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Abstract 

In this paper, we address the issue of de-
ciding when to stop active learning for 
building a labeled training corpus. Firstly, 
this paper presents a new stopping crite-
rion, classification-change, which con-
siders the potential ability of each unla-
beled example on changing decision 
boundaries. Secondly, a multi-criteria-
based combination strategy is proposed 
to solve the problem of predefining an 
appropriate threshold for each confi-
dence-based stopping criterion, such as 
max-confidence, min-error, and overall-
uncertainty. Finally, we examine the ef-
fectiveness of these stopping criteria on 
uncertainty sampling and heterogeneous 
uncertainty sampling for active learning. 
Experimental results show that these 
stopping criteria work well on evaluation 
data sets, and the combination strategies 
outperform individual criteria. 

1 Introduction 

Creating a large labeled training corpus is very 
expensive and time-consuming in some real-
world applications. For example, it is a crucial 
issue for automated word sense disambiguation 
task, because validations of sense definitions and 
sense-tagged data annotation have to be done by 
human experts, e.g. OntoNotes project (Hovy et 
al., 2006).  

Active learning aims to minimize the amount 
of human labeling effort by automatically select-
ing the most informative unlabeled example for 
human annotation. In recent years active learning 
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has been widely studied in natural language 
processing (NLP) applications, such as word 
sense disambiguation (WSD) (Chen et al., 2006; 
Zhu and Hovy, 2007), text classification (TC) 
(Lewis and Gale, 1994; McCallum and Nigam, 
1998a), named entity recognition (Shen et al., 
2004), chunking (Ngai and Yarowsky, 2000), 
and statistical parsing (Tang et al., 2002). 

However, deciding when to stop active learn-
ing is still an unsolved problem and seldom men-
tioned issue in previous studies. Actually it is a 
very important practical issue in real-world ap-
plications, because it obviously makes no sense 
to continue the active learning procedure until 
the whole unlabeled corpus has been labeled. 
The active learning process can be ended when 
the current classifier reaches the maximum effec-
tiveness. In principle, how to learn a stopping 
criterion is a problem of estimation of classifier 
(i.e. learner) effectiveness during active learning 
(Lewis and Gale, 1994).  

In this paper, we address the issue of a stop-
ping criterion for pool-based active learning with 
uncertainty sampling (Lewis and Gale, 1994), 
and propose a multi-criteria-based approach to 
determining when to stop active learning process. 
Firstly, this paper makes a comprehensive analy-
sis on some confidence-based stopping criteria 
(Zhu and Hovy, 2007), including max-
confidence, min-error and overall-uncertainty, 
then proposes a new stopping criterion, classifi-
cation-change, which considers the potential 
ability of each unlabeled example on changing 
decision boundaries. Secondly, a combination 
strategy is proposed to solve the problem of pre-
defining an appropriate threshold for each confi-
dence-based stopping criterion in a specific task.  

In uncertainty sampling scheme, the most un-
certain unlabeled example is considered as the 
most informative case selected by active learner 
at each learning cycle. However, an uncertain 
example for one classifier may be not an uncer-

1129



tain example for other classifiers. When using 
active learning for real-world applications such 
as WSD, it is possible that a classifier of one type 
selects samples for training a classifier of another 
type, called the heterogeneous approach (Lewis 
and Catlett, 1994). For example, the final trained 
classifier for WSD is often different from the 
classifier used in active learning for constructing 
the training corpus.  

To date, no one has studied the stopping crite-
rion issue for the heterogeneous approach. In this 
paper, we examine the effectiveness of each 
stopping criterion on both traditional uncertainty 
sampling and heterogeneous uncertainty sam-
pling for active learning. Experimental results of 
active learning for WSD and TC tasks show that 
these proposed stopping criteria work well on 
evaluation data sets, and the combination strate-
gies outperform individual criteria. 

2 Active Learning Process 

In this paper, we are interested in uncertainty 
sampling for pool-based active learning (Lewis 
and Gale, 1994), in which an unlabeled example 
x with maximum uncertainty is selected to aug-
ment the training data at each learning cycle. The 
maximum uncertainty implies that the current 
classifier has the least confidence on its classifi-
cation of this unlabeled example.  

Actually active learning is a two-stage process 
in which a small number of labeled samples and 
a large number of unlabeled examples are first 
collected in the initialization stage, and a closed-
loop stage of query and retraining is adopted.  
Procedure: Active Learning Process 
Input: initial small training set L, and pool of unla-
beled data set U 
Use L to train the initial classifier C  
Repeat 

1. Use the current classifier C to label all unla-
beled examples in U 

2. Use uncertainty sampling technique to select m 
most informative unlabeled examples, and ask 
oracle H for labeling 

3. Augment L with these m new examples, and 
remove them from U 

4. Use L to retrain the current classifier C 
Until the predefined stopping criterion SC is met. 
Figure 1. Active learning with uncertainty sam-
pling technique 

3 Stopping Criteria for Active Learning  

In this section, we mainly address the problem of 
general stopping criteria for active leanring, and 

study how to define a reasonable and appropriate 
stopping criterion SC shown in Fig. 1. 

3.1 Effectiveness Estimation and Confi-
dence Estimation 

To examine whether the classifier has reached 
the maximum effectiveness during active learn-
ing procedure, it seems an appealing solution 
when repeated learning cycles show no signifi-
cant performance improvement. However, this is 
often not feasible. To investigate the impact of 
performance change on defining a stopping crite-
rion for active learning, we first give an example 
of active learning for WSD shown in Fig. 2. 
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Figure 2. An example of active learning for WSD 
on word “interest”. 
 

Fig. 2 shows that the accuracy performance 
generally increases, but apparently degrades at 
iterations 30, 90 and 190, and does not change 
anymore during iterations 220-260 in the active 
learning process. Actually the first time of the 
highest performance of 91.5% is achieved at 900 
which is not shown in Fig. 2. Although the accu-
racy performance curve shows an increasing 
trend, it is not monotonically increasing. It is not 
easy to automatically determine the point of no 
significant performance improvement on the 
validation set, because points such as 30 or 90 
would mislead a final judgment.  

Besides, there is a problem of performance es-
timation of the current classifier during active 
learning process, because a separate validation 
set should be prepared in advance, a procedure 
that causes additional (high) cost since it is often 
done manually. Besides, how many samples are 
required for the pregiven separate validation set 
is an open question. Too few samples may not be 
adequate for a reasonable estimate and may re-
sult in an incorrect result. Too many samples 
would increase the building cost.  

To define a stopping criterion for active learn-
ing, Zhu and hovy (2007) considered the estima-
tion of the classifier’s effectiveness as the second 
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task of confidence estimation of the classifier on 
its classification of all remaining unlabeled data. 
In the following section, we first introduce two 
confidence-based criteria, max-confidence and 
min-error, proposed by Zhu and Hovy (2007). 

3.2 Max-Confidence 

In uncertainty sampling scheme, if the uncer-
tainty value of the most informative unlabeled 
example is sufficiently small, we can assume that 
the current classifier has sufficient confidence on 
its classification of the remaining unlabeled data. 
So the active learning process can be ended. 
Based on such assumption, Zhu and Hovy (2007) 
proposed max-confidence criterion based on the 
uncertainty estimation of the most informative 
unlabeled example. Its strategy is to consider 
whether the uncertainty value of the most infor-
mative unlabeled example is less than a very 
small predefined threshold. 

3.3 Min-Error 

As shown in Fig. 1, in uncertainty sampling 
scheme, the current classifier has the least confi-
dence on its classification of these top-m selected 
unlabeled examples. If the current classifier can 
correctly classify these most informative exam-
ples, we can assume that the current classifier 
have sufficient confidence on its classification of 
the remaining unlabeled data. Based on such as-
sumption, Zhu and Hovy (2007) proposed min-
error criterion based on feedback from the oracle. 
Its strategy is to consider whether the current 
classifier can correctly predict the labels on these 
selected unlabeled examples, or the accuracy 
performance of the current classifier on these 
most informative examples is larger than a prede-
fined threshold.  

3.4 Overall-Uncertainty 

The motivation behind the overall-uncertainty 
method is similar to that of the max-confidence 
method. However, the max-confidence method 
only considers the most informative example at 
each learning cycle. The overall-uncertainty 
method considers the overall uncertainty on all 
unlabeled examples. If the overall uncertainty of 
all unlabeled examples becomes very small, we 
can assume that the current classifier has suffi-
cient confidence on its classification of the re-
maining unlabeled data. Based on such assump-
tion, we propose overall-uncertainty method 
which is to consider whether the average uncer-

tainty value of all remaining unlabeled examples 
is less than a very small predefined threshold. 

3.5 Classification-Change 

There is another problem of estimating classifier 
performance during active learning process. 
Cross-validation on the training set is almost im-
practical during the active learning procedure, 
because the alternative of requiring a held-out 
validation set for active learning is counterpro-
ductive. Hence we should look for a self-
contained method. 

Actually the motivation behind uncertainty 
sampling is to find some unlabeled examples 
near decision boundaries, and use them to clarify 
the position of decision boundaries. The current 
classifier considers such unlabeled examples near 
decision boundaries as the most informative ex-
amples in uncertainty sampling scheme for active 
learning. In other words, we assume that an 
unlabeled example with maximum uncertainty 
has the highest chance to change the decision 
boundaries. 

Based on the above analysis, we think the ac-
tive learning process can stop if there is no unla-
beled example that can potentially change the 
decision boundaries. However, in practice, it is 
almost impossible to exactly recognize which 
unlabeled example can truly change the decision 
boundaries in the next learning cycle, because 
the true label of each unlabeled example is un-
known. 

To solve this problem, we make an assump-
tion that labeling an unlabeled example may shift 
the decision boundaries if this example was pre-
viously “outside” and is now “inside”. In other 
words, if an unlabeled example is automatically 
assigned to two different labels during two recent 
learning cycles 2 , we think that the labeling of 
this unlabeled example has a good chance to 
change the decision boundaries.  

Based on such assumption, we propose a new 
approach based on classification change of each 
unlabeled example during two recent consecutive 
learning cycles (“previous” and “current”), called 
the classification-change method. Its strategy is 
to stop the active learning process by considering 
whether no classification change happens to the 
remaining unlabeled examples during two recent 
consecutive learning cycles. If true, we assume 
that the current classifier has sufficient confi-
dence on its classification of the remaining unla-

                                                 
2 For example, an unlabeled example x was classified into 
class A at ith iteration, and class B at i+1th iteration. 

1131



beled data, because all unlabeled examples near 
decision boundaries have been exhausted, and no 
further labeling will affect active learner. 

4 Combination Strategy  

As for the above three confidence-based stopping 
criteria such as max-confidence, min-error and 
overall-uncertainty, how to automatically deter-
mine an appropriate threshold in a specific task is 
a crucial problem. We think that different appro-
priate thresholds are needed for various active 
learning applications.  

To solve this problem, in this section we pro-
pose a general combination strategy by consider-
ing the best of both classification-change and a 
confidence-based criterion, in which the prede-
fined threshold of the confidence-based stopping 
criterion can be automatically updated during 
active learning.  

The motivation behind the general combina-
tion strategy is to check whether the active learn-
ing becomes stable (i.e. check whether the classi-
fication-change method is met) when the current 
confidence-based stopping criterion is satisfied. 
If not, we think there are some remaining unla-
beled examples that can potentially shift the de-
cision boundaries, even if they are considered as 
certain cases from the current classifier’s view-
points. In this case, the threshold of the current 
confidence-based stopping criterion should be 
automatically revised to keep continuing the ac-
tive learning process. The general combination 
strategy can be summarized as follows. 
Procedure: General combination strategy 
Given: 

 stopping criterion 1: max-confidence or min-
error or overall-uncertainty 

 Stopping criterion 2: classification-change 
 The predefined threshold for stopping criterion 1 

is initially set to β 
Steps(during active learning process): 
1. First check whether stopping criterion 1 is satis-

fied. If yes, go to 2; 
2. Then check whether stopping criterion 2 is satis-

fied. If yes, goto 4), otherwise goto 3; 
3. Automatically update the current threshold to be 

a new smaller value for max-confidence and 
overall-uncertainty, or to be a new larger value 
for min-error, and then goto 1. 

4. Stop active learning process.  
Figure 3. General combination strategy 
 
• Strategy 1: This strategy combines the max-

confidence and classification-change meth-
ods simultaneously.  

• Strategy 2: This strategy combines the min-
error and classification-change methods si-
multaneously. 

• Strategy 3: This strategy combines the over-
all-uncertainty and classification-change 
methods simultaneously. 

5 Evaluation 

5.1 Experimental Settings 

In the following sections, we evaluate the 
effectiveness of seven stopping criteria for active 
learning for WSD and TC tasks, including max-
confidence (MC), min-error (ME), overall-
uncertainty (OU), classification-change (CC), 
strategy 1 (CC-MC), strategy 2 (CC-ME), and 
strategy 3 (CC-OU). Following previous studies 
(Zhu and Hovy, 2007), the predefined thresh-
olds3 used for MC, ME and OU are set to 0.01, 
0.9 and 0.01, respectively. 

To evaluate the effectiveness of each stopping 
criterion, we first construct two types of baseline 
methods called “All” and “First” methods. “All” 
method is defined as when all unlabeled exam-
ples in the pool are learned. “First” method is 
defined as when the current classifier reaches the 
same performance of the “All” method at the 
first time during the active learning process.  

A better stopping criterion can not only 
achieve almost the same performance given by 
the “All” baseline method (i.e. accuracy 
performance), but also learn almost the same 
number of unlabeled examples by the “First” 
baseline method (i.e. percentage performance).  

In uncertainty sampling scheme, the well-
known entropy-based uncertainty measurement 
(Chen et al., 2006; Schein and Ungar, 2007) is 
used in our active learning study as follows: 

( ) ( | ) log ( | )
y Y

UM x P y x P y x
∈

= −∑         (1) 

where P(y|x) is the a posteriori probability. We 
denote the output class y∈Y={y1, y2, …, yk}. UM 
is the uncertainty measurement function based on 
the entropy estimation of the classifier’s 
posterior distribution. 

We utilize maximum entropy (MaxEnt) model 
(Berger et al., 1996) to design the basic classifier 
used in active learning for WSD and TC tasks. 
The advantage of the MaxEnt model is the ability 
to freely incorporate features from diverse 
sources into a single, well-grounded statistical 
                                                 
3 In the following experiments, these thresholds are also 
used as initial values of β for individual criteria in the gen-
eral combination strategy shown in Fig. 3. 
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model. A publicly available MaxEnt toolkit4 was 
used in our experiments. To build the MaxEnt-
based classifier for WSD, three knowledge 
sources are used to capture contextual informa-
tion: unordered single words in topical context, 
POS of neighboring words with position infor-
mation, and local collocations, which are the 
same as the knowledge sources used in (Lee and 
Ng, 2002). In the design of text classifier, the 
maximum entropy model is also utilized, and no 
feature selection technique is used. 

In the following active learning comparison 
experiments, the algorithm starts with a 
randomly chosen initial training set of 10 labeled 
examples, and makes 10 queries after each 
learning iteration. A 10 by 10-fold cross-
validation was performed. All results reported 
are the average of 10 trials in each active 
learning process. In the following comparison 
experiments, the performance reported on 
Ontonotes data set is the macro-average on ten 
nouns, and the performance on TWA data set is 
the macro-average on six words. 

5.2 Data Sets 

Six publicly available natural data sets have been 
used in the following active learning comparison 
experiments. Three data sets are used for TC 
tasks: WebKB, Comp2a and Comp2b. The other 
three data sets are used for WSD tasks: 
OntoNotes, Interest and TWA.  

The WebKB dataset was widely used in TC 
research. Following previous studies (McCallum 
and Nigam, 1998b), we use the four most popu-
lous categories: student, faculty, course and pro-
ject, altogether containing 4199 web pages. In 
the preprocessing step, we only remove those 
words that occur merely once without using 
stemming. The resulting vocabulary has 23803 
words. 

The Comp2a data set consists of comp.os.ms-
windows.misc and comp.sys.ibm.pc.hardware 
subset of NewsGroups. The Comp2b data set 
consists of comp.graphics and comp.windows.x 
categories from NewsGroups. Both two data sets 
have been previously used in active learning for 
TC (Roy and McCallum, 2001; Schein and Un-
gar, 2007). 

The OntoNotes project (Hovy et al., 2006) 
uses the WSJ part of the Penn Treebank. The 
senses of noun words occurring in OntoNotes are 
linked to the Omega ontology. Ontonotes has 

                                                 
                                                4See  http://homepages.inf.ed.ac.uk/s0450736/maxent_ 

toolkit.html 

been used previously in active learning for WSD 
tasks (Zhu and Hovy, 2007). In the following 
comparison experiments, we focus on 10 most 
frequent nouns 5  previously used in (Zhu and 
Hovy, 2007): rate, president, people, part, point, 
director, revenue, bill, future, and order.  

The Interest data set developed by Bruce and 
Wiebe (1994) has been previously used for WSD 
(Ng and Lee, 1996). This data set consists of 
2369 sentences of the noun “interest” with its 
correct sense manually labeled. The noun 
“interest” has six different senses in this data set.  
TWA developed by Mihalcea and Yang on 2003, 
is sense tagged data for six words with two-way 
ambiguities, previously used in WSD research. 
These six words are bass, crane, motion, palm, 
plant and tank. All instances were drawn from 
the British National Corpus. 

5.3 Stopping Criteria for Uncertainty Sam-
pling 

In order to evaluate the effectiveness of our stop-
ping criteria, we first apply them to uncertainty 
sampling for active learning for WSD and TC 
tasks. Table 1 shows that “First” method gener-
ally achieves higher performance than that of the 
“All” method.  We can see from the “Average” 
row that stopping criteria MC, ME, CC-MC, CC-
ME and CC-OU achieve close average accuracy 
performance to the “All” method whereas OU 
and CC achieve lower average accuracy 
performance. OU method achieves the lowest 
average accuracy performance. CC-ME achieves 
the highest average accuracy of 89.6%, followed 
by CC-MC. 

Compared to the “First” method, CC-OU 
achieves the best average percentage 
performance of 37.03% (i.e. the closest one to 
the “First” method), followed by ME method. On 
six evaluation data sets, Table 1 shows that CC-
ME method achieves 4 out of 6 highest accuracy 
performances, followed by CC-MC and MC 
methods. And CC-ME method also achieves 3 
out of 6 best percentage performance, followed 
by CC, CC-OU and ME methods.  

Among these four individual stopping criteria, 
ME outperforms MC, OU and CC. However, ME 
method can only be applied to batch-based 
selection because ME criterion is based on the 
feedback from Oracle. Too few informative 
candidates may not be adequate for obtaining a 
reasonable feedback for ME criterion.  

 
5 See http://www.nlplab.com/ontonotes-10-nouns.rar 
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Data set All First MC ME OU CC CC-MC CC-ME CC-OU
0.910 0.911 0.910 0.910 0.837 0.912 0.912 0.913 0.912 WebKB 100% 31.50% 27.11% 29.11% 8.42% 31.53% 32.37% 33.02% 31.53%
0.880 0.884 0.877 0.879 0.868 0.876 0.879 0.880 0.876 Comp2a 100% 35.12% 31.35% 31.28% 23.29% 27.35% 32.36% 36.80% 27.35% 
0.900 0.901 0.887 0.888 0.880 0.879 0.891 0.893 0.882 Comp2b 100% 41.66% 37.52% 36.76% 28.36% 30.80% 37.95% 40.03% 31.81% 
0.939 0.942 0.929 0.934 0.928 0.936 0.940 0.939 0.939 Ontonotes 100% 22.81% 30.19% 22.14% 21.81% 18.96% 34.77% 25.60% 24.75% 
0.908 0.910 0.910 0.906 0.906 0.901 0.910 0.906 0.906 Interest 100% 29.83% 37.54% 28.25% 28.51% 25.55% 37.54% 28.67% 28.62% 
0.846 0.858 0.843 0.844 0.837 0.820 0.841 0.845 0.838 TWA 100% 59.67% 80.34% 72.71% 70.47% 61.54% 86.99% 80.15% 78.12% 
0.897 0.901 0.892 0.893 0.876 0.887 0.895 0.896 0.892 Average 
100% 37.43% 40.67% 36.71% 30.14% 32.62% 43.66% 40.71% 37.03%

Table 1. Effectiveness of seven stopping criteria for uncertainty sampling for active learning. For each 
data set, Table 1 shows the accuracy of the classifier and percentage of learned instances over all 
unlabeled data when each stopping criterion is met. The boldface numbers indicate the best corre-
sponding performances. 
Data set All MC ME OU CC CC-MC CC-ME CC-OU 

0.858 0.808 0.818 0.601 0.820 0.820 0.824 0.820 WebKB 
100% 27.11% 29.11% 8.42% 31.53% 32.37% 33.02% 31.53% 
0.894 0.838 0.839 0.825 0.837 0.838 0.846 0.837 Comp2a 
100% 31.35% 31.28% 23.29% 27.35% 32.36% 36.80% 27.35% 
0.922 0.884 0.882 0.878 0.874 0.885 0.883 0.879 Comp2b 
100% 37.52% 36.76% 28.36% 30.80% 37.95% 40.03% 31.81% 
0.925 0.923 0.924 0.921 0.921 0.932 0.927 0.929 Ontonotes 
100% 30.19% 22.14% 21.81% 18.96% 34.77% 25.60% 24.75% 
0.899 0.906 0.890 0.890 0.885 0.906 0.891 0.890 Interest 
100% 37.54% 28.25% 28.51% 25.55% 37.54% 28.67% 28.62% 
0.812 0.784 0.793 0.765 0.775 0.799 0.810 0.794 TWA 
100% 80.34% 72.71% 70.47% 61.54% 86.99% 80.15% 78.12% 
0.885 0.857 0.857 0.813 0.852 0.863 0.863 0.858 Average 
100% 40.67% 36.71% 30.14% 32.62% 43.66% 40.71% 37.03% 

Table 2. Effectiveness of seven stopping criteria for heterogeneous uncertainty sampling for active 
learning. Table 2 shows the accuracy of the classifier and percentage of learned instances over all 
unlabeled data when each stopping criterion is met. The boldface numbers indicate the best corre-
sponding performances. 

 
Interestingly, our proposed CC method 

acheves the best macro-average percentage 
performance on the TWA data set, however, 
other criteria work poorly, compared to the 
“First” method. Actually the sense distribution of 
each noun in TWA set is very skewed. From 
WSD experimental results on TWA, we found 
that only few learned instances can train the 
MaxEnt-based classifier with the highest 
accuracy performance.  

In Table 1, the boldface numbers indicate the 
best performances. Three combination strategies 
achieve 12 out of 16 best performances 6 . We 

                                                                                                                          
6 CC and CC-OU methods achieve the same best percentage 
performance of 31.53% on WebKB data set. MC and CC-

think the general combination strategy 
outperform individual stopping criteria for 
uncertainty sampling for active learning, because 
four individual stopping criteria only totally 
achieve 4 out of 16 best performances. 

5.4 Stopping Criteria for Heterogeneous 
Uncertainty Sampling 

In the following comparison experiments on het-
erogeneous uncertainty sampling, a MaxEnt-
based classifier is used to select the most infor-
mative examples for training an another type of 
classifier based on multinomial naïve Bayes (NB) 
model (McCallum and Nigam, 1998b).  

 
MC methods achieve the same highest accuracy perform-
ance of 91% on Interest data set.  
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Table 2 shows that the NB-based classifier 
trained on all data (i.e. “All method”) achieves 
only 1.2% lower average accuracy performance 
than that of MaxEnt-based classifier. However, 
we can see from Table 2 that accuracy perform-
ances of each stopping criterion for heterogene-
ous uncertainty sampling are apparently lower 
than that for uncertainty sampling shown in Ta-
ble 1. The main reason is that an uncertain ex-
ample for one classifier (i.e. MaxEnt) may not be 
an uncertain example for other classifiers (i.e. 
NB). This comparison experiments aim to ana-
lyze the accuracy effectiveness of stopping crite-
ria for heterogeneous uncertainty sampling, 
compared to that for uncertainty sampling shown 
in Table 1. Therefore we do not provide the re-
sults of the “First” method for heterogeneous 
uncertainty sampling. The “Average” row shows 
that CC-MC and CC-ME achieve the highest 
average accuracy performance of 86.3%, fol-
lowed by CC-OU. On six data sets, CC-ME 
achieves 3 out of 6 highest accuracy perform-
ances.  

Interestingly, these stopping criteria work very 
well on the Ontonotes and Interest data sets. 
Three combination strategies achieve higher ac-
curacy performance than the “All” method on 
Ontonotes. However, the accuracy performances 
of these seven stopping criteria for heterogene-
ous uncertainty sampling on WebKB, Comp2a, 
Comp2b, and TWA degrade, compared to the 
“All” method.  

The general combination strategy achieves 7 
out of 9 boldface accuracy performances7. And 
only MC method achieves other 2 boldface accu-
racy performances. Experimental results show 
that the general combination strategy outper-
forms individual stopping criteria in overall for 
heterogeneous uncertainty sampling.   

6 Related Work 

 Zhu and Hovy (2007) proposed a confidence-
based framework to predict the upper bound and 
the lower bound for a stopping criterion in active 
learning. Actually this framework is a very 
coarse solution that simply uses max-confidence 
method to predict the upper bound, and uses min-
error method to predict the lower bound. Zhu et. 
al. (2008) proposed a minimum expected error 
strategy to learn a stopping criterion through es-
                                                 
7 MC and CC-MC methods achieve the same highest accu-
racy performance of 90.6% on Interest data set. CC-MC and 
CC-CA methods achieve the same highest average accuracy 
performance of 86.3%. 

timation of the classifier’s expected error on fu-
ture unlabeled examples. However, both two 
studies did not give an answer to the problem of 
how to define an appropriate threshold for the 
stopping criterion in a specific task.   

Vlachos (2008) also studied a stopping crite-
rion of active learning based on the estimate of 
the classifier’s confidence, in which a separate 
and large dataset is prepared in advance to esti-
mate the classifier’s confidence. However, there 
is a risk to be misleading because how many 
examples are required for this pregiven separate 
dataset is an open question in real-world 
applications, and it can not guarantee that the 
classifier shows a rise-peak-drop confidence 
pattern during active learning process.  

Schohn and Cohn (2000) proposed a stopping 
criterion for active learning with support vector 
machines based on an assumption that the data 
used is linearly separable. However, in most real-
world cases this assumption seems to be 
unreasonable and difficult to satisfy. And their 
stopping criterion cannot be applied for active 
learning with other type of classifier such as NB, 
MaxEnt models.  

7 Discussion 

We believe that a classifier’s performance 
change is a good signal of stopping the active 
learning process. It is worth studying further how 
to combine the factor of performance change 
with our proposed stopping criteria. 

Among these stopping criteria, ME, CC, CC-
ME can be used directly for committee-based 
sampling (Engelson and Dagan, 1999) for active 
learning. However, to use MC, OU, CC-MC and 
CC-OU for committee-based sampling, we 
should adopt a new uncertainty measurement 
such as vote entropy to measure the uncertainty 
of each unlabled example in the pool. 

In the above active learning comparison 
experiments, the confidence estimation for each 
confidence-based stopping criterion is done 
within the unlabeled pool U. We think that for 
these confidence-based stopping criteria except 
SA method, confidence estimation on a large-
scale outside unlabeled data set is worth studying 
in the future work. 

8 Conclusion and Future Work 

In this paper, we address the stopping criterion 
issue of active learning, and propose a new stop-
ping criterion, classification-change, which con-
siders the potential ability of each unlabeled ex-
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ample on changing decision boundaries. To solve 
the problem of predefining an appropriate 
threshold for each confidence-based stopping 
criterion, a multi-criteria-based general combina-
tion strategy is proposed. Experimental results on 
uncertainty sampling and heterogeneous uncer-
tainty sampling show that these stopping criteria 
work well on evaluation data sets, and combina-
tion strategies can achieve better performance 
than individual criteria. Some interesting future 
work is to investigate further how to combine the 
best of these criteria, and how to consider per-
formance change to define an appropriate stop-
ping criterion for active learning.  
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