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Abstract 

It has been known that a combination of 

multiple kernels and addition of various 

resources are the best options for im-

proving effectiveness of kernel-based 

PPI extraction methods. These supple-

ments, however, involve extensive ker-

nel adaptation and feature selection 

processes, which attenuate the original 

benefits of the kernel methods. This pa-

per shows that we are able to achieve 

the best performance among the state-

of-the-art methods by using only a sin-

gle kernel, convolution parse tree kernel. 

In-depth analyses of the kernel reveal 

that the keys to the improvement are the 

tree pruning method and consideration 

of tree kernel decay factors. It is note-

worthy that we obtained the perfor-

mance without having to use any addi-

tional features, kernels or corpora. 

1 Introduction 

Protein-Protein Interaction (PPI) Extraction 

refers to an automatic extraction of the interac-

tions between multiple protein names from nat-

ural language sentences using linguistic features 

such as lexical clues and syntactic structures. A 

sentence may contain multiple protein names 

and relations, i.e., multiple PPIs. For example, 

the sentence in Fig.1 contains a total of six pro-

tein names of varying word lengths and three 

explicit interactions (relations). The interaction 

type between phosphoprotein and the acronym 

P in the parentheses is “EQUAL.” A longer pro-

tein name phosphoprotein of vesicular stomati-

tis virus is related to nucleocapsid protein via 

“INTERACT” relation. Like the first PPI, nuc-

leocapsid protein is equivalent to the abbre-

viated term N.  

It is not straightforward to extract PPIs from 

a sentence or textual segment. There may be 

multiple protein names and their relationships, 

which are intertwined in a sentence. An interac-

tion type may be expressed in a number of dif-

ferent ways.  

 
Figure 1. An example sentence containing mul-

tiple PPIs involving different names of varying 

scopes and relations
1
  

 

A significant amount of efforts have been 

devoted to kernel-based approaches to PPI ex-

tractions (PPIE) as well as relation extractions
2
 

(Zhang et al., 2006; Pyysalo et al., 2008; Guo-

Dong et al., 2007; Zhang et al., 2008; Airola et 

al., 2008; Miwa et al., 2009). They include 

word feature kernels, parse tree kernels, and 

graph kernels. One of the benefits of using a 

kernel method is that it can keep the original 

                                                 
1 BioInfer, Sentence ID:BioInfer.d10.s0 
2 Relation extraction has been studied massively with the 

help of the ACE (www.nist.gov/tac) competition work-

shop and its corpora. The ACE corpora contain valuable 

information showing the traits of target entities (e.g., ent-

ity types, roles) for relation extraction in single sentences. 

Since all target entities are of the same type, protein 

name, in PPIE, however, we cannot use relational infor-

mation that exists among entity types. This makes PPIE 

more challenging.  
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formation of target objects such as parse trees, 

not requiring extensive feature engineering for 

learning algorithms (Zelenko et al., 2003).  

In an effort to improve the performance of 

PPIE, researchers have developed not only new 

kernels but also methods for combining them 

(GuoDong et al., 2007; Zhang et al., 2008; Air-

ola et al., 2008; Miwa et al., 2009a; Miwa et al., 

2009b). While the intricate ways of combing 

various kernels and using extra resources have 

played the role of establishing strong baseline 

performance for PPIE, however, they are 

viewed as another form of engineering efforts. 

After all, one of the reasons the kernel methods 

have become popular is to avoid such engineer-

ing efforts. 

Instead, we focus on a state-of-the-art kernel 

and investigate how it can be best utilized for 

enhanced performance. We show that even with 

a single kernel, convolution parse tree kernel in 

this case, we can achieve superior performance 

in PPIE by devising an appropriate preprocess-

ing and factor adjustment method. The keys to 

the improvement are tree pruning and consider-

ation of a tree kernel decay factor, which are 

independent of the machine learning model 

used in this paper. The main contribution of our 

work is the extension and application of the 

particular convolution tree kernel method for 

PPIE, which gives a lesson that a deep analysis 

and a subsequent extension of a kernel for max-

imal performance can override the gains ob-

tained from engineering additional features or 

combining other kernels. 

The remaining part of the paper is organized 

as follows. In section 2, we survey the existing 

approaches. Section 3 introduces the parse tree 

kernel model and its algorithm. Section 4 ex-

plains the performance improving factors ap-

plied to the parse tree kernel. The architecture 

of our system is introduced in section 5. Section 

6 shows the improvements in effectiveness in 

multiple PPI corpora and finally we conclude 

our work in section 7. 

2 Related Work 

In recent years, numerous studies have at-

tempted to extract PPI automatically from text. 

Zhou and He (2008) classified various PPIE 

approaches into three categories: linguistic, 

rule-based and machine learning and statistical 

methods. 

Linguistic approaches involve constructing 

special grammars capable of syntactically ex-

pressing the interactions in sentences and then 

applying them to the language analyzers such as 

part-of-speech taggers, chunkers and parsers to 

extract PPIs. Based on the level of linguistic 

analyses, we can divide the linguistic approach-

es into two categories: shallow parsing (Seki-

mizu et al., 1998; Gondy et al., 2003) and full 

parsing methods (Temkin & Gilder, 2003; Ni-

kolai et al., 2004). 

Rule-based approaches use manually defined 

sets of lexical patterns and find text segments 

that match the patterns. Blaschke et al. (1996) 

built a set of lexical rules based on clue words 

denoting interactions. Ono et al. (2001) defined 

a group of lexical and syntactic interaction pat-

terns, embracing negative expressions, and ap-

plied them to extract PPIs from documents 

about “Saccharomyces cerevisiae” and “Esche-

richia coli”. Recently, Fundel et al. (2007) pro-

posed a PPI extraction model based on more 

systematic rules using a dependency parser.  

Machine learning and statistical approaches 

have been around for a while but have recently 

become a dominant approach for PPI extraction. 

These methods involve building supervised or 

semi-supervised models based on training sets 

and various feature extraction methods (An-

drade & Valencia, 1998; Marcotte et al., 2001; 

Craven & Kumlien, 1999). Among them, ker-

nel-based methods have been studied extensive-

ly in recent years. Airola et al. (2008) attempted 

to extract PPIs using a graph kernel by convert-

ing dependency parse trees into the correspond-

ing dependency graphs.  

Miwa et al. (2009a) utilized multiple kernels 

such as word feature kernels, parse tree kernels, 

and even graph kernels in order to improve the 

performance of PPI extraction. Their experi-

ments based on five PPI corpora, however, 

showed that combining multiple kernels gave 

only minor improvements compared to other 

methods. To further improve the performance 

of the multiple kernel system, the same group 

combined multiple corpora to exploit additional 

features for a modified SVM model (Miwa et 

al., 2009b). While they achieved the best per-

formance in PPI extraction, it was possible only 
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with additional kernels and corpora from which 

additional features were extracted.  

Unlike the aforementioned approaches trying 

to use all possible resources for performance 

enhancement, this paper aims at maximizing the 

performance of PPIE using only a single kernel 

without any additional resources. Without lo-

wering the performance, we attempt to stick to 

the initial benefits of the kernel methods: sim-

plicity and modularity (Shawe-Taylor & Cris-

tianini, 2004).  

3 Convolution Parse Tree Kernel 

Model for PPIE 

The main idea of a convolution parse tree ker-

nel is to sever a parse tree into its sub-trees and 

transfer it as a point in a vector space in which 

each axis denotes a particular sub-tree in the 

entire set of parse trees. If this set contains M 

unique sub-trees, the vector space becomes M-

dimensional. The similarity between two parse 

trees can be obtained by computing the inner 

product of the two corresponding vectors, 

which is the output of the parse tree kernel. 

There are two types of parse tree kernels of 

different forms of sub-trees: one is SubTree 

Kernel (STK) proposed by Vishwanathan and 

Smola (2003), and the other is SubSet Tree 

Kernel (SSTK) developed by Collins and Duffy 

(2001). In STK, each sub-tree should be a com-

plete tree rooted by a specific node in the entire 

tree and ended with leaf nodes. All the sub-trees 

must obey the production rules of the syntactic 

grammar. Meanwhile, SSTK can have any 

forms of sub-trees in the entire parse tree given 

that they should obey the production rules. It 

was shown that SSTK is much superior to STK 

in many tasks (Moschitti, 2006). He also intro-

duced a fast algorithm for computing a parse 

tree kernel and showed its beneficial effects on 

the semantic role labeling problem.  

A parse tree kernel can be computed by the 

following equation: 

             
                                           

   (1) 

where Ti is i
th
 parse tree and n1 and n2 are nodes 

in NT, the set of the entire nodes of T. λ 

represents a tree kernel decay factor, which will 

be explained later, and σ decides the way the 

tree is severed. Finally Δ(n1, n2, λ, σ) counts the 

number of the common sub-trees of the two 

parse trees rooted by n1 and n2. Figure 2 shows 

the algorithm. 

In this algorithm, the get_children_number 

function returns the number of the direct child 

nodes of the current node in a tree. The function 

named get_node_value gives the value of a 

node such as part-of-speeches, phrase tags and 

words. The get_production_rule function finds 

the grammatical rule of the current node and its 

children by inspecting their relationship. 
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FUNCTION delta(TreeNode n1, TreeNode n2, λ, σ) 

n1 = one node of T1;  n2 = one node of T2; 

λ = tree kernel decay factor;  σ = tree division me-

thod; 

BEGIN 
nc1 = get_children_number(n1);   

nc2 = get_children_number(n2); 

IF nc1 EQUAL 0 AND nc2 EQUAL 0 THEN     

nv1 = get_node_value(n1);   

nv2 = get_node_value(n2);  

IF nv1 EQUAL nv2 THEN RETURN 1; 

ENDIF 

np1 = get_production_rule(n1);   

np2 = get_production_rule(n2); 

IF np1 NOT EQUAL np2 THEN RETURN 0; 

 

IF np1 EQUAL np2 AND nc1 EQUAL 1  

AND nc2 EQUAL 1 THEN 

        RETURN λ; 

END IF 
 

mult_delta = 1; 

FOR I = 1 TO nc1 

nch1 = Ith child of n1;   nch2 = Ith child of n2; 

mult_delta = mult_delta ×  

(σ + delta(nch1, nch2, λ, σ)); 

END FOR 

RETURN λ × mult_delta; 

END 

Figure 2. Δ (n1, n2, λ, σ) algorithm 

4 Performance Improving Factors 

4.1 Tree Pruning Methods 

Tree pruning for relation extraction was firstly 

introduced by Zhang et al. (2006) and also re-

ferred to as “tree shrinking task” for removing 

less related contexts. They suggested five types 

of the pruning methods and later invented two 

more in Zhang et al. (2008). Among them, the 

path-enclosed tree (PT) method was shown to 

give the best result in the relation extraction 

task based on ACE corpus. We opted for this 

pruning method in our work.  
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Figure 3 shows how the PT method prunes a 

tree. To focus on the pivotal context, it pre-

serves only the syntactic structure encompass-

ing the two proteins at hand and the words in 

between them (the part enclosed by the dotted 

lines). Without pruning, all the words like addi-

tion, increased and activity would intricately 

participate in deciding the interaction type of 

this sentence. 

 
Figure 3. Path-enclosed Tree (PT) Method 
 

Another important effect of the tree pruning 

is its ability to separate features when two or 

more interactions exist in a sentence. As in Fig-

ure 1, each interaction involves its unique con-

text even though a sentence has multiple inte-

ractions. With tree pruning, it is likely to extract 

context-sensitive features by ignoring external 

features. 

4.2 Tree Kernel Decay Factor 

Collins and Duffy (2001) addressed two prob-

lems of the parse tree kernel. The first one is 

that its kernel value tends to be largely domi-

nated by the size of two input trees. If they are 

large in size, it is highly probable for the kernel 

to accumulate a large number of overlapping 

counts in computing their similarity. Secondly, 

the kernel value of two identical parse trees can 

become overly large while the value of two dif-

ferent parse trees is much tiny in general. These 

two aspects can cause a trouble during a train-

ing phase because pairs of large parse trees that 

are similar to each other are disproportionately 

dominant. Consequently, the resulting models 

could act like nearest neighbor models (Collins 

and Duffy, 2001). 

To alleviate the problems, Collins and Duffy 

(2001) introduced a scalability parameter called 

decay factor, 0 < λ ≤ 1 which scales the relative 

importance of tree fragments with their sizes as 

in line 33 of Fig. 2. Based on the algorithm, a 

decay factor decreases the degree of contribu-

tion of a large sub-tree exponentially in kernel 

computation. Figure 4 illustrates both the way a 

tree kernel is computed and the effect of a de-

cay factor. In the figure, T1 and T2 share four 

common sub-trees (S1, S2, S3, S5). Let us assume 

that there are only two trees in a training set and 

only five unique sub-trees exist. Then each tree 

can be expressed by a vector whose elements 

are the number of particular sub-trees. Kernel 

value is obtained by computing the inner prod-

uct of the two vectors. As shown in the figure, 

S1 is a large sub-sub-trees, S1, S2 S3, and S4, two 

of which (S2, and S3) are duplicated in the inner 

product computation. It is highly probable for 

large sub-trees to contain many smaller sub-

trees, which lead to an over-estimated similarity 

value between two parse trees. As mentioned 

above, therefore, it is necessary to rein those 

large sub-trees with respect to their sizes in 

computing kernel values by using decay factors. 

In this paper, we treat the decay factor as one of 

the important optimization parameters for a PPI 

extraction task. 

Figure 4. The effect of decaying in comparing two trees. n(·) denotes #unique subtrees in a tree. 
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5 Experimental Results 

In order to show the superiority of the simple 

kernel based method using the two factors used 

in this paper, compared to the resent results for 

PPIE using additional resources, we ran a series 

of experiments using the same PPI corpora 

cited in the literature. In addition, we show that 

the method is robust especially for cross-corpus 

experiments where a classifier is trained and 

tested with entirely different corpora.  

5.1 Evaluation Corpora 

To evaluate our approach for PPIE, we used 

“Five PPI Corpora
3
” organized by Pyysalo et al. 

(2008). It contains five different PPI corpora: 

AImed, BioInfer, HPRD50, IEPA and LLL. 

They have been combined in a unified XML 

format and “binarized” in case of involving 

multiple interaction types.  

Table 1. Five PPI Corpora 

 

Table 1 shows the size of each corpus in 

“Five PPI Corpora.” As mentioned before, a 

sentence can have multiple interactions, which 

results in the gaps between the number of sen-

tences and the sum of the number of instances. 

Negative instances have been automatically 

generated by enumerating sentences with mul-

tiple proteins but not having interactions be-

tween them (Pyysalo et al., 2008).  

5.2 Evaluation Settings 

In order to parse each sentence, we used Char-

niak Parser
4
. For kernel-based learning, we ex-

panded the original libsvm 2.89
5
 (Chang & Lin, 

2001) so that it has two additional kernels in-

cluding parse tree kernel and composite kernel
6
 

along with four built-in kernels
7
 

Our experiment uses both macro-averaged 

and micro-averaged F-scores. Macro-averaging 

                                                 
3 http://mars.cs.utu.fi/PPICorpora/eval-standard.html 
4 http://www.cs.brown.edu/people/ec/#software 
5 http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 
6 A kernel combining built-in kernels and parse tree kernel 
7 Linear, polynomial, radial basis function, sigmoid ker-

nels 

computes F-scores for all the classes indivi-

dually and takes average of the scores. On the 

other hand, micro-averaging enumerates both 

positive results and negative results on the 

whole without considering the score of each 

class and computes total F-score.  

In 10-fold cross validation, we apply the 

same split used in Airola et al., (2008), Miwa et 

al., (2009a) and Miwa et al., (2009b) for com-

parisons. Also, we empirically estimate the re-

gularization parameters of SVM (C-values) by 

conducting 10-fold cross validation on each 

training data. We do not adjust the SVM thre-

sholds to the optimal value as in Airola et al., 

(2008) and Miwa et al., (2009a).  

5.3 PPI Extraction Performance 

Table 2 shows the best scores of our system. 

The optimal decay factor varies with each cor-

pus. In LLL, the optimal decay factor is 0.2
8
 

indicating that the shortage of data has forced 

our system to normalize parse trees more inten-

sively with a strong decay factor in kernel com-

putation in order to cover various syntactic 

structures.  

 

 
DF AC ma-P ma-R ma-F σma-F 

A 0.6 83.6 
72.8 

(55.0) 

62.1 

(68.8) 
67.0 

(60.8) 

4.5 

(6.6) 

B 0.5 79.8 
74.5 

(65.7) 

70.9 

(71.1) 
72.6 

(68.1) 

2.7 

(3.2) 

H 0.7 74.5 
75.3 

(68.5) 

71.0 

(76.1) 
73.1 

(70.9) 

10.2 

(10.3) 

I 0.6 74.2 
74.1 

(67.5) 

72.2 

(78.6) 
73.1 

(71.7) 

6.0 

(7.8) 

L 0.2 82.2 
83.2 

(77.6) 

81.2 

(86.0) 
82.1 

(80.1) 

10.4 

(14.1) 

 

Table 2. The highest results of the proposed 

system w.r.t. decay factors. DF: Decay Factor, 

AC: accuracy, ma-F: macro-averaged F1, σma-F: 

standard deviation of F-scores in CV. A:AIMed, 

B:BioInfer, H:HPRD50, I:IEPA, L:LLL. The 

numbers in parentheses refer to the scores of 

Miwa et al., (2009a).  

 

Our system outperforms the previous results 

as in Table 2. Even using rich feature vectors 

including Bag-Of-Words and shortest path trees 

                                                 
8
 It was determined by increasing it by 0.1 progressively 

through 10-fold cross validation. 

 
AIMed BioInfer HPRD50 IEPA LLL 

#Sentence 1,955 1,100 145 486 77 

#Positive  1,000 2,534 163 335 164 

#Negative  4,834 7,132 270 482 166 
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generated from multiple corpora, Miwa et al., 

(2009b) reported 64.0% and 66.7% in AIMed 

and BioInfer, respectively. Our system, howev-

er, produced 67.0% in AIMed and 72.6% in 

BioInfer with a single parse tree kernel. We did 

not have to perform any intensive feature gen-

eration tasks using various linguistic analyzers 

and more importantly, did not use any addition-

al corpora for training as done in Miwa et al., 

(2009b). While the performance differences are 

not very big, we argue that obtaining higher 

performance values is significant because the 

proposed system did not use any of the addi-

tional efforts and resources.  

To investigate the effect of the scaling para-

meter of the parse tree kernel in PPI extraction, 

we measure how the performance changes as 

the decay factor varies (Figure 5). It is obvious 

that the decay factor influences the overall per-

formance of PPI extraction. Especially, the F-

scores of the small-scale corpora such as 

HPRD50 and LLL are influenced by the decay 

factor. The gaps between the best and worst 

scores in LLL and HPRD50 are 19.1% and 

5.2%, respectively. The fluctuation in F-scores 

of the large-scale corpora (AIMed, BioInfer, 

IEPA) is not so extreme, which seems to stem 

from the abundance in syntactic and lexical 

forms that reduce the normalizing effect of the 

decay factor. The increase in the decay factor 

leads to the increase in the precision values of 

all the corpora except for LLL. The phenome-

non is fairly plausible because the decreased 

normalization power causes the system to com-

pute the tree similarities more intensively and 

therefore it classifies each instance in a strict 

and detailed manner. On the contrary, the recall 

values slightly decrease with respect to the de-

cay factor, which indicates that the tree pruning 

(PT) has already conducted the normalization 

process to reduce the sparseness problem in 

each corpus. 

Most importantly, along with tree pruning, 

decay factor could boost the performance of our 

system by controlling the rigidness of the parse 

tree kernel in PPI extraction. 

Table 3 shows the results of the cross-corpus 

evaluation to measure the generalization power 

of our system as conducted in Airola et al., 

(2008) and Miwa et al., (2009a). Miwa et al., 

(2009b) executed a set of combinatorial expe-

riments by mixing multiple corpora and pre-

sented their results. Therefore, it is not reasona-

ble to compare our results with them due to the 

size discrepancy between training corpora. 

Nevertheless, we will compare our results with 

their approaches in later based on AIMed cor-

pus. 

As seen in Table 3, our system outperforms 

the existing approaches in almost all pairs of 

corpora. In particular, in the multiple corpora-

based evaluations aimed at AIMed which has 

been frequently used as a standard set in PPI 

extraction, our approach shows prominent re-

sults compared with others. While other ap-

proaches showed the performance ranging from 

33.3% to 60.8%, our approach achieved much 

higher scores between 55.9% and 67.0%. More 

specific observations are: 

(1) Our PPIE method trained on any corpus ex-

cept for IEPA outperforms the other approaches 

regardless of the test corpus only with a few 

exceptions with IEPA and LLL. 

(2) Even when using LLL or HPRD50, two 

smallest corpora, as training sets, our system 

performs well with every other corpus for test-

ing. It indicates that our approach is much less 

vulnerable to the sizes of training corpora than 

other methods. 

(3) The degree of score fluctuation of our sys-

tem across different testing corpora is much 

smaller than other regardless of the training da-

ta set. When trained on LLL, for example, the 

range for our system (55.9% ~ 82.1%) is small-

er than the others (38.6% ~ 83.2% and 33.3% ~ 

76.8%). 

(4) The cross-corpus evaluation reveals that our 

method outperforms the others significantly. 

This is more visibly shown especially when the 

large-scale corpora (AIMed and BioInfer) are 

used.  

(5) PPI extraction model trained on AIMed 

shows lower scores in IEPA and LLL as com-

pared with other methods, which could trigger 

further investigation. 

In order to convince ourselves further the su-

periority of the proposed method, we compare 

it with other previously reported approaches.  

Table 4 lists the macro-averaged precision, re-

call and F-scores of the nine approaches tested 

on AIMed. While the experimental settings are 

different as reported in the literature, they are 

quite close in terms of the numbers of positive 

and negative documents. 

211



As seen in the table, the proposed method is 

superior to all the others in F-scores. The im-

provement in precision (12.8%) is most signifi-

cant, especially in comparison with the work of 

Miwa et al., (2009b), which used multiple cor-

pora (AIMed + IEPA) for training and com-

bined various kernels such as bag-of-words, 

parse trees and graphs. It is natural that the re-

call value is lower since a less number of pat-

terns (features) must have been learned. What’s 

important is that the proposed method has a 

higher or at least comparable overall perfor-

mance without additional resources.  

Our approach is significantly better than that 

of Airola et al., (2008), which employed two 

different forms of graph kernels to improve the 

initial model. Since they did not use multiple 

corpora for training, the comparison shows the 

direct benefit of using the extension of the ker-

nel. 

6 Conclusion and Future Works 

To improve the performance of PPIE, recent 

research activities have had a tendency of in-

creasing the complexity of the systems by com-

bining various methods and resources. In this 

paper, however, we argue that by paying more  

Training 

corpora 
Systems 

F-Scores in the test corpora 

AIMed BioInfer HPRD50 IEPA LLL 

AIMed 

Our System 67.0  64.2  72.9  59.0  62.7  

(Miwa et al., 2009a) 60.8  53.1  68.3  68.1  73.5  

(Airola et al., 2008) 56.4  47.1  69.0  67.4  74.5  

BioInfer 

Our System 65.2  72.6  71.9  72.9  78.4  

(Miwa et al., 2009a) 49.6  68.1  68.3  71.4  76.9  

(Airola et al., 2008) 47.2  61.3  63.9  68.0  78.0  

HPRD50 

Our System 63.1  65.5  73.1  69.3  73.7  

(Miwa et al., 2009a) 43.9  48.6  70.9  67.8  72.2  

(Airola et al., 2008) 42.2  42.5  63.4  65.1  67.9  

IEPA 

Our System 57.8  66.1  66.3  73.1  78.4  

(Miwa et al., 2009a) 40.4  55.8  66.5  71.7  83.2  

(Airola et al., 2008) 39.1  51.7  67.5  75.1  77.6  

LLL 

Our System 55.9  64.4  69.4  71.4  82.1  

(Miwa et al., 2009a) 38.6  48.9  64.0  65.6  83.2  

(Airola et al., 2008) 33.3  42.5  59.8  64.9  76.8  

Table 3. Macro-averaged F1 scores in cross-corpora evaluation. Rows and columns correspond to 

the training and test corpora, respectively. We parallel our results with other recently reported re-

sults. All the split methods in 10-fold CV are the same for fair comparisons. 

    
Figure 5. Performance variation with respect to decay factor in Five PPI Corpora. Macro-

averaged F1 (left), Precision (middle), Recall (right) evaluated by 10-fold CV 
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attention to a single model and adjusting para-

meters more carefully, we can obtain at least 

comparable performance if not better. 

This paper indicates that a well-tuned parse 

tree kernel based on decay factor can achieve 

the superior performance in PPIE when it is 

preprocessed by the path-enclosed tree pruning 

method. It was shown in a series of experiments 

that our system produced the best scores in sin-

gle corpus evaluation as well as cross-corpora 

validation in comparison with other state-of-

the-art methods. Contribution points of this pa-

per are as follows: 

(1) We have shown that the benefits of using 

additional resources including richer features 

can be obtained by tuning a single tree kernel 

method with tree pruning and decaying factors. 

(2) We have newly found that the decay factor 

influences precision enhancement of PPIE and 

hence its overall performance as well. 

(3) We have also revealed that the parse tree 

kernel method equipped with decay factors 

shows superior generalization power even with 

small corpora while presenting significant per-

formance increase on cross-corpora experi-

ments. 

As a future study, we leave experiments with 

training the classifier with multiple corpora and 

deeper analysis of what aspects of the corpora 

gave different magnitudes of the improvements. 
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