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Abstract

Route directions are natural language
(NL) statements that specify, for a given
navigational task and an automatically
computed route representation, a se-
quence of actions to be followed by the
user to reach his or her goal. A corpus-
based approach to generate route direc-
tions involves (i) the selection of elements
along the route that need to be mentioned,
and (ii) the induction of a mapping from
route elements to linguistic structures that
can be used as a basis for NL generation.

This paper presents an Expectation-Maxi-
mization (EM) based algorithm that aligns
geographical route representations with
semantically annotated NL directions, as
a basis for the above tasks. We formu-
late one basic and two extended models,
the latter capturing special properties of
the route direction task. Although our
current data set is small, both extended
models achieve better results than the sim-
ple model and a random baseline. The
best results are achieved by a combination
of both extensions, which outperform the
random baseline and the simple model by
more than an order of magnitude.

1 Introduction

The purpose of route directions is to inform a per-
son, who is typically not familiar with his cur-
rent environment, of how to get to a designated
goal. Generating such directions poses difficul-
ties on various conceptual levels such as planning

the route, selecting landmarks (i.e., recognizable
buildings or structures) and splitting the task into
appropriate single instructions of how to navigate
along the route using the selected landmarks as
reference points.

Previously developed natural language genera-
tion (NLG) systems make use of simple heuristics
for the task of content selection for route direc-
tions (Dale et al., 2005; Roth and Frank, 2009).
In our work, we aim for a corpus-based approach
that can be flexibly modeled after natural, human-
produced directions for varying subtasks (e.g., in-
door vs. outdoor navigation), and that facilitates
multilingual extensions. By employing salient
landmarks and allowing for variation in NL real-
ization, such a system is expected to generate nat-
ural sounding directions that are easier to memo-
rize and easier to follow than directions given by
a classical route planner or navigation system.

NLG for route directions crucially differs from
other generation tasks such as document summa-
rization (Mani, 2001) in that the selection and or-
dering of input structures for language generation
is heavily situation-dependent, i.e., dependent on
the specific properties of a given route to be fol-
lowed.

In line with a corpus-based NLG approach, we
propose to automatically align geographical route
representations as produced by a route planner
with an annotated corpus of NL directions given
by humans for the respective routes. The induced
alignments will (i) serve to identify which ele-
ments of a route to select for verbalization, and (ii)
deliver correspondences between route segments
and linguistic input structures that can be used as
a basis for statistical NL generation. We investi-
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gate a minimally supervised method for inducing
such alignments to ensure maximal flexibility for
adaptations to different scenarios.

The remainder of this paper is structured as fol-
lows: In Section 2 we discuss related work. Sec-
tion 3 introduces the task, and the representation
formats and resources we use. Section 4 intro-
duces a basic Expectation-Maximization model
and two extensions for the alignment task. Sec-
tion 5 outlines the experiments and presents the
evaluation results. In Section 6 we conclude and
discuss future work.

2 Related Work

Various aspects of route directions have been sub-
ject of research in computational linguistics, rang-
ing from instructional dialogues in MapTask (An-
derson et al., 1991) to recent work on learning
to follow route directions (Vogel and Jurafsky,
2010). However, little work has been done on
generating NL directions based on data from Geo-
graphical Information Systems (Dale et al., 2005;
Roth and Frank, 2009).

NLG systems are typically realized as pipeline
architectures (Reiter and Dale, 2000). As a first
step, they compute a set of messages that rep-
resent the information to be conveyed to a user,
given a specific communicative task (Content Se-
lection). Selecting appropriate content for a task
can be defined heuristically, by manually crafted
rules or by learning content selection rules auto-
matically from corpus data. Previous work by
Dale et al. (2005) and Roth and Frank (2009)
on generating NL directions used hand-crafted
heuristics. Duboue and McKeown (2003) were
the first to model content selection as a machine
learning task, in which selection rules are induced
from pairs of human-written text and associated
sets of database entries. They induce baseline se-
lection rules from exact matches of NL expres-
sions with database entries; in addition, class-
based rules are computed by matching database
entry types against NL expressions, using statis-
tical co-occurrence clusters. Barzilay and Lapata
(2005) incorporate the interplay between multiple
events and entities when learning content selec-
tion rules using a special link function.

Recent work by Liang et al. (2009) focuses on

modeling grounded language, by aligning real-
world representations with NL text that references
corresponding world states. They show how a
generative model can be used to segment text into
utterances and to identify relevant facts with min-
imal supervision. Both tasks are handled jointly
in a unified framework by training a hierarchical
semi-Markov model on pairs of text and world
states, thereby modeling sequencing effects in the
presentation of facts. While their work is not pri-
marily concerned with NLG, the learned corre-
spondences and their probabilities could be ap-
plied to induce content selection rules and lin-
guistic mappings in a NLG task. The approach is
shown to be effective in scenarios typical for NLG
settings (weather forecasts, RoboCup sportscast-
ing, NFL recaps) that differ in the amount of avail-
able data, length of textual descriptions, and den-
sity of alignments.

In the following, we will adapt ideas from their
EM-based approach to align (segments of) route
representations and NL route directions in a min-
imally supervised manner. We will investigate in-
creasingly refined models that are tailored to the
nature of our task and underlying representations.
In particular, we extend their approach by exploit-
ing semantic markup in the NL direction corpus.

3 Aligning Routes and Directions

In this work we explore the possibility of using
an implementation of the EM algorithm (Demp-
ster et al., 1977) to learn correspondences between
(segments of) the geographical representation of
a route and linguistic instructions of how to fol-
low this route in order to arrive at a designated
goal. We are specifically interested in identifying
which parts of a route are realized in natural lan-
guage and which kinds of semantic constructions
are used to express them.

As a data source for inducing such correspon-
dences we use a parallel corpus of route repre-
sentations and corresponding route directions that
were collected in a controlled experiment for nav-
igation in an urban street network (cf. Schuldes
et al. (2009)). For the alignment task, the routes
were compiled to a specification format that has
been realized in an internal version of an online
route planner. Figure 1 displays the route rep-
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Figure 1: A (partial) route representation of the route segment displayed on the right.

resentation for a small route segment (a junction
connecting ’Hauptstraße’ and ’Leyergasse’). The
corresponding part of a NL route direction is dis-
played in Figure 2. The route representation and
the NL direction share some common concepts:
For example, both contain references to a land-
mark called “Sudpfanne” (marked as [1]) and a
street named “Leyergasse” (marked as [2]). Using
pairs of route representations and directions, we
aim to automatically induce alignments between
such correspondences. In the following we de-
scribe our data in more detail.

3.1 Route Representation Format
The route representation format we use (illus-
trated in Figure 1) is an extended version of
the OpenGIS Location Service (OpenLS) Imple-
mentation Standards, a set of XML-based rep-
resentations specified by the Open Geospatial
Consortium1. Previous approaches on extend-
ing the latter with landmarks in an interopera-

1http://www.opengeospatial.org/standards/is

ble way have been presented by Neis and Zipf
(2008). The representation format of our data
has been developed in close collaboration with re-
searchers from Geoinformatics at Heidelberg Uni-
versity2 and adopts ideas previously proposed in
the Cognitive OpenLS specification by Hansen et
al. (2006). The resulting specification will be im-
plemented in an extended (internal) version of the
online route planner OpenRouteService.org.

Our work revolves around two kinds of ele-
ments in this format: so-called maneuvers, i.e., el-
ements that describe a decision point including the
required action and the following route segment,
and landmarks that occur along the route. For the
alignment task we focus on the following types of
attributes that are part of the XML specification,
specified here as Attribute (Element):

directionOfTurn (Maneuver) – the direction of
movement for the current maneuver, i.e.,
“left”, “right” or “straight”

2Chair of GIScience, Alexander Zipf,
http://www.geog.uni-heidelberg.de/lehrstuehle/gis/
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Figure 2: Directions for the route segment displayed in Figure 1 annotated with frame-semantic markup
and alignment information. The directions translate to “You start walking from Hauptstraße towards
Gaststätte Sudpfanne, then you turn right onto Leyergasse”

junctionType (Maneuver) – the type of junction
at the current maneuver, e.g., “intersection”,
“crossing”

name (JunctionCategory) – the name of the
junction at the current maneuver, e.g.,
“Hauptstraße/Leyergasse”

name (NextSegment) – the name of the street of
the next route segment, e.g., “Hauptstraße”

streetName (RouteBranch) – the street name of
a branch along which the route continues,
e.g., “Leyergasse”

streetName (NoRouteBranch) – the street name
of a branch that is not part of the route, e.g.,
“Kisselgasse”

name (Landmark) – the name of a landmark,
e.g., “Hotel Sudpfanne”

spatialRelation (UsedLandmark) – the spatial
relation between a landmark and the current
maneuver, e.g., “left”, “right”, “before”

3.2 A Parallel Corpus of Route Directions

The corpus of route directions used in this work
is a subset of the data collected by Schuldes et al.
(2009) in a desk-based experiment. To elicit NL
route directions, subjects were shown a web appli-
cation that guided them along a route by means of
a 2D animation. Subsequently they had to write
NL route directions in German for the shown

routes. The subjects were allowed to use all infor-
mation displayed by the web application: named
places, buildings, bridges and street names, etc.
The resulting directions were POS-tagged with
TreeTagger (Schmid, 1997), dependency-parsed
with XLE (Maxwell and Kaplan, 1993), and man-
ually revised. Additionally, we annotated frame-
semantic markup (Fillmore et al., 2003) and gold
standard alignments to the route representation us-
ing the SALTO annotation tool (Burchardt et al.,
2006).

Frame semantic markup. The texts are an-
notated with an inventory of 4 frames relevant
for directions (SELF MOTION, PERCEPTION, BE-
ING LOCATED, LOCATIVE RELATION), with se-
mantic roles (frame elements) such as DIREC-
TION, GOAL, PATH, LOCATION. Figure 2 il-
lustrates a typical example for the use of the
SELF MOTION frame, once with the elements
SOURCE and DIRECTION, and once with the el-
ements DIRECTION and GOAL. Our alignment
model uses the frame semantic annotation as
structuring information.

Gold standard alignments. For evaluation we
constructed gold alignments. We asked two an-
notators to align text parts with corresponding
attributes in the respective route representation3.
The information about corresponding attributes
was added to a single word by manually insert-

3The alignments have not been double annotated, hence
no measure for inter-annotator agreement can be provided.
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#S #W #FE #aligned FE
avg. per direction 8 98 28 14 (50%)
overall 412 5298 1519 750

Table 1: Corpus statistics: number of sentences
(S), words (W), frame elements (FE) and align-
ments.

#attributes #aligned attr.
avg. per route 115 14 (12%)
overall 921

Table 2: Corpus statistics: total number and per-
centage of relevant attribute alignments.

ing XPATH expressions that unambiguously refer
to the aligned attribute in the route representation
format. For learning the alignment model, the an-
notations were spread to all words in the span of
the respective frame element.

Corpus statistics. We made use of a corpus of
54 NL directions collected for 8 routes in an urban
street network. Tables 1 and 2 give some statis-
tics about the number of words (W) and frame
elements (FE) in the parallel corpus. Comparing
the total number of relevant attributes (as listed in
Section 3.1) and attributes annotated in the gold
alignments (aligned attr.) we note that only 12%
are actually mentioned in NL directions. Thus it
is necessary to select the most salient attributes to
avoid the generation of overly redundant text.

4 Alignment Model

For the induction of alignments between (parts of)
route structures and semantic representations, we
adopt ideas from the models presented in Liang et
al. (2009) (cf. Section 2).

We start from a basic frame alignment model.
It specifies a conditional probability distribution
p(f |a) for the alignment to a frame element f of
type ft (e.g., source, goal, direction) in the frame-
semantic annotation layer given an attribute a of
type at (e.g., streetName, directionOfTurn) in the
route representation format. Note that this model
does not take into account the actual value av of
the attribute a nor the words that are annotated as
part of f . We assume that the frame annotation
represents a reliable segmentation for this align-
ment. This allows us to omit modeling segmenta-

tion explicitly.
As extensions to the basic frame alignment

model, we specify two further models that cap-
ture properties that are specific to the task of di-
rection alignment. As route directions are typi-
cally presented in a linear order with respect to
the route, we incorporate an additional distance
model λ in our alignment. We further account
for word choice within a frame element as an ad-
ditional factor. The word choice model p(w|a)
will exploit attribute type and value information
in the route representations that are reflected in
word choice in the linguistic instructions. Both
extensions are inspired by and share similarities
with models that have been successfully applied
in work on text alignment for the task of machine
translation (Vogel et al., 1996; Tiedemann, 2003).

Our full model is a distribution over frame el-
ements f and words w that factorizes the three
above mentioned parts under the assumption of
independence between each component and each
attribute:

p(f, w|a) = p(f |a)λ(dist(f, a)) p(w|a) (1)

The individual models are described in more
detail in the following subsections.

4.1 Frame Alignment Model

This basic frame alignment model specifies the
probabilities p(f |a) for aligning an attribute a of
type at (i.e., one of the types listed in Section 3.1)
to a frame element f labeled as type ft. This
alignment model is initialized as a uniform distri-
bution over f and trained using a straight-forward
implementation of the EM algorithm, following
the well-known IBM Model 1 for alignment in
machine translation (Brown et al., 1993). The ex-
pectation step (E-step) computes expected counts
given occurrences of ft and at under the assump-
tion that all alignments are independent 1:1 corre-
spondences:

count(ft, at) =

∑
{〈f ′,a′〉|f ′

t=ft∧a′t=at} p(f
′|a′)

∑
{〈f ′,y〉|f ′

t=ft} p(f
′|y)

(2)
The probabilities are re-estimated to maximize

the overall alignment probability by normalizing
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the estimated counts (M-step):

p(f |a) = count(ft, at)∑
x count(xt, at)

(3)

4.2 Distance Model
We hypothesize that the order of route directions
tends to be consistent with the order of maneuvers
encoded by the route representation. We include
this information in our alignment model by defin-
ing a distance measure dist(f, a) between the rel-
ative position of a frame element f in the text and
the relative position of an attribute a in the route
representation. The probabilities are specified in
form of a distance distribution λ(i) over normal-
ized distances i ∈ [0 : 1] and learned during EM
training. The weights are initialized as a uniform
distribution and re-estimated in each M-step by
normalizing the estimated counts:

λ(i) =

∑
{〈x,y〉| dist(x,y)=i} count(x, y)∑

{〈x,y〉} count(x, y)
(4)

4.3 Word Choice Model
We define a word choice model for word us-
age within a frame element. This additional fac-
tor is necessary to distinguish between various
occurrences of the same type of frame element
with different surface realizations. For exam-
ple, assuming that the frame alignment model
correctly aligns directionOfTurn attributes to a
frame element of type DIRECTION, the word
choice model will provide an additional weight
for the alignment between the value of an attribute
(e.g., “left”) and the corresponding words within
the frame element (e.g., “links”). Similarly to
the word choice model within fields in (Liang
et al., 2009), our model specifies a distribution
over words given the attribute a. Depending on
whether the attribute is typed for strings or cate-
gorial values, two different distributions are used.

String Attributes. For string attributes, we de-
termine a weighting factor based on the longest
common subsequence ratio (LCSR). The reason
for using this measure is that we want to allow for
spelling variants and the use of synonymous com-
mon nouns in the description of landmarks and
street names (e.g., “Main St.” vs. “Main Street”,

“Texas Steakhouse” vs. “Texas Restaurant”). The
weighting factor pstr(w|a) for an alignment pair
〈f, a〉 is a constant in the E-step and is calculated
as the LCSR of the considered attribute value av
and the content words w = cw(f) in an anno-
tated frame element f divided by the sum over the
LCSR values of all alignment candidates for a:

pstr(w|a) =
LCSR(av, w)∑

x LCSR(av, cw(x))
(5)

Categorial Attributes. We define categorial at-
tributes as attributes that can only take a finite
and prescribed set of values. For these we do
not expect to find matching strings in NL direc-
tions as the attribute values are defined indepen-
dently of the language in use (e.g., values for di-
rectionOfTurn are “left”, “right” and “straight”.
However, the directions in our data set are in Ger-
man, thus containing the lexemes “links”, “rechts”
und “geradeaus” instead). As the set of values
{av ∈ Dat} for a categorial attribute type at is
finite, we can define and train probability distri-
butions over words for each of them during EM
training. The models are initialized as uniform
distributions and are used as a weighting factor
in the E-Step. We re-calculate the parameters of
a distribution pcat(w|a) in each EM iteration by
normalizing the estimated counts during M-step:

pcat(w|a) =
count(av, w)∑
x count(av, x)

(6)

5 Experiments and Results

5.1 Setting
We test the performance of different combinations
of these EM-based models on our data, starting
from a simple baseline model (EM), combined
with the distance (EM+dst) and word choice
models (EM+wrd) and finally the full model
(Full). We perform additional experiments to ex-
amine the impact of different corpus sizes and an
alignment threshold (+thld).

EM is a baseline model that consists of a simple
EM implementation for aligning attributes
and frame elements (equation (3)).

EM+dst consists of the simple EM model and the
additional distance factor (equation (4)).
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Model P (+thld) R (+thld) F1 (+thld)
Random 2.7 (2.7) 3.9 (3.9) 3.2 (3.2)
EM 2.0 (3.6) 2.9 (3.7) 2.34 (3.6)
EM+dst 7.3 (11.6) 10.8 (11.7) 8.7 (11.6)
EM+wrd 26.8 (36.3) 39.5 (35.5) 32.0 (35.9)
Full 28.9 (38.9) 42.5 (37.9) 34.4 (38.4)

Table 3: Precision (P), Recall (R) and F1 measure
results with and without threshold (+thld) on the
alignment task (all numbers in percentages).

EM+wrd consists of the simple EM model with
the word choice model (equations (5) and
(6), respectively).

Full is the full alignment model including dis-
tance and word choice as described in Sec-
tion 4 (cf. equation (1)).

We use the data set described in Section 3. The
predictions made by the different models are eval-
uated against the gold standard alignments (cf. Ta-
bles 1 and 2). We run a total number of 30 iter-
ations4 of EM training on the complete data set
to learn the parameters of the probability distri-
butions. From the set of all possible 1-to-1 align-
ments, we select the most probable alignments ac-
cording to the model in a way that no attribute and
no frame element is aligned twice.

5.2 Results

We measure precision as the number of predicted
alignments also annotated in the gold standard di-
vided by the total number of alignments generated
by our model. Recall is measured as the number
of correctly predicted alignments divided by the
total number of alignment annotations. As base-
lines we consider a random baseline (obtained
from the average results measured over 1,000 ran-
dom alignment runs) and the simple EM model.

The results in Table 3 show that the simple
EM model performs below the random baseline.
The individual extended models achieve signifi-
cant improvement over the simple model and the
random baseline. While the distance model has a
smaller impact, the influence of the word choice

4This number was determined by experiments as a gen-
eral heuristics.

# directions Precison Recall F1

1 28.94% 42.31% 34.38%
2 29.04% 41.90% 34.31%
3 29.01% 42.18% 34.38%
4 28.75% 41.81% 34.07%
5 29.36% 42.69% 34.79%
6 30.18% 43.91% 35.77%

Table 4: Average results when using only a spe-
cific number of directions for each route with the
model Full (-thld).

model is considerable. Applying the full model
yields further performance gains. We note that for
all models recall is higher compared to precision.

One of the reasons for this phenomenon may be
that the EM-based models align as many attributes
as possible to frame elements in the route direc-
tions. In our gold standard, however, only around
12% of all relevant attributes correspond to frame
elements in the route directions (cf. Section 3.2).
We estimate this quota from a part of the corpus
and use it as an alignment threshold, i.e., for eval-
uation we select the best alignments proposed by
the models, until we reach the threshold. With this
we achieve a F1 measure of 38.40% in a 6-fold
cross validation test. This represents an improve-
ment of 3.97 points and considerably boosts preci-
sion, yielding overall balanced precision (38.90%)
and recall (37.92%).

A general problem of the current setup is the
small amount of available data. With a total of 54
route directions, the data consists of 6 to 8 direc-
tions for each route. We compute a learning curve
by using only exactly 1 to 6 directions per route to
examine whether performance improves with in-
creasing data size. The results are computed as
an average over multiple runs with different data
partitions (see Table 4). The results indicate small
but consistent improvements with increasing data
sizes, however, the differences are minimal. Thus
we are not able to conclude at this point whether
performance increases are possible with the addi-
tion of more data.

5.3 Error Analysis
In an error analysis on the results of the full model,
we found that 363 out of 784 (46%) misalign-
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ments are related to attributes not aligned in our
gold standard. This is due to the fact that not
all relevant attributes are realized in natural lan-
guage directions. By addressing this problem in
the model Full+threshold, we are able to reduce
these errors, as evidenced by a gain of almost 10
points in precision and 4 points in F1 measure.

We further observe that the word choice model
does not correctly reflect the distribution of cat-
egorial attributes in the parallel corpus. In the
data, we observe that humans often aggregate
multiple occurrences of the same attribute value
into one single utterance. An example of such a
phenomenon can be seen with the attribute type
’directionOfTurn’: Even though “straight” is the
most common value for this attribute, it is only re-
alized in directions in 33 (5%) cases (compared
to 65% and 47% for “left” and “right” respec-
tively). While our EM implementation maximizes
the likelihood for all alignment probabilities based
on expected counts, many pairs are not – or not
frequently – found in the corpus. This results in
the model often choosing incorrect alignments for
categorial attributes and makes up for 23% of the
misaligned attributes in total.

We found that further 5% of the attributes are
misaligned with frame elements containing pro-
nouns that actually refer to a different attribute.
As our word choice model does not account for
the use of anaphora, none of the affected frame
elements are aligned correctly. Given the genre
of our corpus, integrating simple heuristics to re-
solve anaphora (e.g., binding to the closest pre-
ceding mention) could solve this problem for the
majority of the cases.

6 Conclusion

We presented a weakly supervised method for
aligning route representations and natural lan-
guage directions on the basis of parallel corpora
using EM-based learning. Our models adopt ideas
from Liang et al. (2009) with special adaptations
to the current application scenario. As a major
difference to their work, we make use of frame-
semantic annotations on the NL side as a basis for
segmentation.

While we can show that the extended mod-
els significantly outperform a simple EM-based

model, the overall results are still moderate. We
cannot draw a direct comparison to the results pre-
sented in Liang et al. (2009) due to the different
scenarios and data sets. However, the corpus they
used for the NFL recaps scenario is the closest to
ours in terms of available data size and percentage
of aligned records (in our case attributes). For this
kind of corpus, they achieve an F1 score of 39.9%
with the model that is closest to ours (Model 2’).
Their model achieves higher performance for sce-
narios with more available data and a higher per-
centage of alignments. Thus we expect that our
model benefits from additional data sets, which
we plan to gather in web-based settings.

Still, we do not expect to achieve near to per-
fect alignments due to speaker variation, a factor
we also observe in the current data. As our ul-
timate goal is to generate NL instructions from
given route representations, we can nevertheless
make use of imperfectly aligned data for the com-
pilation of high-confidence rules to compute se-
mantic input structures for NLG. Following previ-
ous work by Barzilay and Lee (2002), we can also
exploit the fact that our data consists of multiple
directions for each route to identify alternative re-
alization patterns for the same route segments. In
addition, (semi-)supervised models could be used
to assess the gain we may achieve in comparison
to the minimally supervised setting.

However, we still see potential for improv-
ing our current models by integrating refinements
based on the observations outlined above: Miss-
ing alignment targets on the linguistic side – es-
pecially due to anaphora, elliptical or aggregating
constructions – constitute the main error source.
We aim to capture these phenomena within the
linguistic markup in order to provide hidden align-
ment targets. Also, our current model only consid-
ers frame elements as alignment targets. This can
be extended to include their verbal predicates.
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