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Abstract

This paper proposes an approach to im-
prove graph-based dependency parsing by
using decision history. We introduce a
mechanism that considers short dependen-
cies computed in the earlier stages of pars-
ing to improve the accuracy of long de-
pendencies in the later stages. This re-
lies on the fact that short dependencies are
generally more accurate than long depen-
dencies in graph-based models and may
be used as features to help parse long de-
pendencies. The mechanism can easily
be implemented by modifying a graph-
based parsing model and introducing a set
of new features. The experimental results
show that our system achieves state-of-
the-art accuracy on the standard PTB test
set for English and the standard Penn Chi-
nese Treebank (CTB) test set for Chinese.

1 Introduction

Dependency parsing is an approach to syntactic
analysis inspired by dependency grammar. In re-
cent years, interest in this approach has surged due
to its usefulness in such applications as machine
translation (Nakazawa et al., 2006), information
extraction (Culotta and Sorensen, 2004).

Graph-based parsing models (McDonald and
Pereira, 2006; Carreras, 2007) have achieved
state-of-the-art accuracy for a wide range of lan-
guages as shown in recent CoNLL shared tasks
(Buchholz et al., 2006; Nivre et al., 2007). How-
ever, to make parsing tractable, these models are
forced to restrict features over a very limited his-
tory of parsing decisions (McDonald and Pereira,
2006; McDonald and Nivre, 2007). Previous
work showed that rich features over a wide range
of decision history can lead to significant im-

provements in accuracy for transition-based mod-
els (Yamada and Matsumoto, 2003a; Nivre et al.,
2004).

In this paper, we propose an approach to im-
prove graph-based dependency parsing by using
decision history. Here, we make an assumption:
the dependency relations between words with a
short distance are more reliable than ones between
words with a long distance. This is supported by
the fact that the accuracy of short dependencies
is in general greater than that of long dependen-
cies as reported in McDonald and Nivre (2007)
for graph-based models. Our idea is to use deci-
sion history, which is made in previous scans in a
bottom-up procedure, to help parse other words in
later scans. In the bottom-up procedure, short de-
pendencies are parsed earlier than long dependen-
cies. Thus, we introduce a mechanism in which
we treat short dependencies built earlier as deci-
sion history to help parse long dependencies in
later stages. It can easily be implemented by mod-
ifying a graph-based parsing model and designing
a set of features for the decision history.

To demonstrate the effectiveness of the pro-
posed approach, we present experimental results
on English and Chinese data. The results indi-
cate that the approach greatly improves the accu-
racy and that richer history-based features indeed
make large contributions. The experimental re-
sults show that our system achieves state-of-the-
art accuracy on the data.

2 Motivation

In this section, we present an example to show
the idea of using decision history in a dependency
parsing procedure.

Suppose we have two sentences in Chinese, as
shown in Figures 1 and 2, where the correct de-
pendencies are represented by the directed links.
For example, in Figure 1 the directed link from
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w3:买(bought) to w5:书(books) mean that w3 is
the head and w5 is the dependent. In Chinese,
the relationship between clauses is often not made
explicit and two clauses may simply be put to-
gether with only a comma (Li and Thompson,
1997). This makes it hard to parse Chinese sen-
tences with several clauses.

ROOT

(last year) (I) (bought) (NULL) (books) (,) (this year) (he) (also) (bought) (NULL) (books) 

w1         w2   w3         w4      w5      w6     w7        w8    w9     w10      w11      w12

(Last year I bought some books and this year he also bought some books.)

Figure 1: Example A

ROOT

(last year) (I) (bought) (NULL) (books) (,) (this year) (also) (bought) (NULL) (books) 

w1         w2   w3        w4        w5      w6     w7     w8        w9       w10        w11

(Last year I bought some books and this year too)(Last year I bought some books and this year too)      

Figure 2: Example B

If we employ a graph-based parsing model,
such as the model of (McDonald and Pereira,
2006; Carreras, 2007), it is difficult to assign the
relations between w3 and w10 in Example A and
between w3 and w9 in Example B. For simplicity,
we use wA

i to refer to wi of Example A and wB
i to

refer to wi of Example B in what follows.
The key point is whether the second clauses are

independent in the sentences. The two sentences
are similar except that the second clause of Exam-
ple A is an independent clause but that of Exam-
ple B is not. wA

10 is the root of the second clause
of Example A with subject wA

8 , while wB
9 is the

root of the second clause of Example B, but the
clause does not have a subject. These mean that
the correct decisions are to assign wA

10 as the head
of wA

3 and wB
3 as the head of wB

9 , as shown by the
dash-dot-lines in Figures 1 and 2.

However, the model can use very limited infor-
mation. Figures 3-(a) and 4-(a) show the right
dependency relation cases and Figures 3-(b) and
4-(b) show the left direction cases. For the right
direction case of Example A, the model has the
information about wA

3 ’s rightmost child wA
5 and

wA
10’s leftmost child wA

6 inside wA
3 and wA

10, but it
does not have information about the other children

(last year) (I) (bought) (NULL) (books) (,) (this year) (he) (also) (bought) (NULL) (books) 

w1         w2   w3        w4        w5      w6     w7     w8    w9     w10        w11      w12

(a)

(last year) (I) (bought) (NULL) (books) (,) (this year) (he) (also) (bought) (NULL) (books)

(b)

( y ) ( ) ( g ) ( ) ( ) (,) ( y ) ( ) ( ) ( g ) ( ) ( )

w1         w2   w3        w4        w5      w6     w7     w8    w9     w10        w11      w12

Figure 3: Example A: two directions

(last year) (I) (bought) (NULL) (books) (,) (this year) (also) (bought) (NULL) (books) 

w1         w2   w3         w4    w5      w6  w7        w8     w9         w10        w11      

(a)

(last year) (I) (bought) (NULL) (books) ( ) (this year) (also) (bought) (NULL) (books)

(b)

(last year) (I) (bought) (NULL) (books) (,) (this year) (also) (bought) (NULL) (books)

w1         w2   w3         w4    w5      w6  w7        w8     w9         w10        w11      

Figure 4: Example B: two directions

(such as wA
8 ) of wA

3 and wA
10, which may be useful

for judging the relation between wA
3 and wA

10. The
parsing model can not find the difference between
the syntactic structures of two sentences for pairs
(wA

3 , wA
10) and (wB

3 , wB
9 ). If we can provide the in-

formation about the other children of wA
3 and wA

10

to the model, it becomes easier to find the correct
direction between wA

3 and wA
10.

Next, we show how to use decision history to
help parse wA

3 and wA
10 of Example A.

In a bottom up procedure, the relations between
the words inside [wA

3 , wA
10] are built as follows

before the decision for wA
3 and wA

10. In the first
round, we build relations for neighboring words
(word distance1=1), such as the relations between
wA

3 and wA
4 and between wA

4 and wA
5 . In the sec-

ond round, we build relations for words of dis-
tance 2, and then for longer distance words until
all the possible relations between the inside words
are built. Figure 5 shows all the possible relations
inside [wA

3 , wA
10] that we can build. To simplify,

we use undirected links to refer to both directions

1Word distance between wi and wj is |j − i|.
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of dependency relations between words in the fig-
ure.

(last year) (I) (bought) (NULL) (books)   (,) (this year) (he) (also) (bought) (NULL) (books) 

w1         w2   w3         w4 w5        w6  w7        w8   w9     w10     w11      w12

Figure 5: Example A: first step

Then given those inside relations, we choose
the inside structure with the highest score for each
direction of the dependency relation between wA

3

and wA
10. Figure 6 shows the chosen structures.

Note that the chosen structures for two directions
could either be identical or different. In Figure
6-(a) and -(b), they are different.

(last year) (I) (bought) (NULL) (books) (,) (this year) (he) (also) (bought) (NULL) (books) 

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12

(a)

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11      w12

(b)

(last year) (I) (bought) (NULL) (books) (,) (this year) (he) (also) (bought) (NULL) (books) 

w1         w2   w3        w4        w5      w6     w7     w8    w9     w10        w11      w12

(b)

Figure 6: Example A: second step

Finally, we use the chosen structures as deci-
sion history to help parse wA

3 and wA
10. For ex-

ample, the fact that wA
8 is a dependent of wA

10 is
a clue that suggests that the second clause may be
independent. This results in wA

10 being the head of
wA

3 .
This simple example shows how to use the de-

cision history to help parse the long distance de-
pendencies.

3 Background: graph-based parsing
models

Before we describe our method, we briefly intro-
duce the graph-based parsing models. We denote
input sentence w by w = (w0, w1, ..., wn), where
w0 = ROOT is an artificial root token inserted at

the beginning of the sentence and does not depend
on any other token in w and wi refers to a word.

We employ the second-order projective graph-
based parsing model of Carreras (2007), which is
an extension of the projective parsing algorithm of
Eisner (1996).

The parsing algorithms used in Carreras (2007)
independently find the left and right dependents of
a word and then combine them later in a bottom-
up style based on Eisner (1996). A subtree that
spans the words in [s, t] (and roots at s or t) is
represented by chart item [s, t, right/left, C/I],
where right (left) indicates that the root of the sub-
tree is s (t) and C means that the item is complete
while I means that the item is incomplete (Mc-
Donald, 2006). Here, complete item in the right
(left) direction means that the words other than s
(t) cannot have dependents outside [s, t] and in-
complete item in the right (left) direction, on the
other hand, means that t (s) may have dependents
outside [s, t]. In addition, t (s) is the direct depen-
dent of s (t) in the incomplete item with the right
(left) direction.

Larger chart items are created from pairs of
smaller chart items by the bottom-up procedure.
Figure 7 illustrates the cubic parsing actions of the
Eisner’s parsing algorithm (Eisner, 1996) in the
right direction, where s, r, and t refer to the start
and end indices of the chart items. In Figure 7-
(a), all the items on the left side are complete and
represented by triangles, where the triangle of [s,
r] is complete item [s, r,→, C] and the triangle of
[r + 1, t] is complete item [r + 1, t,←, C]. Then
the algorithm creates incomplete item [s, t,→, I]
(trapezoid on the right side of Figure 7-(a)) by
combining the chart items on the left side. This
action builds the dependency from s to t. In Fig-
ure 7-(b), the item of [s, r] is incomplete and
the item of [r, t] is complete. Then the algo-
rithm creates complete item [s, t,→, C]. For the
left direction case, the actions are similar. Note
that only the actions of creating the incomplete
chart items build new dependency relations be-
tween words, while the ones of creating the com-
plete items merge the existing structures without
building new relations.

Once the parser has considered the dependency
relations between words of distance 1, it goes on
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to dependency relations between words of dis-
tance 2, and so on by the parsing actions. For
words of distance 2 and greater, it considers ev-
ery possible partition of the structures into two
parts and chooses the one with the highest score
for each direction. The score is the sum of the fea-
ture weights of the chart items. The features are
designed over edges of dependency trees and the
weights are given by model parameters (McDon-
ald and Pereira, 2006; Carreras, 2007). We store
the obtained chart items in a table. The chart item
includes the information on the optimal splitting
point of itself. Thus, by looking up the table, we
can obtain the best tree structure (with the highest
score) of any chart item.

s         r     r+1    t            s                   t

(a)

s         r     r t               s                 t

(b)

Figure 7: Cubic parsing actions of Eisner (1996)

4 Parsing with decision history

As mentioned above, the actions for creating
the incomplete items build the relations between
words. In this study, we only consider using his-
tory information when creating incomplete items.

4.1 Decision history

Suppose we are going to compute the scores of
the relations between ws and wt. There are two
possible directions for them.

By using the bottom-up style algorithm, the
scores of the structures between words with dis-
tance < |s−t| are computed in previous scans and
the structures are stored in the table. We divide
the decision history into two types: history-inside
and history-outside. The history-inside type is the

decision history made inside [s,t] and the history-
outside type is the history made outside [s,t].

4.1.1 History-inside
We obtain the structure with the highest score

for each direction of the dependency between ws

and wt. Figure 8-(b) shows the best solution (with
the highest score) of the left direction, where the
structure is split into two parts, [s, r1,→, C] and
[r1 + 1, t,←, C]. Figure 8-(c) shows the best so-
lution of the right case, where the structure is split
into two parts, [s, r2,→, C] and [r2 + 1, t,←, C].

s          r1 r1+1               t

ws …                 wt

(b)

(a)

s r r +1 ts r2 r2+1 t

(c)

Figure 8: History-inside

By looking up the table, we have a subtree that
roots at ws on the right side of ws and a subtree
that roots at wt on the left side of wt. We use these
structures as the information on history-inside.

4.1.2 History-outside
For history-outside, we try to obtain the sub-

tree that roots at ws on the left side of ws and
the one that roots at wt on the right side of wt.
However, compared to history-inside, obtaining
history-outside is more complicated because we
do not know the boundaries and the proper struc-
tures of the subtrees. Here, we use an simple
heuristic method to find a subtree whose root is
at ws on the left side of ws and one whose root is
at wt on the right side of wt.

We introduce two assumptions: 1) The struc-
ture within a sub-sentence 2 is more reliable than
the one that goes across from sub-sentences. 2)
More context (more words) can result in a better
solution for determining subtree structures.

2To simplify, we split one sentence into sub-sentences
with punctuation marks.
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Algorithm 1 Searching for history-outside
boundaries
1: Input: w, s, t
2: for k = s− 1 to 1 do
3: if(isPunct(wk)) break;
4: if(s− k >= t− s− 1) break
5: end for
6: bs = k
7: for k = t + 1 to |w| do
8: if(isPunct(wk)) break;
9: if(k − t >= t− s− 1) break

10: end for
11: bt = k
12: Output: bs, bt

Under these two assumptions, Algorithm 1
shows the procedure for searching for history-
outside boundaries, where bs is the boundary for
for the descendants on the left side of ws , bt

is the boundary for searching the descendants on
the right side of wt, and isPunct is the function
that checks if the word is a punctuation mark. bs

should be in the same sub-sentence with s and
|s− bs| should be less than |t− s|. bt should be in
the same sub-sentence with t and |bt − t| should
be less than |t− s|.

Next we try to find the subtree structures. First,
we collect the part-of-speech (POS) tags of the
heads of all the POS tags in training data and
remove the tags that occur fewer than 10 times.
Then, we determine the directions of the relations
by looking up the collected list. For bs and s, we
check if the POS tag of ws could be the head tag
of the POS tag of wbs by looking up the list. If
so, the direction d is ←. Otherwise, we check if
the POS tag of wbs could be the head tag of the
POS tag of ws. If so, d is →, else d is ←. Fi-
nally, we obtain the subtree of ws from chart item
[bs, s, d, I]. Similarly, we obtain the subtree of wt.
Figure 9 shows the history-outside information for
ws and wt, where the relation between wbs and ws

and the relation between wbt and wt will be de-
termined by the above method. We have subtree
[rs, s, left, C] that roots at ws on the left side of
ws and subtree [t, rt, right, C] that roots at wt on
the right side of wt in Figure 9-(b) and (c).

4.2 Parsing algorithm

Then, we explain how to use these decision his-
tory in the parsing algorithm. We use Lst to rep-

bs rs s        t         rt bt

(b)

ws …                 wt

(b)

(a)

b r s t r b

(c)

bs rs s t rt bt

Figure 9: History-outside

resent the scores of basic features for the left di-
rection and Rst for the right case. Then we design
history-based features (described in Section 4.3)
based on the history-inside and history-outside in-
formation, as mentioned above. Finally, we up-
date the scores with the ones of the history-based
features by the following equations:

L+
st = Lst + Ldf

st (1)

R+
st = Rst + Rdf

st (2)

where L+
st and R+

st refer to the updated scores, Ldf
st

and Rdf
st refer to the scores of the history-based

features.

Algorithm 2 Parsing algorithm
1: Initialization: V [s, s, dir, I/C] = 0.0 ∀s, dir
2: for k = 1 to n do
3: for s = 0 to n− k do
4: t = s + k
5: % Create incomplete items
6: Lst=V [s, t,←, I]= maxs≤r<tV I(r);
7: Rst=V [s, t,→, I]= maxs≤r<tV I(r);
8: Calculate Ldf

st and Rdf
st ;

9: % Update the scores of incomplete chart items
10: V [s, t,←, I]=L+

st=Lst + Ldf
st

11: V [s, t,→, I]=R+
st=Rst + Rdf

st

12: % Create complete items
13: V [s, t,←, C]= maxs≤r<tV C(r);
14: V [s, t,→, C]= maxs<r≤tV C(r);
15: end for
16: end for

Algorithm 2 is the parsing algorithm with
the history-based features, where V [s, t, dir, I/C]
refers to the score of chart item [s, t, dir, I/C],
V I(r) is a function to search for the optimal
sibling and grandchild nodes for the incomplete
items (line 6 and 7) (Carreras, 2007) given the
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splitting point r and return the score of the struc-
ture, and V C(r) is a function to search for the op-
timal grandchild node for the complete items (line
13 and 14). Compared with the parsing algorithms
of Carreras (2007), Algorithm 2 uses history in-
formation by adding line 8, 10, and 11.

In Algorithm 2, it first creates chart items with
distance 1, then goes on to chart items with dis-
tance 2, and so on. In each round, it searches for
the structures with the highest scores for incom-
plete items shown at line 6 and 7 of Algorithm 2.
Then we update the scores with the history-based
features by Equation 1 and Equation 2 at line 10
and 11 of Algorithm 2. However, note that we can
not guarantee to find the candidate with the high-
est score with Algorithm 2 because new features
violate the assumptions of dynamic programming.

4.3 History-based features
In this section, we design features that capture the
history information in the recorded decisions.

For a dependency between two words, say s and
t, there are four subtrees that root at s or t. We de-
sign the features by combining s, t with each child
of s and t in the subtrees. The feature templates
are shown as follows: (In the following, c means
one of the children of s and t, and the nodes in the
templates are expanded to their lexical form and
POS tags to obtain actual features.):

C+Dir this feature template is a 2-tuple con-
sisting of (1) a c node and (2) the direction of the
dependency.

C+Dir+S/C+Dir+T this feature template is a 3-
tuple consisting of (1) a c node, (2) the direction
of the dependency, and (3) a s or t node.

C+Dir+S+T this feature template is a 4-tuple
consisting of (1) a c node, (2) the direction of the
dependency, (3) a s node, and (4) a t node.

s     c
si

r
1

r
1
+1 c

ti
tr

2
c

so c
to

r
3

Figure 10: Structure of decision history

We use SHI to represent the subtree of s in

the history-inside, THI to represent the one of t
in the history-inside, SHO to represent the one
of s in the history-outside, and THO to represent
the one of t in the history-outside. Based on the
subtree types, the features are divided into four
sets: FSHI , FTHI , FSHO, and FTHO refer to the
features related to the children that are in subtrees
SHI , THI , SHO, and THO respectively.

Figure 10 shows the structure of decision his-
tory of a left dependency (between s and t) re-
lation. For the right case, the structure is simi-
lar. In the figure, SHI is chart item [s, r1,→, C],
THI is chart item [r1 + 1, t,←, C], SHO is
chart item [r2, s,←, C], and THO is chart item
[t, r3,→, C]. We use csi, cti, cso, and cto to repre-
sent a child of s/t in subtrees SHI , THI , SHO,
and THO respectively. The lexical form features
of FSHI and FSHO are listed as examples in Table
1, where “L” refers to the left direction. We can
also expand the nodes in the templates to the POS
tags. Compared with the algorithm of Carreras
(2007) that only considers the furthest children of
s and t, Algorithm 2 considers all the children.

Table 1: Lexical form features of FSHI and FSHO
template FSHI FSHO

C+DIR word-csi+L word-cso+L
C+DIR+S word-csi+L+word-s word-cso+L+word-s
C+DIR+T word-csi+L+word-t word-cso+L+word-t
C+DIR word-csi+L word-cso+L
+S+T +word-s+word-t +word-s+word-t

4.4 Policy of using history

In practice, we define several policies to use the
history information for different word pairs as fol-
lows:

• All: Use the history-based features for all the
word pairs without any restriction.
• Sub-sentences: use the history-based fea-

tures only for the relation of two words from
sub-sentences. Here, we use punctuation
marks to split sentences into sub-sentences.
• Distance: use the history-based features for

the relation of two words within a predefined
distance. We set the thresholds to 3, 5, and
10.
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5 Experimental results

In order to evaluate the effectiveness of the
history-based features, we conducted experiments
on Chinese and English data.

For English, we used the Penn Treebank (Mar-
cus et al., 1993) in our experiments and the tool
“Penn2Malt”3 to convert the data into dependency
structures using a standard set of head rules (Ya-
mada and Matsumoto, 2003a). To match previous
work (McDonald and Pereira, 2006; Koo et al.,
2008), we split the data into a training set (sec-
tions 2-21), a development set (Section 22), and a
test set (section 23). Following the work of Koo
et al. (2008), we used the MXPOST (Ratnaparkhi,
1996) tagger trained on training data to provide
part-of-speech tags for the development and the
test set, and we used 10-way jackknifing to gener-
ate tags for the training set.

For Chinese, we used the Chinese Treebank
(CTB) version 4.04 in the experiments. We also
used the “Penn2Malt” tool to convert the data and
created a data split: files 1-270 and files 400-931
for training, files 271-300 for testing, and files
301-325 for development. We used gold stan-
dard segmentation and part-of-speech tags in the
CTB. The data partition and part-of-speech set-
tings were chosen to match previous work (Chen
et al., 2008; Yu et al., 2008).

We measured the parser quality by the unla-
beled attachment score (UAS), i.e., the percentage
of tokens with the correct HEAD 5. And we also
evaluated on complete dependency analysis.

In our experiments, we implemented our sys-
tems on the MSTParser6 and extended with
the parent-child-grandchild structures (McDonald
and Pereira, 2006; Carreras, 2007). For the base-
line systems, we used the first- and second-order
(parent-sibling) features that were used in Mc-
Donald and Pereira (2006) and other second-order
features (parent-child-grandchild) that were used
in Carreras (2007). In the following sections, we
call the second-order baseline systems Baseline

3http://w3.msi.vxu.se/˜nivre/research/Penn2Malt.html
4http://www.cis.upenn.edu/˜chinese/.
5As in previous work, English evaluation ignores any to-

ken whose gold-standard POS tag is one of {´´ `` : , .} and
Chinese evaluation ignores any token whose tag is “PU”.

6http://mstparser.sourceforge.net

and our new systems OURS.

5.1 Results with different feature settings
In this section, we test our systems with different
settings on the development data.

Table 2: Results with different policies
Chinese English

Baseline 89.04 92.43
D1 88.73 92.27
D3 88.90 92.36
D5 89.10 92.59
D10 89.32 92.57
Dsub 89.57 92.63

Table 2 shows the parsing results when we used
different policies defined in Section 4.4 with all
the types of features, where Dsub refers to apply-
ing the policy: sub-sentence, D1 refers to apply-
ing the policy: all, and D3|5|10 refers to applying
the policy: distance with the predefined distance
3, 5, or 10. The results indicated that the accu-
racies of our systems decreased if we used the
history information for short distance words. The
system with Dsub performed the best.

Table 3: Results with different types of Features
Chinese English

Baseline 89.04 92.43
+FSHI 89.14 92.53
+FTHI 89.33 92.35
+FSHO 89.25 92.47
+FTHO 88.99 92.54

Then we investigated the effect of different
types of the history-based features. Table 3 shows
the results with policy Dsub. From the table, we
found that FTHI provided the largest improve-
ment for Chinese and FTHO performed the best
for English.

In what follows, we used Dsub as the policy for
all the languages, the features FSHI + FTHI +
FSHO for Chinese, and the features FSHI +
FSHO + FTHO for English.

5.2 Main results
The main results are shown in the upper parts of
Tables 4 and 5, where the improvements by OURS
over the Baselines are shown in parentheses. The
results show that OURS provided better perfor-
mance over the Baselines by 1.02 points for Chi-
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Table 4: Results for Chinese
UAS Complete

Baseline 88.41 48.85
OURS 89.43(+1.02) 50.86
OURS+STACK 89.53 49.42
Zhao2009 87.0 –
Yu2008 87.26 –
STACK 88.95 49.42
Chen2009 89.91 48.56

nese and 0.29 points for English. The improve-
ments of (OURS) were significant in McNemar’s
Test with p < 10−4 for Chinese and p < 10−3 for
English.

5.3 Comparative results
Table 4 shows the comparative results for Chinese,
where Zhao2009 refers to the result of (Zhao et
al., 2009), Yu2008 refers to the result of Yu et
al. (2008), Chen2009 refers to the result of Chen
et al. (2009) that is the best reported result on
this data, and STACK refers to our implementa-
tion of the combination parser of Nivre and Mc-
Donald (2008) using our baseline system and the
MALTParser7. The results indicated that OURS
performed better than Zhao2009, Yu2008, and
STACK, but worse than Chen2009 that used large-
scale unlabeled data (Chen et al., 2009). We also
implemented the combination system of OURS
and the MALTParser, referred as OURS+STACK
in Table 4. The new system achieved further im-
provement. In future work, we can combine our
approach with the parser of Chen et al. (2009).

Table 5 shows the comparative results for En-
glish, where Y&M2003 refers to the parser of Ya-
mada and Matsumoto (2003b), CO2006 refers to
the parser of Corston-Oliver et al. (2006), Z&C
2008 refers to the combination system of Zhang
and Clark (2008), STACK refers to our implemen-
tation of the combination parser of Nivre and Mc-
Donald (2008), KOO2008 refers to the parser of
Koo et al. (2008), Chen2009 refers to the parser
of Chen et al. (2009), and Suzuki2009 refers to
the parser of Suzuki et al. (2009) that is the best
reported result for this data. The results shows
that OURS outperformed the first two systems that
were based on single models. Z&C 2008 and
STACK were the combination systems of graph-

7http://www.maltparser.org/

Table 5: Results for English
UAS Complete

Baseline 91.92 44.28
OURS 92.21 (+0.29) 45.24
Y&M2003 90.3 38.4
CO2006 90.8 37.6
Z&C2008 92.1 45.4
STACK 92.53 47.06
KOO2008 93.16 –
Chen2009 93.16 47.15
Suzuki2009 93.79 –

based and transition-based models. OURS per-
formed better than Z&C 2008, but worse than
STACK. The last three systems that used large-
scale unlabeled data performed better than OURS.

6 Related work

There are several studies that tried to overcome
the limited feature scope of graph-based depen-
dency parsing models .

Nakagawa (2007) proposed a method to deal
with the intractable inference problem in a graph-
based model by introducing the Gibbs sampling
algorithm. Compared with their approach, our ap-
proach is much simpler yet effective. Hall (2007)
used a re-ranking scheme to provide global fea-
tures while we simply augment the features of an
existing parser.

Nivre and McDonald (2008) and Zhang and
Clark (2008) proposed stacking methods to com-
bine graph-based parsers with transition-based
parsers. One parser uses dependency predictions
made by another parser. Our results show that our
approach can be used in the stacking frameworks
to achieve higher accuracy.

7 Conclusions

This paper proposes an approach for improving
graph-based dependency parsing by using the de-
cision history. For the graph-based model, we
design a set of features over short dependen-
cies computed in the earlier stages to improve
the accuracy of long dependencies in the later
stages. The results demonstrate that our proposed
approach outperforms baseline systems by 1.02
points for Chinese and 0.29 points for English.
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