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Abstract

A large body of prior research on coref-
erence resolution recasts the problem as
a two-class classification problem. How-
ever, standard supervised machine learn-
ing algorithms that minimize classifica-
tion errors on the training instances do not
always lead to maximizing the F-measure
of the chosen evaluation metric for coref-
erence resolution. In this paper, we pro-
pose a novel approach comprising the use
of instance weighting and beam search to
maximize the evaluation metric score on
the training corpus during training. Ex-
perimental results show that this approach
achieves significant improvement over the
state-of-the-art. We report results on stan-
dard benchmark corpora (two MUC cor-
pora and three ACE corpora), when evalu-
ated using the link-based MUC metric and
the mention-based B-CUBED metric.

1 Introduction

Coreference resolution refers to the process of
determining whether two or more noun phrases
(NPs) in a text refer to the same entity. Suc-
cessful coreference resolution benefits many nat-
ural language processing tasks. In the literature,
most prior work on coreference resolution recasts
the problem as a two-class classification problem.
Machine learning-based classifiers are applied to
determine whether a candidate anaphor and a po-
tential antecedent are coreferential (Soon et al.,
2001; Ng and Cardie, 2002b).

A large body of prior research on corefer-
ence resolution follows the same process: dur-

ing training, they apply standard supervised ma-
chine learning algorithms to minimize the number
of misclassified training instances; during testing,
they maximize either the local or the global proba-
bility of the coreferential relation assignments ac-
cording to the specific chosen resolution method.

However, minimizing the number of misclas-
sified training instances during training does not
guarantee maximizing the F-measure of the cho-
sen evaluation metric for coreference resolution.
First of all, coreference is a rare relation. There
are far fewer positive training instances than neg-
ative ones. Simply minimizing the number of mis-
classified training instances is suboptimal and fa-
vors negative training instances. Secondly, evalu-
ation metrics for coreference resolution are based
on global assignments. Not all errors have the
same impact on the metric score. Furthermore, the
extracted training instances are not equally easy to
be classified.

In this paper, we propose a novel approach
comprising the use of instance weighting and
beam search to address the above issues. Our pro-
posed maximum metric score training (MMST)
approach performs maximization of the chosen
evaluation metric score on the training corpus dur-
ing training. It iteratively assigns higher weights
to the hard-to-classify training instances. The out-
put of training is a standard classifier. Hence,
during testing, MMST is faster than approaches
which optimize the assignment of coreferential re-
lations during testing. Experimental results show
that MMST achieves significant improvements
over the baselines. Unlike most of the previous
work, we report improved results over the state-
of-the-art on all five standard benchmark corpora
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(two MUC corpora and three ACE corpora), with
both the link-based MUC metric and the mention-
based B-CUBED metric.

The rest of this paper is organized as follows.
We first review the related work and the evaluation
metrics for coreference resolution in Section 2 and
3, respectively. Section 4 describes the proposed
MMST algorithm. Experimental results and re-
lated discussions are given in Section 5. Finally,
we conclude in Section 6.

2 Related Work

Soonet al. (2001) proposed a training and test-
ing framework for coreference resolution. Dur-
ing training, a positive training instance is formed
by a pair of markables, i.e., the anaphor (a noun
phrase) and its closest antecedent (another noun
phrase). Each markable (noun phrase) between
the two, together with the anaphor, form a neg-
ative training instance. A classifier is trained on
all training instances, using a standard supervised
learning algorithm. During testing, all preceding
markables of a candidate anaphor are considered
as potential antecedents, and are tested in a back-
to-front manner. The process stops if either an an-
tecedent is found or the beginning of the text is
reached. This framework has been widely used in
the community of coreference resolution.

Recent work boosted the performance of coref-
erence resolution by exploiting fine-tuned feature
sets under the above framework, or adopting al-
ternative resolution methods during testing (Ng
and Cardie, 2002b; Yang et al., 2003; Denis and
Baldridge, 2007; Versley et al., 2008).

Ng (2005) proposed a ranking model to maxi-
mize F-measure during testing. In the approach,n
different coreference outputs for each test text are
generated, by varying four components in a coref-
erence resolution system, i.e., the learning algo-
rithm, the instance creation method, the feature
set, and the clustering algorithm. An SVM-based
ranker then picks the output that is likely to have
the highest F-measure. However, this approach
is time-consuming during testing, as F-measure
maximization is performed during testing. This
limits its usage on a very large corpus.

In the community of machine learning, re-
searchers have proposed approaches for learning

a model to optimize a chosen evaluation met-
ric other than classification accuracy on all train-
ing instances. Joachims (2005) suggested the use
of support vector machines to optimize nonlinear
evaluation metrics. However, the approach does
not differentiate between the errors in the same
category in the contingency table. Furthermore, it
does not take into account inter-instance relation
(e.g., transitivity), which the evaluation metric for
coreference resolution cares about.

Daume III (2006) proposed a structured learn-
ing framework for coreference resolution to ap-
proximately optimize the ACE metric. Our pro-
posed approach differs in two aspects. First, we
directly optimize the evaluation metric itself, and
not by approximation. Second, unlike the incre-
mental local loss in Daume III (2006), we evaluate
the metric score globally.

In contrast to Ng (2005), Ng and Cardie
(2002a) proposed a rule-induction system with
rule pruning. However, their approach is specific
to rule induction, and is not applicable to other
supervised learning classifiers. Ng (2004) varied
different components of coreference resolution,
choosing the combination of components that re-
sults in a classifier with the highest F-measure on
a held-out development set during training. In
contrast, our proposed approach employs instance
weighting and beam search to maximize the F-
measure of the evaluation metric during training.
Our approach is general and applicable to any su-
pervised learning classifiers.

Recently, Wick and McCallum (2009) pro-
posed a partition-wise model for coreference reso-
lution to maximize a chosen evaluation metric us-
ing the Metropolis-Hastings algorithm (Metropo-
lis et al., 1953; Hastings, 1970). However, they
found that training on classification accuracy, in
most cases, outperformed training on the corefer-
ence evaluation metrics. Furthermore, similar to
Ng (2005), their approach requires the generation
of multiple coreference assignments during test-
ing.

Vemulapalliet al. (2009) proposed a document-
level boosting technique for coreference resolu-
tion by re-weighting the documents that have
the lowest F-measures. By combining multiple
classifiers generated in multiple iterations, they
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achieved a CEAF score slightly better than the
baseline. Different from them, our approach
works at the instance level, and we output a sin-
gle classifier.

3 Coreference Evaluation Metrics

In this section, we review two commonly used
evaluation metrics for coreference resolution.

First, we introduce the terminology. The gold
standard annotation and the output by a coref-
erence resolution system are called key and re-
sponse, respectively. In both the key and the re-
sponse, a coreference chain is formed by a set of
coreferential mentions. Amention(or markable)
is a noun phrase which satisfies the markable def-
inition in an individual corpus. Alink refers to a
pair of coreferential mentions. If a mention has no
links to other mentions, it is called asingleton.

3.1 The MUC Evaluation Metric

Vilain et al. (1995) introduced the link-based
MUC evaluation metric for the MUC-6 and MUC-
7 coreference tasks. LetSi be an equivalence
class generated by the key (i.e.,Si is a corefer-
ence chain), andp(Si) be a partition ofSi relative
to the response. Recall is the number of correctly
identified links over the number of links in the key.

Recall =

∑
(|Si| − |p(Si)|)∑

(|Si| − 1)

Precision, on the other hand, is defined in the op-
posite way by switching the role of key and re-
sponse. F-measure is a trade-off between recall
and precision.

F =
2 ·Recall · Precision

Recall + Precision

3.2 The B-CUBED Evaluation Metric

Bagga and Baldwin (1998) introduced the
mention-based B-CUBED metric. The B-
CUBED metric measures the accuracy of coref-
erence resolution based on individual mentions.
Hence, it also gives credit to the identification of
singletons, which the MUC metric does not. Re-
call is computed as

Recall =
1

N

∑

d∈D

∑

m∈d

|Om|
|Sm|

whereD, d, andm are the set of documents, a
document, and a mention, respectively.Sm is the
equivalence class generated by the key that con-
tainsm, while Om is the overlap ofSm and the
equivalence class generated by the response that
containsm. N is the total number of mentions in
D. The precision, again, is computed by switch-
ing the role of key and response. F-measure is
computed in the same way as the MUC metric.

4 Maximum Metric Score Training

Before explaining the algorithm, we describe our
coreference clustering method used during test-
ing. It is the same as most prior work in the lit-
erature, including Soonet al. (2001) and Ng and
Cardie (2002b). The individual classification de-
cisions made by the coreference classifier do not
guarantee that transitivity of coreferential NPs is
obeyed. So it can happen that the pairA andB,
and the pairB andC are both classified as coref-
erential, but the pairA and C is not classified
as coreferential by the classifier. After all coref-
erential markable pairs are found (no matter by
closest-first, best-first, or resolving-all strategies
as in different prior work), all coreferential pairs
are clustered together to form the coreference out-
put. By doing so, transitivity is kept: a markable is
in a coreference chain if and only if it is classified
to be coreferential to at least one other markable
in the chain.

4.1 Instance Weighting

Suppose there aremk andmr coreferential links
in the key and the response, respectively, and a
coreference resolution system successfully pre-
dicts n correct links. The recall and the preci-
sion are thenn

mk
and n

mr
, respectively. The learnt

classifier predicts false positive and false negative
instances during testing. For a false positive in-
stance, if we could successfully predict it as neg-
ative, the recall is unchanged, but the precision
will be n

mr−1 , which is higher than the original
precision n

mr
. For a false negative instance, it

is more subtle. If the two markables in the in-
stance are determined to be in the same corefer-
ence chain by the clustering algorithm, it does not
matter whether we predict this instance as posi-
tive or negative, i.e., this false negative does not
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change the F-measure of the evaluation metric at
all. If the two markables are not in the same coref-
erence chain under the clustering, in case that we
can predict it as positive, the recall will ben+1

mk
,

which is higher than the original recallnmk
, and

the precision will be n+1
mr+1 , which is higher than

the original precision n
mr

, asn < mr. In both
cases, the F-measure improves. If we can instruct
the learning algorithm to pay more attention to
these false positive and false negative instances
and to predict them correctly by assigning them
more weight, we should be able to improve the
F-measure.

In the literature, besides the training instance
extraction methods proposed by Soonet al.
(2001) and Ng and Cardie (2002b) as discussed
in Section 2, McCarthy and Lehnert (1995) used
all possible pairs of training instances. We also
use all pairs of training instances in our approach
to keep as much information as possible. Initially
all the pairs are equally weighted. We then itera-
tively assign more weights to the hard-to-classify
pairs. The iterative process is conducted by a
beam search algorithm.

4.2 Beam Search

Our proposed MMST algorithm searches for a set
of weights to assign to training instances such
that the classifier trained on the weighted training
instances gives the maximum coreference metric
score when evaluated on the training instances.
Beam search is used to limit the search. Each
search state corresponds to a set of weighted train-
ing instances, a classifier trained on the weighted
training instances minimizing misclassifications,
and the F-measure of the classifier when evalu-
ated on the weighted training instances using the
chosen coreference evaluation metric. The root
of the search tree is the initial search state where
all the training instances have identical weights of
one. Each search states can expand into two dif-
ferent children search statessl andsr. sl (sr) cor-
responds to assigning higher weights to the false
positive (negative) training instances ins. The
search space thus forms a binary search tree.

Figure 1 shows an example of a binary search
tree. Initially, the tree has only one node: the root
(node 1 in the figure). In each iteration, the algo-

1

2 3

4 5 6 7

8 9 10 11

Figure 1: An example of a binary search tree

rithm expands all the leaf nodes in the beam. For
example, in the first iteration, node 1 is expanded
to generate node 2 and 3, which corresponds to
adding weights to false positive and false nega-
tive training instances, respectively. An expanded
node always has two children in the binary search
tree. All the nodes are then sorted in descending
order of F-measure. Only the topM nodes are
kept, and the remaining nodes are discarded. The
discarded nodes can either be leaf nodes or non-
leaf nodes. For example, if node 5 is discarded
because of low F-measure, it will not be expanded
to generate children in the binary search tree. The
iterative algorithm stops when all the nodes in the
beam are non-leaf nodes, i.e., all the nodes in the
beam have been expanded.

Figure 2 gives the formal description of the
proposed maximum metric score training algo-
rithm. In the algorithm, assume that we have
N textsT1, T2, . . ., TN in the training data set.
mki and mkj are theith and jth markable in
the text Tk, respectively. Hence, for alli <
j, (mki,mkj , wkij) is a training instance for the
markable pair(mki,mkj), in which wkij is the
weight of the instance. LetLkij andL′

kij be the
true and predicted label of the pair(mki,mkj),
respectively. LetW , C, F , andE be the set of
weights{wkij |1 ≤ k ≤ N, i < j}, the classifier,
the F-measure, and a boolean indicator of whether
the search state has been expanded, respectively.
Finally, M is the beam size, andδ controls how
much we update the weights in each iteration.

Since we train the model on all possible pairs,
during testing we also test if a potential anaphor is
coreferential to each preceding antecedent.
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INPUT: T1, T2, . . . , TN

OUTPUT: classifierC
wkij ← 1, for all 1 ≤ k ≤ N andi < j
C ← train({(mki,mkj , wkij)|1 ≤ k ≤ N, i < j})
F ← resolve and evaluateT1, . . . , TN with C
E ← false
BEAM← {(W,C, F,E)}
repeat

BEAM′ ← {}
for all (W,C, F,E) in BEAM do

BEAM′ ← BEAM′⋃{(W,C, F, true)}
if E=falsethen

predict allL′
kij with C (1 ≤ k ≤ N, i < j)

cluster into coreference chains based onL′
kij

W ′ ← W
for all 1 ≤ k ≤ N, i < j do

if Lkij = false andL′
kij = true then

w′
kij ← w′

kij + δ
end if

end for
C′ ← train({(mki,mkj , w

′
kij)|1 ≤ k ≤ N, i < j})

F ′ ← resolve and evaluateT1, . . . , TN with C′

BEAM′ ← BEAM′⋃{(W ′, C′, F ′, false)}
W ′′ ← W
for all 1 ≤ k ≤ N, i < j do

if Lkij = true andL′
kij = false and

Chain(mki) 6= Chain(mkj) then
w′′

kij ← w′′
kij + δ

end if
end for
C′′ ← train({(mki,mkj , w

′′
kij)|1 ≤ k ≤ N, i < j})

F ′′ ← resolve and evaluateT1, . . . , TN with C′′

BEAM′ ← BEAM′⋃{(W ′′, C′′, F ′′, false)}
end if

end for
BEAM← BEAM′

sort BEAM in descending order ofF , keep topM elements
until for all E of all elements in BEAM,E = true
return C, from the top element(W,C, F,E) of BEAM

Figure 2: The maximum metric score training
(MMST) algorithm

5 Experiments

5.1 Experimental Setup

In the experiments, we used all the five commonly
used evaluation corpora for coreference resolu-
tion, namely the two MUC corpora (MUC6 and
MUC7) and the three ACE corpora (BNEWS,
NPAPER, and NWIRE). The MUC6 and the
MUC7 corpora were defined in the DARPA Mes-
sage Understanding Conference (MUC-6, 1995;
MUC-7, 1998). The dry-run texts were used as the
training data sets. In both corpora, each training
data set contains 30 texts. The test data sets for
MUC6 and MUC7 consist of the 30 and 20 for-
mal evaluation texts, respectively. The ACE cor-
pora were defined in NIST Automatic Content Ex-
traction phase 2 (ACE-2) (NIST, 2002). The three
data sets are from different news sources: broad-
cast news (BNEWS), newspaper (NPAPER), and

newswire (NWIRE). Each of the three data sets
contains two portions: training and development
test. They were used as our training set and test
set, respectively. The BNEWS, NPAPER, and
NWIRE data sets contain 216, 76, and 130 train-
ing texts, and 51, 17, and 29 test texts, respec-
tively.

Unlike some previous work on coreference res-
olution that assumes that the gold standard mark-
ables are known, we work directly on raw text in-
put. Versleyet al. (2008) presented the BART
package1, an open source coreference resolution
toolkit, that accepts raw text input and reported
state-of-the-art MUC F-measures on the three
ACE corpora. BART uses an extended feature set
and tree kernel support vector machines (SVM)
under the Soonet al. (2001) training and testing
framework. We used the BART package in our ex-
periments, and implemented the proposed MMST
algorithm on top of it. In our experiments reported
in this paper, the features we used areidenticalto
the features output by the preprocessing code of
BART reported in Versleyet al. (2008), except
that we did not use their tree-valued and string-
valued features (see the next subsection for de-
tails).

Since we use automatically extracted mark-
ables, it is possible that some extracted markables
and the gold standard markables are unmatched,
or twinlessas defined in Stoyanovet al. (2009).
How to use the B-CUBED metric for evaluating
twinless markables has been explored recently. In
this paper, we adopt theB3all variation proposed
by Stoyanovet al. (2009), which retains all twin-
less markables. We also experimented with their
B30 variation, which gave similar results. Note
that no matter which variant of the B-CUBED
metric is used, it is a fair comparison as long as
the baseline and our proposed MMST algorithm
are compared against each other using the same
B-CUBED variant.

5.2 The Baseline Systems

We include state-of-the-art coreference resolution
systems in the literature for comparison. Since
we use the BART package in our experiments,

1http://www.sfs.uni-tuebingen.de/
˜ versley/BART/
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we include the results of the original BART sys-
tem (with its extended feature set and SVM-light-
TK (Moschitti, 2006), as reported in Versleyet al.
(2008)) as the first system for comparison. Vers-
ley et al. (2008) reported only the results on the
three ACE data sets with the MUC evaluation met-
ric. Since we used all the five data sets in our
experiments, for fair comparison, we also include
the MUC results reported in Ng (2004). To the
best of our knowledge, Ng (2004) was the only
prior work which reported MUC metric scores on
all the five data sets. The MUC metric scores of
Versleyet al. (2008) and Ng (2004) are listed in
the row “Versleyet al. 08” and “Ng 04”, respec-
tively, in Table 1. For the B-CUBED metric, we
include Ng (2005) for comparison, although it is
unclear how Ng (2005) interpreted the B-CUBED
metric. The scores are listed in the row “Ng 05”
in Table 2.

Tree kernel SVM learning is time-consuming.
To reduce the training time needed, instead of us-
ing SVM-light-TK, we used a much faster learn-
ing algorithm, J48, which is the WEKA imple-
mentation of the C4.5 decision tree learning algo-
rithm. (Quinlan, 1993; Witten and Frank, 2005).
As tree-valued features and string-valued features
cannot be used with J48, in our experiments we
excluded them from the extended feature set that
BART used to produce state-of-the-art MUC F-
measures on the three ACE corpora. All our re-
sults in this paper were obtained using this re-
duced feature set and J48 decision tree learn-
ing. However, given sufficient computational re-
sources, our proposed approach is able to apply to
any supervised machine learning algorithms.

Our baselines that follow the Soonet al. (2001)
framework, using the reduced feature set and J48
decision tree learning, are shown in the row “SNL-
Style Baseline” in Table 1 and 2. The results
suggest that our baseline system is comparable
to the state of the art. Although in Table 1, the
performance of theSNL-style baseline is slightly
lower than Versleyet al. (2008) on the three ACE
corpora, the computational time needed has been
greatly reduced.

Our MMST algorithm trains and tests on all
pairs of markables. To show the effectiveness of
weight updating of MMST, we built another base-

line which trains and tests on all pairs. The per-
formance of this system is shown in the row “All-
Style Baseline” in Table 1 and 2.

5.3 Results Using Maximum Metric Score
Training

Next, we show the results of using the proposed
maximum metric score training algorithm. From
the description of the algorithm, it can be seen that
there are two parameters in the algorithm. One
parameter isM , the size of the beam. The other
parameter isδ, which controls how much we in-
crease the weight of a training instance in each
iteration.

Since the bestM andδ for the MUC evaluation
metric were not known, we used held-out develop-
ment sets to tune the parameters. Specifically, we
trained classifiers with different combinations of
M andδ on a development training set, and eval-
uated their performances on a development test
set. In our experiments, the development training
set contained 2/3 of the texts in the training set
of each individual corpus, while the development
test set contained the remaining 1/3 of the texts.
After having picked the bestM andδ values, we
trained a classifier on the entire training set with
the chosen parameters. The learnt classifier was
then applied to the test set.

2 4 6 8 10 12 14 16 18 20
52
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60
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68

M

F−
me

as
ure

MMST
SNL−Style Baseline
All−Style Baseline

Figure 3: TuningM on the held-out development
set

To limit the search space, we tuned the two
parameters sequentially. First, we fixedδ =
1, which is equivalent to duplicating each train-
ing instance once in J48, and evaluatedM =
2, 4, 6, . . . , 20. After having chosen the best
M that corresponded to the maximum F-measure,
we fixed the value ofM , and evaluatedδ =
0.1, 0.2, 0.3, . . . , 2.0. Take MUC6 as an exam-
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MUC6 MUC7 BNEWS NPAPER NWIRE
Model R P F R P F R P F R P F R P F

Versleyet al. 08 – – 60.7 65.4 63.0 64.1 67.7 65.8 60.4 65.2 62.7
Ng 04 75.8 61.4 67.9 64.2 60.2 62.1 63.1 67.8 65.4 73.5 63.3 68.0 53.1 60.6 56.6

SNL-Style Baseline 67.0 49.2 56.7 63.0 54.2 58.3 57.4 64.3 60.7 61.6 67.3 64.3 58.6 66.1 62.1
All-Style Baseline 56.9 69.2 62.5 51.5 73.4 60.6 53.0 76.7 62.7 56.3 75.4 64.4 53.0 74.5 61.9

MMST 73.3 59.9 65.9∗∗†† 66.8 59.8 63.1∗∗† 70.5 61.9 65.9∗∗† 69.9 64.0 66.8† 64.7 64.7 64.7∗∗†

M = 6, δ = 1.0 M = 6, δ = 0.7 M = 6, δ = 1.8 M = 6, δ = 0.9 M = 14, δ = 0.7

Table 1: Results for the two MUC and three ACE corpora with MUCevaluation metric

MUC6 MUC7 BNEWS NPAPER NWIRE
Model R P F R P F R P F R P F R P F
Ng 05 – – 57.0 77.1 65.6 62.8 71.2 66.7 59.3 75.4 66.4

SNL-Style Baseline 57.8 74.4 65.1 57.6 76.5 65.7 62.0 74.7 67.8 61.8 70.4 65.8 65.8 75.9 70.5
All-Style Baseline 51.6 86.3 64.6 49.1 90.1 63.6 61.6 83.7 71.0 63.9 74.0 68.6 64.8 80.1 71.7

MMST 62.7 81.5 70.9∗∗†† 61.8 73.6 67.2†† 61.6 83.7 71.0∗∗ 63.1 76.2 69.1∗∗ 64.3 81.0 71.7
M = 6, δ = 1.0 M = 8, δ = 0.8 M = 6, δ = 0.9 M = 14, δ = 0.5 M = 6, δ = 0.1

Table 2: Results for the two MUC and three ACE corpora withB3 evaluation metric

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
52

54

56

58

60

62

64
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68
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F−
me

as
ure

MMST
SNL−Style Baseline
All−Style Baseline

Figure 4: Tuningδ on the held-out development
set

ple. The results of tuningM on MUC6 are shown
in Figure 3. The maximum F-measure is obtained
whenM = 4 andM = 6. On all the differentM
values we have tried, MMST outperforms both the
SNL-style baseline and theAll-style baseline on
the development test set. We then fixedM = 6,
and evaluated differentδ values. The results are
shown in Figure 4. The best F-measure was ob-
tained whenδ = 1.0. Again, on all the different
δ values we have tried, MMST outperforms both
baselines on the development test set.

The rows “MMST” in Table 1 and 2 show the
performance of MMST on the test sets, with the
tuned parameters indicated. In our experiments,
the statistical significance test was conducted as
in Chinchor (1995).∗ and∗∗ stand forp < 0.05
andp < 0.01 over theSNL-style baseline, respec-
tively. † and†† stand forp < 0.05 andp < 0.01
over theAll-style baseline, respectively.

For the MUC metric, when compared to the
All-style baseline, MMST gains 3.4, 2.5, 3.2, 2.4,
and 2.8 improvement in F-measure on MUC6,
MUC7, BNEWS, NPAPER, and NWIRE, respec-
tively. The experimental results clearly show that
MMST gains not only consistent, but also sta-
tistically significant improvement over both the
SNL-style baseline and theAll-style baseline in all
combinations (five data sets and two baselines) on
the MUC metric, except that it is not significant
(p = 0.06) over theSNL-style baseline in NPA-
PER. As for the B-CUBED metric, MMST gains
significant improvement in F-measure on MUC6
and MUC7 data sets, while its performance on
the three ACE data sets are comparable to theAll-
style baseline.

5.4 Discussion

To see how MMST actually updates the weight,
we use the MUC metric as an example. Under the
experimental settings, it takes 6 – 9 iterations for
MMST to stop on the five data sets. The number
of explored states in the binary search tree, includ-
ing the root, is 33, 39, 25, 29, and 75 on MUC6,
MUC7, BNEWS, NPAPER, and NWIRE, respec-
tively. It is instructive to find out the final weight
of each instance. Take MUC6 as an example, the
number of positive instances with weight 1, 2, 3,
and 4 are 5,204, 1,568, 1,379, and 1,844, respec-
tively, while the number of negative instances with
weight 1 and 2 are 503,141 and 1,755, respec-
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tively. Counting the weighted number of instances
(e.g., an instance with weight 2 is equivalent to 2
instances), we have 19,853 positive and 506,651
negative training instances. This changes the ratio
of the positive instances from1.9% to 3.8%. As a
by-product, MMST reduces data skewness, while
using all possible NP pairs for training to keep as
much information as possible.

The change of weights of the training instances
is equivalent to the change of distribution of the
training instances. This effectively changes the
classification hypothesis to the one that tends to
yield higher evaluation metric score. Take the fol-
lowing sentence in the MUC6 data set as an ex-
ample:

In a news release,the company said the new
name more accurately reflectsits focus on high-
technology communications, including business
and entertainment software, interactive media
and wireless data and voice transmission.

In the above example, the pronounits is coref-
erential to the antecedent NPthe company. The
baseline classifier gives a probability of 0.02 that
the two NPs are coreferential. The pair is clas-
sified wrongly and none of the other pairs in the
article can link the two NPs together through clus-
tering. However, with MMST, this probability in-
creases to 0.54, which leads to the correct classi-
fication. This is because the baseline classifier is
not good at predicting in the case when the sec-
ond markable is a pronoun. In the above exam-
ple, its can have another candidate antecedentthe
new name. There are far more negative training
instances than positive ones for this case. In fact,
in the induced decision tree by the baseline, the
leaf node corresponding to the pairthe company
– its has 7,782 training instances, out of which
only 175 are positive. With MMST, however,
these numbers decrease to 83 and 45, respectively.
MMST also promotes the AnaphorIs Pronoun
feature to a higher level in the decision tree. Al-
though we use decision tree to illustrate the work-
ing of the algorithm, MMST is not limited to tree
learning, and can make use of any learning algo-
rithms that are able to take advantage of instance
weighting.

It can also be seen that with the B-CUBED
metric, MMST gains improvement on MUC6 and

MUC7, but not on the three ACE corpora. How-
ever, the results of MMST on the three ACE cor-
pora with the B-CUBED evaluation metric are at
least comparable with theAll-style baseline. This
is because we always pick the classifier which cor-
responds to the maximum evaluation metric score
on the training set and the classifier correspond-
ing to theAll-style baseline is one of the candi-
dates. In addition, our MMST approach improves
upon state-of-the-art results (Ng, 2004; Ng, 2005;
Versley et al., 2008) on most of the five standard
benchmark corpora (two MUC corpora and three
ACE corpora), with both the link-based MUC
metric and the mention-based B-CUBED metric.

Finally, our approach performs all the F-
measure maximization during training, and is very
fast during testing, since the output of the MMST
algorithm is a standard classifier. For example,
on the MUC6 data set with the MUC evaluation
metric, it took 1.6 hours and 31 seconds for train-
ing and testing, respectively, on an Intel Xeon
2.33GHz machine.

6 Conclusion

In this paper, we present a novel maximum met-
ric score training approach comprising the use of
instance weighting and beam search to maximize
the chosen coreference metric score on the train-
ing corpus during training. Experimental results
show that the approach achieves significant im-
provement over the baseline systems. The pro-
posed approach improves upon state-of-the-art re-
sults on most of the five standard benchmark cor-
pora (two MUC corpora and three ACE corpora),
with both the link-based MUC metric and the
mention-based B-CUBED metric.
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