
Coling 2008: Companion volume – Posters and Demonstrations, pages 181–184
Manchester, August 2008

A Linguistic Knowledge Discovery Tool:
Very Large Ngram Database Search with Arbitrary Wildcards

Satoshi Sekine
New York University

715 Broadway, 7th floor, New York, NY 10003
sekine@cs.nyu.edu

Abstract

In this paper, we will describe a search tool
for a huge set of ngrams. The tool supports
queries with an arbitrary number of wild-
cards. It takes a fraction of a second for a
search, and can provide the fillers of the
wildcards. The system runs on a single
Linux PC with reasonable size memory (less
than 4GB) and disk space (less than 400GB).
This system can be a very useful tool for
linguistic knowledge discovery and other
NLP tasks.

1 Introduction

Currently, NLP research is shifting towards se-
mantic analysis. In order to understand what a
sentence means, we require substantial back-
ground knowledge which must be gathered in
advance. Building such knowledge is not an
easy task. This is the so-called “knowledge bot-
tleneck” problem, which was one of the major
reasons for the failure of much AI research in
the 1980's. However, now, the circumstances
have quite changed. We have an almost unlim-
ited amount of text and machine power has dras-
tically improved. Using these fortunate assets,
research on knowledge discovery in NLP is
booming. The work by (Hearst 92) (Collins and
Singer 99) (Brin 99) (Hasegawa et al. 04) are
only a few examples of this research direction.
Notice that most of these methods use local con-
text. For example, a lexico-syntactic pattern,
like “NP such as NP” can extract hyponym rela-
tionships (Hearst 92), and contexts between two
named entities can indicate a relationship be-
tween those names (Hasegawa et al. 04).

© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Un-
ported license (http://creativecommons.org/ li-
censes/by-nc-sa/3.0/). Some rights reserved.

It is quite natural to believe that the larger the
corpus, the larger and the more reliable the dis-
covered knowledge can be. However, it leads to
problems in terms of speed and machine power.
In order to solve these problems, some people
use commercial search engines (Chklovski and
Pantel 04). However, using such search engines
has serious problems: 1) Only a limited number
of results available, 2) Only a limited number of
accesses permitted, 3) Mysterious ranking func-
tion, 4) Unstable results over a long time period,
5) Slow, as it is over the internet. Another idea
to overcome this difficulty is to create one's own
(maybe smaller) search engine (Cafarella and
Etzioni 05) (Shinzato et al. 08). Although creat-
ing one's own search engine has advantages (one
of which is the freedom to design the form of
the query; such as POS and dependency), it is a
huge, expensive task; not everybody can afford
to make a search engine. More seriously, not
everybody can use it as he/she may want.

In this paper, we will propose an alternative
solution which should enable researchers with
modest resources to conduct research using huge
corpora for knowledge discovery. It is an ngram
search tool with the following requirements.

Requirements
1. It searches for ngrams which include an ar-

bitrary number of wildcards, such as “* such
as * and”, “Mr. * said”, “from * to * by *”
or “* attack by * * on *”.

2. It returns the fillers of the wildcards as well
as ngram frequencies

3. It produces the results in a fraction of a sec-
ond (for most reasonable queries)

4. It runs on a single PC

5. It needs only a reasonable amount of mem-
ory (4GB) for processing

6. It needs only a reasonable amount of disk
space (400GB) for indexing 108-109 ngrams

181

2 Algorithm Overview

There are two reasonable choices for the search
algorithm. One is “inverted indexing” (used by
“lucene” and others) and the other is “trie”. We
used trie. Using inverted indexing, it is easy to
create an index at the cost of runtime speed. We
prefer an algorithm which requires more com-
plicated indexing in order to achieve the speed
in searching. Trie is an indexing tree structure in
which each node represents a symbol (in our
case, words) and each link represents the se-
quence of the symbols (in our case n-gram).
Searching can be done by traversing the tree,
which is usually done in time constant in the
size of the corpus. However, it is important to
mention that the trie structure is order sensitive.
For example, if the query includes wildcards,
such as “Mr. * * said yesterday”, searching the
trie is not an optimal solution.

One naive solution is to create a search sys-
tem (or a trie) for each possible combination of
wildcards. For example, for the query pattern
“Mr. * * said yesterday”, we should prepare a
search system for modified ngrams which have
the first, fourth and fifth words of the original
ngrams as the first three words. For ngrams of
length N, the number of possible combinations
of literals and wildcards is 2N. In theory, if we
make that many search systems, we can solve
the problem. However, the number of search
systems is too large considering the number of
ngrams we aim to handle (Table 1). Although
we applied two implementation techniques to
reduce the size of index (which will be de-
scribed in the next section), it is still likely that
we could not satisfy requirement #6.

We solved the problem by using a single
search system for different kinds of search pat-
terns, reducing the number of needed search
systems significantly. It can be observed that a
pattern with wildcards at suffix positions can be
searched using the same trie used for patterns
without those wildcards. Also, we don’t always
need to start the trie by indexing the first word.
If we build an alternative trie which starts by
indexing the second word, we can cover more
patterns with fewer tries. For example, using the
trie constructed to search for 5-grams “DEABC”
(We will call this a “trie pattern”: each letter
represents a literal, with A representing the first
token in the original ngram), four “search pat-
terns” (i.e. ngram pattern used in the queries),
“AB*DE”, “A**DE”, “***DE” and “***D*”,
can be searched efficiently.

We found that the minimum number of trie
patterns needed to cover all possible search pat-
terns of length N is N/2 C N. We have con-
structed minimal sets of patterns for all N up to
9. Once the system receives a query with one or
more wildcards, it finds the trie pattern which
covers the search pattern of the query.

3 Implementation

We also implemented two ideas to reduce the
size of the index. One is related to a common
technique to reduce the size of trie nodes by de-
leting the index of unique suffixes. In addition,
we don’t store the remaining data within the trie.
We just store the ngram ID at the node in order
to further reduce the size of the index. Because
there are many search systems, storing the
ngram data in a single master database saves a
lot of space. When the user wants to see the
words of an ngram which was identified by the
search, the system retrieves the ngram from the
master database using the ngram ID. The benefit
of this technique is quite large (more than 50%
reduction of index size in 9gram), as many
ngrams have long unique suffixes.

The other idea is based on the fact that once
the ngram data is provided, no update will be
requested (i.e. insertion or replacement proce-
dure in the trie is not necessary). We can elimi-
nate the pointers to the parents and the siblings
for each node, which contributes to about 30%
additional reduction in the index size.

Because the tries are very large, we divide
them into segments (128 segments for 9-grams
and 118 for 5-grams), so that an individual trie
index segment is small enough to fit in a mem-
ory of modest size (requirement #5). Each seg-
ment contains a lexicographically contiguous
sequence of ngrams. Furthermore, we use
“mmap” to get the index into memory from the
disk, so that only the portions of the trie seg-
ment that are actually used will be loaded.

System Flow

We will briefly describe the system flow
1) First, all the words in the input query are
looked up in the dictionary. If there are out of
vocabulary words, then there is no ngram which
matches the query. If all words are known, find
the appropriate trie pattern for the input query
based on the locations of wildcards.
2) Then the appropriate segment(s) of the trie
data is found for the search query. It was done

182

by searching the table of segment index sorted
in lexicographic order.
3) Now, the search in the trie is performed.
Note that there are 16,128 tries for 9 -gram (128
segments for 126 trie patterns). If the search
ends with an internal node, there is more than
one matched ngram. If the search ends with a
terminal node, just one ngram matches. If the
trie ends before the end of query, you have to
retrieve the ngram from the master database and
match the retrieved ngram against the query.
4) Once one or several ngram IDs are identi-
fied as matched ngram(s), the system will output
the information. There are three output modes.
a) Only instance and type frequency are printed.
b) Only ngram IDs are printed. These two types
can be achieved quickly without consulting the
ngram master database. c) Ngram instances are
printed using the ngram master database.

4 Experiments and Evaluation

4.1 Ngram data

We implemented this using two ngram data sets.
Google 1T Web 5gram
This is a part of the ngram data provided by
Google through LDC (Web 1T). The data was
generated from approximately 1 trillion word
tokens of publicly accessible Web pages.

9-grams from 82 years of newspaper
For knowledge discovery purposes, 5-grams

are generally unsatisfactory. A 5-gram can only
cover 2 words of context on each side of a single
word term. So we extracted 9-grams from a
number of newspaper corpora available to us.
Including NANTC: LATWP(94-97), NYT,

REUFF, REUTE, WSJ (94-96), BBN GigaWord
corpus (news archive only): BBC(99-06), Peo-
ple Daily, Taipei Times, The Hindu (00-06),
Arab News, Gulf News, India Times (01-06),
AQUAINT corpus: APW, NYT (98-00), Xinhua
(96-00), CSR corpus: WSJ (87-94).

These corpora are cleaned up by several
methods, because some of them have article du-
plications/minor variants and some of them con-
tain many non-sentences. We use a simple
method to reduce such noise, which is to “uniq”
all the sentences for each year of each newspa-
per and count each distinct sentence only once.
This is not a perfect solution, but it reduces a lot
of noise to an amount almost unnoticeable for
the ngram search result. The statistics of the data
are shown in Table 1.

Corpus Google 1T 82 yrs. News
Original Text 1 T words 1.8 G words
Ngram 5-gram 9-gram
Threshold 40 2
#of ngrams 1,176,470,663 119,456,373
of patterns 10 126
of nodes 1.4G x 10 160M x 126
Index size 277GB 322GB

Table 1 Statistics of the data

4.2 Example

Obviously, the tool is useful for knowledge dis-
covery tasks for hyponym relations, binary rela-
tions, name extraction, relations between names
and so on. It is also useful to extract more spe-
cific relations, such as “what kind of attack oc-
curred by whom on what/when” by searching
for “* attack on * * by * **”. Figure 1 shows a
snapshot of the tool’s output on this query.

Figure 1 Snapshot of the output for “* attack on * * by * * *”

183

Importantly, because of the speed, we can mod-
ify the query in an interactive manner. The
speed is helpful for batch processing, too, when
we need to search millions of patterns.

4.3 Evaluation

The speed evaluation was conducted using
9grams. We randomly selected 1017 9grams
from the original data to form a test set, and also
created another test set in which 1 to 3 words are
randomly replaced by wildcards in those 9grams.
We measure the average time to find the ngrams.
In the case of a query with wildcards, we
checked if the original ngram is found among all
returned ngrams to verify the accuracy of the
tool. The system runs in three output modes (we
use a file output rather than stdout). Producing
Ngram output takes a long time if the number of
ngrams is very large, so we limited the number
of ngrams to be printed to 100. In the experi-
ment, the number of returned ngrams ranged
from 1 to 100 with an average of 1.26. The re-
sult is shown in Table 2 and the times are given
in milliseconds.

Print mode Freq. IDs Ngram
Original 19 19 20
With wildcards 19 19 29
Table 2 Speed of search (Newspaper 9gram)

5 Related Work and Discussion

One of the most related works is the CMU-
Cambridge Statistical LM toolkit (CMU-
Cambridge). It’s a tool to search ngrams in
Speech fields. However, it does not handle
wildcards, which is important for knowledge
discovery purposes. There are several ngram
tools in the field of genome sequence analysis
(MUMmer) (REPuter). However, the size of the
alphabets are quite different (handful of genome
bases vs. about 1.08 million words), and their
main purpose is to discover similarity or repeti-
tion. These systems are not directly useful for
linguistic knowledge discovery purposes. As a
document retrieval tool, there is a public domain
search engine, such as “lucene” (Lucene).
However, its primary purpose is document re-
trieval and the inverted index algorithm can’t
handle well very frequent terms. Searching is
relatively slow.

It should be noted that creating the index is a
huge task. It took about 2 months using five
4GB-memory machines. However, it took only
about one week with 64GB-memory machine.

As for the future direction, we are improving
the tool to show the original sentences from
which the ngram was extracted. We have some
evidence that a longer context is needed for the
knowledge discovery purpose.

This tool is merely a tool, but we believe it’s
a very powerful tool for linguistic knowledge
discovery among other related objectives. The
next step we would like to take is to apply this
tool to find linguistic knowledge for NLP appli-
cations.

Acknowledgements
This research was supported in part by the Na-
tional Science Foundation under Grant IIS-
00325657. This paper does not necessarily re-
flect the position of the U.S. Government. We
would like to thank our colleagues at New York
University, who provided useful suggestions and
discussions, including Prof. Grishman.

References
CMU-Cambridge Statistical LM toolkit homepage:

http://www.speech.cs.cmu.edu/SLM/toolkit_docu
mentation.html

Lucene homepage: http://lucene.apache.org/
MUMmer hompage: http://mummer.sourceforge.net/
REPuter homepage: http://bibiserv.techfak.uni-

bielefeld.de/reputer/
Web 1T 5-gram. by Google. LDC Catalog No.:

LDC2006T13
M. J. Cafarella and O. Etzioni. “A Search Engine for

Natural Language Applications”. 2005. In Proc. of
World Wide Web Conference.

S. Brin. “Extracting Patterns and Relations from the
World Wide Web”. 1998. In Proc. of Workshop
on Web and DataBase-98.

T. Chklovski and P. Pantel. “VerbOcean: Mining the
Web for Fine-Grained Semantic Verb Relations”.
2004. In Proc. of EMNLP-04. pp. 33-40.

M. Collins and Y. Singer. “Unsupervised Models for
Named Entity Classification”. 1998. In Proc. of
EMNLP-99.

M. Hearst. “Automatic Acquisition of Hyponyms
from Large Text Corpora”. 1992. In Proc. of
COLING-92.

T. Hasegawa, S. Sekine and R. Grishman “Discover-
ing Relations among Named Entities from Large
Corpora”. 2004. In Proc. of ACL-04.

K. Shinzato, T. Shibata, D. Kawahara, C. Hashimoto
and S. Kurohashi. “TSUBAKI: An Open Search
Engine Infrastructure for Developing New Infor-
mation Access Methodology”, 2008. In Proc. of
the 3rd IJCNLP-08.

184

