed two binary features: 

one judges whether there exists a synonym that 

can be exactly matched to the article text (title 

and abstract); and the other measures whether 

there exists a synonym whose unigram words 

have all been observed in the article text. 

5 Experiment 

5.1 Datasets 

To justify the effectiveness of our method, we 

collected two datasets. We randomly selected a 

set of 200 documents from PubMed to train the 

logistic regression model (named Small200). For 

testing, we used a benchmark dataset, NLM2007, 

which has been previously used in benchmarking 

biomedical document annotation
7
 (Aronson et al., 

                                                 
7
http://ii.nlm.nih.gov/.  

2004; Vasuki and Cohen, 2009; Trieschnigg et 

al., 2009). The two datasets have no overlap with 

the aforementioned 13,999 documents. Each 

document in these two sets has only title and ab-

stract (i.e., no full text). The statistics listed in 

Table 2 show that the two datasets are alike in 

terms of annotations. Note that we also evaluate 

our method on a larger dataset of 1000 docu-

ments, but due to the length limit, the results are 

not presented in this paper. 

Dataset Documents 
Total   

annotations 

Average 

annotations 

Small200 200 2,736 13.7 

NLM2007 200 2,737 13.7 

Table 2. Statistics of the two datasets.  

5.2 Evaluation Metrics 

We use precision, recall, F-score, and mean av-

erage precision (MAP) to evaluate the ranking 

results. As can be seen from Section 3.2, the 

number of annotations per document is about 10. 

Thus we evaluated the performance with top 10 

and top 15 items. 

5.3 Comparison to Other Approaches 

We compare our approach to three methods on 

the benchmark dataset - NLM2007. The first sys-

tem is NLM’s MTI system (Aronson et al., 2004). 

This is a knowledge-rich method that employs 

NLP techniques, biomedical thesauruses, and a 

KNN module. It also utilizes handcrafted filtering 

rules for refinement. The second and third me-

thods rank entries according to Formula (9) and 

(10), respectively (Trieschnigg et al., 2009).  

We trained our model on Small200. All fea-

ture values were normalized to [0,1] using the 

maximum values of each feature. The number of 

neighbors was set to be 20. Neighboring docu-

ments were retrieved from PubMed using the 

retrieval model described in (Lin and Wilbur, 

2007). Existing document annotations were not 

used in retrieving similar documents as they 

should be treated as unavailable for new docu-

ments. As the average number of annotations per 

document is around 13 (see Table 2), we com-

puted precision, recall, F-score, and MAP with 

top 10 and 15 entries, respectively.  

Results in Table 3 demonstrate that our me-

thod outperforms all other methods. It has sub-

stantial improvements over MTI. To justify 

whether the improvement over using neighbor-
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hood similarity is significant, we conducted the 

Paired t-test (Goulden, 1956). When comparing 

results of using learning vs. neighborhood simi-

larity in Table 3, the p-value is 0.028 for top 10 

and 0.001 for top 15 items. This shows that the 

improvement achieved by our approach is statis-

tically significant (at significance level of 0.05).  
 Methods Pre. Rec. F. MAP 

Top 

10 

MTI .468 .355 .404 .400 

Frequency .635 .464 .536 .598 

Similarity .643 .469 .542 .604 

Learning .657 .480 .555 .622 

Top 

15 

MTI .404 .442 .422 .400 

Frequency .512 .562 .536 .598 

Similarity .524 .574 .548 .604 

Learning .539 .591 .563 .622 

Table 3. Comparative results on NLM2007. 

5.4 Choosing Parameter k 

We demonstrate here our search for the optimal 

number of neighboring documents in this task. 

As shown in Table 4, the more neighbors, the 

larger number of gold-standard annotations 

would be present in neighboring documents. 

With 20 neighbors a fairly high upper-bound re-

call (UBR) is observed (about 85% of gold-

standard annotations of a target document were 

present in its 20 neighbors’ annotations), and the 

average number of entries (Avg_VE) to be ranked 

is about 100.  

 
Figure 5. The performance (y-axis) varies with 

the number of neighbors (x-axis). 

Measure 
The number of neighboring documents 

5  10   15  20  25 30 

UBR .704 .793 .832 .856 .871 .882 

Avg_VE 38.8 64.1 83.6 102.2 119.7 136.4 

Table 4. The upper-bound recall (UBR) and av-

erage number of entries (Avg_VE) with different 

number of neighboring documents.  

 

To investigate whether the number of neigh-

boring documents affects performance, we expe-

rimented with different numbers of neighboring 

documents. We trained a model on Small200, 

and tested it on NLM2007. The curves in Figure 

5 show that the performance becomes very close 

when choosing no less than 10 neighbors. This 

infers that reliable performance can be obtained. 

The best performance (F-score of 0.563) is ob-

tained with 20 neighbors. Thus, the parameter k  

is set to be 20. 

5.5 Data Imbalance Issue 

As mentioned in Section 4.1, there is a data im-

balance issue in our task. For each document, we 

obtained an initial list of entries from 20 neigh-

boring documents. The average number of gold-

standard annotations is about 13, while the aver-

age number of entries to be ranked is around 100 

(see Table 4). Thus the number of entries of label 

0 (negative examples) is much larger than that of 

label 1 (positive examples). We did not apply 

any filtering strategy because the gold-standard 

annotations are not proportional to their occur-

ring frequency in the neighboring documents. In 

fact, as shown in Figure 6, the majority of gold-

standard annotations appear in only few docu-

ments among 20 neighbors. For example, there 

are about 250 gold-standard annotations appear-

ing in only one of 20 neighboring documents and 

964 appearing in less than 6 neighboring docu-

ments. Therefore, applying any filtering strategy 

based on their occurrence in neighboring docu-

ments may be harmful to the performance. 

 
Figure 6. The distribution of annotations. X-axis 

is the number of neighboring documents in 

which gold-standard annotations are found. 

5.6 Feature Analysis 

To investigate the impact of different groups of 

features, we performed a feature ablation study. 

The features were divided into four groups. For 

each round of this study, we remove one group 

of features from the entire feature set, re-train the 

model on Small200, and then test the perfor-

mance on NLM2007 with top 15 entries. We di-

vided the features into four independent groups: 
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prior probability features, neighborhood features, 

synonym features, and other features (including 

unigram/bigram feature, query likelihood feature, 

etc., see Section 4.2). Results in Table 5 show 

that neighborhood features are dominant: remov-

ing such features leads to a remarkable decrease 

in performance. On the other hand, using only 

neighborhood features (the last row) yields sig-

nificant worse results than using all features. 

This means that combining all features together 

indeed contributes to the optimal performance. 

Feature Set Pre. Rec. F. MAP 

All features .539 .591 .563 .622 

- Prior probability .538 .590 .563  .622 

- Neighborhood features .419* .459* .438*  .467* 

- Synonym features .532 .583 .556  .611 

- Other features .529 .580 .553  .621 

Only neighborhood features .523* .573* .547* .603* 

Table 5. Feature analysis. Those marked by stars 

are significantly worse than the best results. 

5.7 Discussions 

All methods that rely on neighboring documents 

have performance ceilings. Specifically, for the 

NLM2007 dataset, the upper bound recall is 

around 85.6% with 20 neighboring documents, 

as shown in Table 5. Due to the same reason, this 

genre of methods is also limited to recommend 

entries that are recently added to the controlled 

vocabulary as such entries may have not been 

annotated to any document yet. This phenome-

non has been demonstrated in the annotation be-

havior analysis: those latest entries have substan-

tially fewer annotations than older ones.  

6 Related Work 

Our work is closely related to ontology-based or 

semantic-oriented document annotation (Corcho, 

2006; Eriksson, 2007). This work is also related 

to KNN-based tag suggestion or recommendation 

systems (Mishne, 2006). 

The task here is similar to keyword extraction 

(Nguyen and Kan, 2007; Jiang et al., 2009), but 

there is a major difference: keywords are always 

occurring in the document, while when an entry 

of a controlled vocabulary was annotated to a 

document, it may not appear in text at all.  

As for the task tackled in this paper, i.e., anno-

tating biomedical publications, three genres of 

approaches have been proposed: (1) k-Nearest 

Neighbor model: selecting annotations from 

neighboring documents, ranking and filtering 

those annotations (Vasuki and Cohen, 2009; Tri-

eschnigg et al., 2009). (2) Classification model: 

learning the association between the document 

text and an entry (Ruch, 2006). (3) Based on 

knowledge resources: using domain thesauruses 

and NLP techniques to match an entry with con-

cepts in the document text (Aronson, 2001; 

Aronson et al., 2004). (4) LDA-based topic mod-

el: (Mörchen et al., 2008). 

7 Conclusion 

This paper presents a novel study on service-

centric annotation. Based on the analysis results 

of 2 million annotated scientific publications, we 

conclude that service-centric annotation exhibits 

the following unique characteristics: a) the num-

ber of annotation per document is significant 

smaller, but it conforms to a normal distribution; 

and b) entries of different granularity (general vs. 

specific) are used appropriately by the trained 

annotators. Service-centric and user-centric an-

notations have in common that the Zipf law 

holds and categorization imbalance exists. 

Based on these observations, we introduced a 

logistic regression approach to annotate publica-

tions, with novel features. Significant improve-

ments over other systems were obtained on a 

benchmark dataset. Although our features are 

tailored for this task in biomedicine, this ap-

proach may be generalized for similar tasks in 

other domains. 
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