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Abstract
Fact collections are mostly built using
semi-supervised relation extraction tech-
niques and wisdom of the crowds meth-
ods, rendering them inherently noisy. In
this paper, we propose to validate the re-
sulting facts by leveraging global con-
straints inherent in large fact collections,
observing that correct facts will tend to
match their arguments with other facts
more often than with incorrect ones. We
model this intuition as a graph-ranking
problem over a fact graph and explore
novel random walk algorithms. We
present an empirical study, over a large set
of facts extracted from a 500 million doc-
ument webcrawl, validating the model and
showing that it improves fact quality over
state-of-the-art methods.

1 Introduction
Fact bases, such as those contained in Freebase,
DBpedia, KnowItAll, and TextRunner, are increas-
ingly burgeoning on the Internet, in government,
in high tech companies and in academic laborato-
ries. Bar the accurate manual curation typified by
Cyc (Lenat, 1995), most fact bases are built us-
ing either semi-supervised techniques or wisdom
of the crowds techniques, rendering them inher-
ently noisy. This paper describes algorithms to
validate and re-rank fact bases leveraging global
constraints imposed by the semantic arguments
predicated by the relations.

Facts are defined as instances of n-ary typed re-
lations such as acted-in〈movie, actor〉, director-
of〈movie, director〉, born-in〈person, date〉, and
buy〈person, product, person〉. In all but very
small fact bases, relations share an argument
type, such as movie for the relations acted-in and
director-of in the above example. The hypothesis

explored in this paper is that when two fact in-
stances from two relations share the same value
for a shared argument type, then the validity of
both facts should be increased. Conversely, we
also hypothesize that an incorrect fact instance
will tend to match a shared argument with other
facts far less frequently. For example, consider
the following four facts from the relations acted-
in, director-of, and is-actor:

t1: acted-in〈Psycho, Anthony Perkins〉
t2: *acted-in〈Walt Disney Pictures, Johnny Depp〉
t3: director-of〈Psycho, Alfred Hitchcock〉
t4: is-actor〈Anthony Perkins〉

Our confidence in the validity of t1 increases
with the knowledge of t3 and t4 since the argu-
ment movie is shared with t3 and actor with t4.
Similarly, t1 increases our confidence in the va-
lidity of t3 and t4. For t2, we expect to find few
facts that will match a movie argument with Walt
Disney Pictures. Facts that share the actor argu-
ment Johnny Depp with t2 will increase its valid-
ity, but the lack of matches on its movie argument
will decrease its validity.

In this paper, we present FactRank, which for-
malizes the above intuitions by constructing a fact
graph and running various random walk graph-
ranking algorithms over it to re-rank and validate
the facts. A collection of facts is modeled in the
form of a graph where nodes are fact instances and
edges connect nodes that have the same value for a
shared argument type (e.g., t1 would be linked by
an edge to both t3 and t4.) Given a graph represen-
tation of facts, we explore various random walk
algorithms to propagate our confidence in individ-
ual facts through the web of facts. We explore
algorithms such as PageRank (Page et al., 1999)
as well as propose novel algorithms that lever-
age several unique characteristics of fact graphs.
Finally, we present an empirical analysis, over a
large collection of facts extracted from a 500 mil-
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lion document webcrawl, supporting our model
and confirming that global constraints in a fact
base can be leveraged to improve the quality of
the facts. Our proposed algorithms are agnostic to
the sources of a fact base, however our reported
experiments were carried over a state-of-the-art
semi-supervised extraction system. In summary,
the main contributions of this paper are:

• We formalize the notion of ranking facts in
a holistic manner by applying graph-based
ranking algorithms (Section 2).

• We propose novel ranking algorithms using
random walk models on facts (Section 3).

• We establish the effectiveness of our ap-
proach through an extensive experimental
evaluation over a real-life dataset and show
improvements over state-of-the-art ranking
methods (Section 4).

2 Fact Validation Revisited

We denote an n-ary relation r with typed argu-
ments t1, t2, · · · , tn as r〈t1, t2, · · · tn〉. In this pa-
per, we limit our focus to unary and binary re-
lations. A fact is an instance of a relation. For
example, acted-in〈Psycho, Anthony Perkins〉 is a
fact from the acted-in〈movie, actor〉 relation.

Definition 2.1 [Fact base]: A fact base is a col-
lection of facts from several relations. Textrunner
and Freebase are example fact bases (note that
they also contain knowledge beyond facts such as
entity lists and ontologies.) 2

Definition 2.2 [Fact farm]: A fact farm is a sub-
set of interconnected relations in a fact base that
share arguments among them. 2

For example, consider a fact base consisting of
facts for relations involving movies, organiza-
tions, products, etc., of which the relations acted-
in and director-of could form a MOVIES fact farm.

Real-world fact bases are built in many ways.
Semi-supervised relation extraction methods in-
clude KnowItAll (Etzioni et al., 2005), TextRun-
ner (Banko and Etzioni, 2008), and many others
such as (Riloff and Jones, 1999; Pantel and Pen-
nacchiotti, 2006; Paşca et al., 2006; Mintz et al.,
2009). Wisdom of the crowds methods include

DBpedia (Auer et al., 2008) and Freebase which
extracts facts from various open knowledge bases
and allow users to add or edit its content.

Most semi-supervised relation extraction meth-
ods follow (Hearst, 1992). Starting with a rela-
tively small set of seed facts, these extractors it-
eratively learn patterns that can be instantiated to
identify new facts. To reflect their confidence in
an extracted fact, extractors assign an extraction
score with each fact. Methods differ widely in
how they define the extraction score. Similarly,
many extractors assign a pattern score to each
discovered pattern. In each iteration, the high-
est scoring patterns and facts are saved, which are
used to seed the next iteration. After a fixed num-
ber of iterations or when a termination condition
is met, the instantiated facts are ranked by their
extraction score.

Several methods have been proposed to gen-
erate such ranked lists (e.g., (Riloff and Jones,
1999; Banko and Etzioni, 2008; Matuszek et al.,
2005; Pantel and Pennacchiotti, 2006; Paşca et al.,
2006). In this paper, we re-implement the large-
scale state-of-the-art method proposed by Paşca et
al. (2006). This pattern learning method generates
binary facts and computes the extraction scores of
a fact based on (a) the scores of the patterns that
generated it, and (b) the distributional similarity
score between the fact and the seed facts. We
computed the distributional similarity between ar-
guments using (Pantel et al., 2009) over a large
crawl of the Web (described in Section 4.1). Other
implementation details follow (Paşca et al., 2006).

In our experiments, we observed some interest-
ing ranking problems as illustrated by the follow-
ing example facts for the acted-in relation:

id: Facts (#Rank)

t1: acted-in〈Psycho, Anthony Perkins〉 (#26)
t2: *acted-in〈Walt Disney Pictures, Johnny Depp〉 (#9)

Both t1 and t2 share similar contexts in documents
(e.g., 〈movie〉 film starring 〈actor〉 and 〈movie〉
starring 〈actor〉), and this, in turn, boosts the
pattern-based component of the extraction scores
for t1. Furthermore, due to the ambiguity of the
term psycho, the distributional similarity-based
component of the scores for fact t2 is also lower
than that for t1.
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Relations id : Facts

acted-in t1 : 〈Psycho, Anthony Perkins〉
t2 : *〈Walt Disney Pictures, Johnny Depp〉

director-of t3 : 〈Psycho, Alfred Hitchcock〉
producer-of t4 : 〈Psycho, Hilton Green〉
is-actor t5 : 〈Anthony Perkins〉

t6 : 〈Johnny Depp〉
is-director t7 : 〈Alfred Hitchcock〉
is-movie t8 : 〈Psycho〉

Table 1: Facts share arguments across relations
which can be exploited for validation.

Our work in this paper is motivated by the
following observation: the ranked list generated
by an individual extractor does not leverage any
global information that may be available when
considering a fact farm in concert. To under-
stand the information available in a fact farm,
consider a MOVIES fact farm consisting of rela-
tions, such as, acted-in, director-of, producer-of,
is-actor, is-movie, and is-director. Table 1 lists
sample facts that were generated in our experi-
ments for these relations1. In this example, we
observe that for t1 there exist facts in foreign re-
lations, namely, director-of and producer-of that
share the same value for the Movie argument, and
intuitively, facts t3 and t4 add to the validity of t1.
Furthermore, t1 shares the same value for the Ac-
tor argument with t5. Also, t3, which is expected
to boost the validity of t1, itself shares values for
its arguments with facts t4 and t7, which again in-
tuitively adds to the validity of t1. In contrast to
this web of facts generated for t1, the fact t2 shares
only one of its argument value with one other fact,
i.e., t6.

The above example underscores an important
observation: How does the web of facts gener-
ated by a fact farm impact the overall validity of
a fact? To address this question, we hypothesize
that facts that share arguments with many facts are
more reliable than those that share arguments with
few facts. To capture this hypothesis, we model a
web of facts for a farm using a graph-based repre-
sentation. Then, using graph analysis algorithms,
we propagate reliability to a fact using the scores
of other facts that recursively connect to it.

Starting with a fact farm, to validate the facts in
each consisting relation, we:

1The is-actor〈actor〉, is-director〈director〉, and is-movie〈movie〉 rela-
tions are equivalent to the relation is-a〈c-instance, class〉 where class ∈
{actor, director,movie}.

(1) Identify arguments common to relations in the farm.
(2) Run extraction methods to generate each relation.
(3) Construct a graph-based representation of the extracted

facts using common arguments identified in Step (1)
(see Section 3.1 for details on constructing this graph.)

(4) Perform link analysis using random walk algorithms
over the generated graph, propagating scores to each
fact through the interconnections (see Section 3.2 for
details on various proposed random walk algorithms).

(5) Rank facts in each relation using the scores generated
in Step (4) or by combining them with the original ex-
traction scores.

For the rest of the paper, we focus on generating
better ranked lists than the original rankings pro-
posed by a state-of-the-art extractor.

3 FactRank: Random Walk on Facts

Our approach considers a fact farm holistically,
leveraging the global constraints imposed by the
semantic arguments of the facts in the farm. We
model this idea by constructing a graph represen-
tation of the facts in the farm (Section 3.1) over
which we run graph-based ranking algorithms.
We give a brief overview of one such ranking al-
gorithm (Section 3.2) and present variations of it
for fact re-ranking (Section 3.3). Finally, we in-
corporate the original ranking from the extractor
into the ranking produced by our random walk
models (Section 3.4).

3.1 Graph Representation of Facts
Definition 3.1 We define a fact graph FG(V, E),
with V nodes and E edges, for a fact farm, as a
graph containing facts as nodes and a set of edges
between these nodes. An edge between nodes vi
and vj indicates that the facts share the same
value for an argument that is common to the re-
lations that vi and vj belong to. 2

Figure 1 shows the fact graph for the example
in Table 1 centered around the fact t1.
Note on the representation: The above graph
representation is just one of many possible op-
tions. For instance, instead of representing facts
by nodes, nodes could represent the arguments of
facts (e.g., Psycho) and nodes could be connected
by edges if they occur together in a fact. The task
of studying a “best” representation remains a fu-
ture work direction. However, we believe that our
proposed methods can be easily adapted to other
such graph representations.
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<Psycho, Anthony Perkins><Psycho, movie>

<Psycho, Hilton Green>

<Alfred Hitchchock, director>

<Anthony Perkins, actor>

<Psycho, Alfred Hitchcock>

Figure 1: Fact graph centered around t1 in Table 1.

3.2 The FactRank Hypothesis

We hypothesize that connected facts increase our
confidence in those facts. We model this idea
by propagating extraction scores through the fact
graph similarly to how authority is propagated
through a hyperlink graph of the Web (used to es-
timate the importance of a webpage). Several link
structure analysis algorithms have been proposed
for this goal, of which we explore a particular ex-
ample, namely, PageRank (Page et al., 1999). The
premise behind PageRank is that given the hyper-
link structure of the Web, when a page v generates
a link to page u, it confers some of its importance
to u. Therefore, the importance of a webpage u
depends on the number of pages that link to u and
furthermore, on the importance of the pages that
link to u. More formally, given a directed graph
G = (V,E) with V vertices and E edges, let I(u)
be the set of nodes that link to a node u and O(v)
be the set of nodes linked by v. Then, the impor-
tance of a node u is defined as:

p(u) =
X

v∈I(u)

p(v)

|O(v)| (1)

The PageRank algorithm iteratively updates the
scores for each node in G and terminates when a
convergence threshold is met. To guarantee the al-
gorithm’s convergence, G must be irreducible and
aperiodic (i.e., a connected graph). The first con-
straint can be easily met by converting the adja-
cency matrix for G into a stochastic matrix (i.e.,
all rows sum up to 1.) To address the issue of peri-
odicity, Page et al. (1999) suggested the following
modification to Equation 1:

p(u) =
1− d

|V | + d ·
X

v∈I(u)

p(v)

|O(v)| (2)

where d is a damping factor between 0 and 1,
which is commonly set to 0.85. Intuitively, Page-
Rank can be viewed as modeling a “random
walker” on the nodes in G and the score of a node,
i.e., PageRank, determines the probability of the
walker arriving at this node.

While our method makes use of the PageRank
algorithm, we can also use other graph analysis
algorithms (e.g., HITS (Kleinberg, 1999)). A par-
ticularly important property of the PageRank al-
gorithm is that the stationary scores can be com-
puted for undirected graphs in the same manner
described above, after replacing each undirected
edge by a bi-directed edge. Recall that the edges
in a fact graph are bi-directional (see Figure 1).

3.3 Random Walk Models

Below, we explore various random walk models
to assign scores to each node in a fact graph FG.

3.3.1 Model Implementations

Pln: Our first method applies the traditional Page-
Rank model to FG and computes the score of a
node u using Equation 2.

Traditional PageRank, as is, does not make use
of the strength of the links or the nodes connected
by an edge. Based on this observation, researchers
have proposed several variations of the PageRank
algorithm in order to solve their problems. For
instance, variations of random walk algorithms
have been applied to the task of extracting impor-
tant words from a document (Hassan et al., 2007),
for summarizing documents (Erkan and Radev,
2004), and for ordering user preferences (Liu and
Yang, 2008). Following the same idea, we build
upon the discussion in Section 3.2 and present
random walk models that incorporate the strength
of an edge.

Dst: One improvement over Pln is to distinguish
between nodes in FG using the extraction scores
of the facts associated with them: extraction meth-
ods such as our reimplementation of (Paşca et al.,
2006) assign scores to each output fact to reflect
its confidence in it (see Section 3.2). Intuitively, a
higher scoring node that connects to u should in-
crease the importance of u more than a connection
from a lower scoring node. Let I(u) be the set of
nodes that link to u and O(v) be the set of nodes
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linked by v. Then, if w(u) is the extraction score
for the fact represented by node u, the score for
node u is defined:

p(u) =
1− d

|V | + d ·
X

v∈I(u)

w(v)× p(v)

|O(v)| (3)

where w(v) is the confidence score for the fact
represented by v. Naturally, other (externally de-
rived) extraction scores can also be substituted for
w(v).
Avg: We can further extend the idea of deter-
mining the strength of an edge by combining the
extraction scores of both nodes connected by an
edge. Specifically,

p(u) =
1− d

|V | + d ·
X

v∈I(u)

avg(u, v)× p(v)

|O(v)| (4)

where avg(u, v) is the average of the extraction
scores assigned to the facts associated with nodes
u and v.
Nde: In addition to using extraction scores, we
can also derive the strength of a node depending
on the number of distinct relations it connects to.
For instance, in Figure 1, t1 is linked to four dis-
tinct relations, namely, director-of, producer-of,
is-actor, is-movie, whereas, t2 is linked to one re-
lation, namely, is-actor. We compute p(u) as:

p(u)=
1− d

|V | +d ·
X

v∈I(u)

(α · w(v)+(1− α) · r(v))× p(v)

|O(v)| (5)

where w(v) is the confidence score for node v and
r(v) is the fraction of total number of relations in
the farm that contain facts with edges to v.

3.3.2 Dangling nodes
In traditional hyperlink graphs for the Web,

dangling nodes (i.e., nodes with no associated
edges) are considered to be of low importance
which is appropriately represented by the scores
computed by the PageRank algorithm. How-
ever, an important distinction from this setting is
that fact graphs are sparse causing them to have
valid facts with no counterpart matching argu-
ments in other relation, thus rendering them dan-
gling. This may be due to several reasons, e.g.,
extractors often suffer from less than perfect recall
and they may miss valid facts. In our experiments,
about 10% and 40% of nodes from acted-in and
director-of, respectively, were dangling nodes.

Handling dangling nodes in our extraction-
based scenario is a particularly challenging issue:
while demoting the validity of dangling nodes
could critically hurt the quality of the facts, lack
of global information prevents us from systemati-
cally introducing them into the re-ranked lists. We
address this issue by maintaining the original rank
positions when re-ranking dangling nodes.

3.4 Incorporating Extractor Ranks
Our proposed random walk ranking methods ig-
nore the ranking information made available by
the original relation extractor (e.g., (Paşca et al.,
2006) in our implementation). Below, we pro-
pose two ways of combining the ranks suggested
by the original ranked list O and the re-ranked list
G, generated using the algorithms in Section 3.3.
R-Avg: The first combination method computes
the average of the ranks obtained from the two
lists. Formally, if O(i) is the original rank for fact
i and G(i) is the rank for i in the re-ranked list,
the combined rank M(i) is computed as:

M(i) =
O(i) +G(i)

2
(6)

R-Wgt: The second method uses a weighted aver-
age of the ranks from the individual lists:

M(i) =
wo ·O(i) + (1− wo) ·G(i)

2
(7)

In practice, this linear combination can be learned;
in our experiments, we set them to wo = 0.4 based
on our observations over an independent training
set. Several other combination functions could
also be applied to this task. For instance, we ex-
plored the min and max functions but observed lit-
tle improvements.

4 Experimental Evaluation

4.1 Experimental Setup
Extraction method: For our extraction method,
we reimplemented the method described in (Paşca
et al., 2006) and further added a validation layer
on top of it based on Wikipedia (we boosted the
scores of a fact if there exists a Wikipedia page
for either of the fact’s arguments, which mentions
the other argument.) This state-of-the-art method
forms a strong baseline in our experiments.
Corpus and farms: We ran our extractor over a
large Web crawl consisting of 500 million English
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Figure 2: Degree distribution for MOVIES.

webpages crawled by the Yahoo! search engine.
We removed paragraphs containing fewer than 50
tokens and then removed all duplicate sentences.
The resulting corpus consists of over 5 million
sentences. We defined a farm, MOVIES, with rela-
tions, acted-in, director-of, is-movie, is-actor, and
is-director.

Evaluation methodology: Using our extraction
method over the Web corpus, we generate over
100,000 facts for the above relations. However, to
keep our evaluation manageable, we draw a ran-
dom sample from these facts. Specifically, we
first generate a ranked list using the extraction
scores output by our extractor. We will refer to
this method as Org (original). We then generate
a fact graph over which we will run our methods
from Section 3.3 (each of which will re-rank the
facts). Figure 2 shows the degree, i.e., number
of edges, distribution of the fact graph generated
for MOVIES. We ran Avg, Dst, Nde, R-Avg, and
R-Wgt on this fact graph and using the scores we
re-rank the facts for each of the relations. In Sec-
tion 4.2, we will discuss our results for the acted-
in and director-of relations.

Fact Verification: To verify whether a fact is
valid or not, we recruit human annotators using
the paid service Mechanical Turk. For each fact,
two annotations were requested (keeping the total
cost under $100). The annotators were instructed
to mark incorrect facts as well as disallow any val-
ues that were not “well-behaved.” For instance,
acted-in〈Godfather, Pacino〉 is correct, but acted-
in〈The, Al Pacino〉 is incorrect. We manually ad-
judicated 32% of the facts where the judges dis-
agreed.

Evaluation metrics: Using the annotated facts,
we construct a goldset S of facts and compute the
precision of a list L as: |L∩S|

|S| . To compare the
effectiveness of the ranked lists, we use average
precision, a standard measure in information re-
trieval for evaluating ranking algorithms, defined

Method Average precision

30% 50% 100%

Org 0.51 0.39 0.38
Pln 0.44 0.35 0.32

Avg 0.55 0.44 0.42
Dst 0.54 0.44 0.41
Nde 0.53 0.40 0.41

R-Avg 0.58 0.46 0.45
R-Wgt 0.60 0.56 0.44

Table 2: Average precision for acted-in for vary-
ing proportion of fact graph of MOVIES.

Method Average precision

30% 50% 100%

Org 0.64 0.69 0.66
Pln 0.69 0.67 0.59

Avg 0.69 0.70 0.64
Dst 0.67 0.69 0.64
Nde 0.69 0.69 0.64

R-Avg 0.70 0.70 0.64
R-Wgt 0.71 0.71 0.69

Table 3: Average precision for director-of for
varying proportion of fact graph of MOVIES.

as: Ap(L) =
P|L|

i=1 P (i)·isrel(i)P|L|
i=1 isrel(i)

, where P (i) is the

precision of L at rank i, and isrel(i) is 1 if the fact
at rank i is in S, and 0 otherwise. We also study
the precision values at varying ranks in the list.
For robustness, we report the results using 10-fold
cross validation.

4.2 Experimental Results

Effectiveness of graph-based ranking: Our
first experiment studies the overall quality of the
ranked lists generated by each method. Table 2
compares the average precision for acted-in, with
the maximum scores highlighted for each column.
We list results for varying proportions of the orig-
inal fact graph (30%, 50%, and 100%). Due to
our small goldset sizes, these results are not sta-
tistically significant over Org, however we con-
sistently observed a positive trend similar to those
reported in Table 2 over a variety of evaluation
sets generated by randomly building 10-folds of
all the facts.

Overall, the Avg method offers a competitive
alternative to the original ranked list generated
by the extractor Org: not only are the average
precision values for Avg higher than Org, but
as we will see later, the rankings generated by
our graph-based methods exhibits some positive
unique characteristics. These experiments also
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R Org Pln Avg Dst Nde R-Avg R-Wgt

5 0.44 0.40 0.52 0.48 0.40 0.52 0.56
10 0.36 0.36 0.42 0.38 0.36 0.36 0.36
15 0.287 0.24 0.30 0.28 0.26 0.30 0.30
20 0.26 0.26 0.26 0.26 0.26 0.27 0.27
21 0.27 0.27 0.27 0.27 0.27 0.27 0.27

Table 4: Precision at varying ranks for the acted-
in relation (R stands for Ranks).

R Org Pln Avg Dst Nde R-Avg R-Wgt

5 0.58 0.68 0.70 0.68 0.64 0.66 0.70
10 0.60 0.57 0.59 0.58 0.59 0.6 0.69
15 0.57 0.53 0.58 0.56 0.56 0.56 0.60
20 0.57 0.57 0.58 0.58 0.58 0.58 0.60
25 0.60 0.54 0.56 0.57 0.56 0.57 0.57
30 0.57 0.57 0.57 0.57 0.57 0.58 0.59
33 0.56 0.56 0.56 0.56 0.56 0.56 0.56

Table 5: Precision at varying ranks for the
director-of relation (R stands for Ranks).

confirm our initial observations: using traditional
PageRank (Pln) is not desirable for the task of re-
ranking facts (see Section 3.3). Our modifications
to the PageRank algorithm (e.g., Avg, Dst, Nde)
consistently outperform the traditional PageRank
algorithm (Pln). The results also underscore the
benefit of combining the original extractor ranks
with those generated by our graph-based rank-
ing algorithms with R-Wgt consistently leading to
highest or close to the highest average precision
scores.

In Table 3, we show the average precision val-
ues for director-of. In this case, the summary
statistic, average precision, does not show many
differences between the methods. To take a finer
look into the quality of these rankings, we investi-
gated the precision scores at varying ranks across
the methods. Table 4 and Table 5 show the preci-
sion at varying ranks for acted-in and director-of
respectively. The maximum precision values for
each rank are highlighted.

For acted-in again we see that Avg, R-Avg, R-
Wgt outperform Org and Pln at all ranks, and
Dst outperforms Org at two ranks. While the
method Nde outperforms Org for a few cases, we
expected it to perform better. Error analysis re-
vealed that the sparsity of our fact graph was the
problem. In our MOVIES fact graph, we observed
very few nodes that are linked to all possible re-
lation types, and the scores used by Nde rely on
being able to identify nodes that link to numer-
ous relation types. This problem can be alleviated

#Relation Avg Dst Nde

2 0.35 0.34 0.33
3 0.35 0.35 0.34
4 0.37 0.36 0.35
5 0.38 0.38 0.37
6 0.42 0.41 0.41

Table 6: Average precision for acted-in for vary-
ing number of relations in the MOVIES fact farm.

by reducing the sparsity of the fact graphs (e.g.,
by allowing edges between nodes that are “simi-
lar enough”), which we plan to explore as future
work. For director-of, Table 5 now shows that for
small ranks (less than 15), a small (but consistent
in our 10-folds) improvement is observed when
comparing our random walk algorithms over Org.

While our proposed algorithms show a con-
sistent improvement for acted-in, the case of
director-of needs further discussion. For both av-
erage precision and precision vs. rank values, Avg,
R-Avg, and R-Wgt are similar or slightly better
than Org. We observed that the graph-based algo-
rithms tend to bring together “clusters” of noisy
facts that may be spread out in the original ranked
list of facts. To illustrate this point, we show the
ten lowest scoring facts for the director-of rela-
tion. Table 7 shows these ten facts for Org as well
as Avg. These examples highlight the ability of
our graph-based algorithms to demote noisy facts.

Effect of number of relations: To understand
the effect of the number of relations in a farm
(and hence connectivity in a fact graph), we veri-
fied the re-ranking quality of our proposed meth-
ods on various subsets of the MOVIES fact farm.
We generated five different subsets, one with 2 re-
lations, another with 3 relations, and three more
with four, five, and six relations (note that al-
though we have 5 relations in the farm, is-movie
can be used in combination with both acted-in
and director-of, thus yielding six relations to ab-
late.) Table 6 shows the results for acted-in. Over-
all, performance improves as we introduce more
relations (i.e., more connectivity). Once again,
we observe that the performance deteriorates for
sparse graphs: using very few relations results in
degenerating the average precision of the original
ranked list. The issue of identifying the “right”
characteristics of the fact graph (e.g., number of
relations, degree distribution, etc.) remains future
work.
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Org Avg

〈david mamet, bob rafelson〉 〈 drama, nicholas ray〉
〈cinderella, wayne sleep〉 〈 drama, mitch teplitsky official〉
〈mozartdie zauberflte, julie taymor〉 〈 hollywood, marta bautis〉
〈matthew gross, julie taymor〉 〈 hollywood, marek stacharski〉
〈steel magnolias, theater project〉 〈 drama, kirk shannon-butts〉
〈rosie o’donnell, john badham〉 〈 drama, john pietrowski〉
〈my brotherkeeper, john badham〉 〈 drama, john madden starring〉
〈goldie hawn, john badham〉 〈 drama, jan svankmajer〉
〈miramaxbad santa, terry zwigoff〉 〈 drama, frankie sooknanan〉
〈premonition, alan rudolph〉 〈 drama, dalia hager〉

Table 7: Sample facts for director-of at the bot-
tom of the ranked list generated by (a) Org and
(b) Avg.

Evaluation conclusion: We demonstrated the ef-
fectiveness of our graph-based algorithms for re-
ranking facts. In general, Avg outperforms Org
and Pln, and we can further improve the perfor-
mance by using a combination-based ranking al-
gorithm such as R-Wgt. We also studied the im-
pact of the size of the fact graphs on the quality
of the ranked lists and showed that increasing the
density of the fact farms improves the ranking us-
ing our methods.

5 Related Work
Information extraction from text has received sig-
nificant attention in the recent years (Cohen and
McCallum, 2003). Earlier approaches relied
on hand-crafted extraction rules such as (Hearst,
1992), but recent efforts have developed su-
pervised and semi-supervised extraction tech-
niques (Riloff and Jones, 1999; Agichtein and
Gravano, 2000; Matuszek et al., 2005; Pan-
tel and Pennacchiotti, 2006; Paşca et al., 2006;
Yan et al., 2009) as well as unsupervised tech-
niques (Davidov and Rappoport, 2008; Mintz
et al., 2009). Most common methods today
use semi-supervised pattern-based learning ap-
proaches that follow (Hearst, 1992), as dis-
cussed in Section 2. Recent work has also ex-
plored extraction-related issues such as, scal-
ability (Paşca et al., 2006; Ravichandran and
Hovy, 2002; Pantel et al., 2004; Etzioni et al.,
2004), learning extraction schemas (Cafarella et
al., 2007a; Banko et al., 2007), and organizing ex-
tracted facts (Cafarella et al., 2007b). There is
also a lot of work on deriving extraction scores
for facts (Agichtein and Gravano, 2000; Downey
et al., 2005; Etzioni et al., 2004; Pantel and Pen-
nacchiotti, 2006).

These extraction methods are complementary
to our general task of fact re-ranking. Since our

proposd re-ranking algorithms are agnostic to the
methods of generating the initial facts and since
they do not rely on having available corpus statis-
tics, we can use any of the available extractors in
combination with any of the scoring methods. In
this paper, we used Paşca et al.’s (2006) state-of-
the-art extractor to learn a large set of ranked facts.

Graph-based ranking algorithms have been ex-
plored for a variety of text-centric tasks. Random
walk models have been built for document sum-
marization (Erkan and Radev, 2004), keyword ex-
traction (Hassan et al., 2007), and collaborative
filtering (Liu and Yang, 2008). Closest to our
work is that of Talukdar et al. (2008) who pro-
posed random walk algorithms for learning in-
stances of semantic classes from unstructured and
structured text. The focus of our work is on ran-
dom walk models over fact graphs in order to re-
rank collections of facts.

6 Conclusion
In this paper, we show how information avail-
able in a farm of facts can be exploited for re-
ranking facts. As a key contribution of the pa-
per, we modeled fact ranking as a graph ranking
problem. We proposed random walk models that
determine the validity of a fact based on (a) the
number of facts that “vote” for it, (b) the validity
of the voting facts, and (c) the extractor’s confi-
dence in these voting facts. Our experimental re-
sults demonstrated the effectiveness of our algo-
rithms, thus establishing a stepping stone towards
exploring graph-based frameworks for fact vali-
dation. While this paper forms the basis of em-
ploying random walk models for fact re-ranking,
it also suggests several interesting directions for
future work. We use and build upon PageRank,
however, several alternative algorithms from the
link analysis literature could be adapted for rank-
ing facts. Similarly, we employ a single (simple)
graph-based representation that treats all edges the
same and exploring richer graphs that distinguish
between edges supporting different arguments of
a fact remains future work.
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