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Abstract

We address corpus building situations,
where complete annotations to the whole
corpus is time consuming and unrealistic.
Thus, annotation is done only on crucial
part of sentences, or contains unresolved
label ambiguities. We propose a parame-
ter estimation method for Conditional Ran-
dom Fields (CRFs), which enables us to
use such incomplete annotations. We show
promising results of our method as applied
to two types of NLP tasks: a domain adap-
tation task of a Japanese word segmenta-
tion using partial annotations, and a part-
of-speech tagging task using ambiguous
tags in the Penn treebank corpus.

1 Introduction

Annotated linguistic corpora are essential for
building statistical NLP systems. Most of the
corpora that are well-known in NLP communi-
ties are completely-annotated in general. However
it is quite common that the available annotations
are partial or ambiguous in practical applications.
For example, in domain adaptation situations, it is
time-consuming to annotate all of the elements in a
sentence. Rather, it is efficient to annotate certain
parts of sentences which include domain-specific
expressions. In Section 2.1, as an example of such
efficient annotation, we will describe the effective-
ness of partial annotations in the domain adapta-
tion task for Japanese word segmentation (JWS).
In addition, if the annotators are domain experts
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rather than linguists, they are unlikely to be confi-
dent about the annotation policies and may prefer
to be allowed to defer some linguistically complex
decisions. For many NLP tasks, it is sometimes
difficult to decide which label is appropriate in a
particular context. In Section 2.2, we show that
such ambiguous annotations exist even in a widely
used corpus, the Penn treebank (PTB) corpus.

This motivated us to seek to incorporate such
incomplete annotations into a state of the art ma-
chine learning technique. One of the recent ad-
vances in statistical NLP is Conditional Random
Fields (CRFs) (Lafferty et al., 2001) that evaluate
the global consistency of the complete structures
for both parameter estimation and structure infer-
ence, instead of optimizing the local configurations
independently. This feature is suited to many NLP
tasks that include correlations between elements
in the output structure, such as the interrelation of
part-of-speech (POS) tags in a sentence. However,
conventional CRF algorithms require fully anno-
tated sentences. To incorporate incomplete anno-
tations into CRFs, we extend the structured out-
put problem in Section 3. We focus on partial an-
notations or ambiguous annotations in this paper.
We also propose a parameter estimation method
for CRFs using incompletely annotated corpora in
Section 4. The proposed method marginalizes out
the unknown labels so as to optimize the likelihood
of a set of possible label structures which are con-
sistent with given incomplete annotations.

We conducted two types of experiments and ob-
served promising results in both of them. One was
a domain adaptation task for JWS to assess the
proposed method for partially annotated data. The
other was a POS tagging task using ambiguous an-
notations that are contained in the PTB corpus. We
summarize related work in Section 6, and conclude
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cut

incised wound 

cut injury

abrasionor

file (or rasp)

infl. injuryinfl.infl.

pickpocket

Figure 1: An example of word boundary ambigui-
ties: infl. stands for an inflectional suffix of a verb.

in Section 7.

2 Incomplete Annotations

2.1 Partial Annotations

In this section, we describe an example of an effi-
cient annotation which assigns partial word bound-
aries for the JWS task.

It is not trivial to detect word boundaries for
non-segmented languages such as Japanese or Chi-
nese. For example, the correct segmentation of
the Japanese phrase “ ” (incised
wound or abrasion) is shown by the lowest boxes
segmented by the solid lines in Figure 1. How-
ever, there are several overlapping segmentation
candidates, which are shown by the other boxes,
and possible segmentation by the dashed lines.
Thus, the decisions on the word segmentation re-
quire considering the context, so simple dictionary
lookup approach is not appropriate. Therefore sta-
tistical methods have been successfully used for
JWS tasks. Previous work (Kudo et al., 2004)
showed CRFs outperform generative Markov mod-
els and discriminative history-based methods in
JWS. In practice, a statistical word segment an-
alyzer tends to perform worse for text from dif-
ferent domains, so that additional annotations for
each target domain are required. A major cause of
errors is the occurrence of unknown words. For ex-
ample, if “ ” (abrasion) is an unknown word,
the system may accept the word sequence of “

” as “ ” (incised wound), “
” (file), and “ ” (injury) by mistake.
On one hand, lists of new terms in the target

domain are often available in the forms of techni-
cal term dictionaries, product name lists, or other
sources. To utilize those domain word lists, Mori
(2006) proposed a KWIC (KeyWord In Context)
style annotation user interface (UI) with which a
user can delimit a word in a context with a single
user action. In Figure 2, an annotator marks the oc-
currences of “ ”, a word in the domain word

©
©

Figure 2: An example of KWIC style annotation:
marked lines are identified as a correct segmenta-
tion.

list, if they are used as a real word in their con-
text. The “ ” in the first row is a part of an-
other word “ ” (scratch), and the annotator
marks the last two rows as correctly segmented ex-
amples. This UI simplifies annotation operations
for segmentation to yes/no decisions, and this sim-
plification can also be effective for the reduction
of the annotation effort for other NLP tasks. For
example, the annotation operations for unlabeled
dependency parsing can be simplified into a series
of yes/no decisions as to whether or not given two
words have syntactic dependency. Compared with
sentence-wise annotation, the partial annotation is
not only effective in terms of control operations,
but also reduces annotation errors because it does
not require annotating the word boundaries that an
annotator is unsure of. This feature is crucial for
annotations made by domain experts who are not
linguists. 1 We believe partial annotation is effec-
tive in creating corpora for many other structured
annotations in the context of the domain adapta-
tions.

2.2 Ambiguous Annotations
Ambiguous annotations in this paper refer to a set
of candidate labels annotated for a part of a struc-
tured instance. For example, the following sen-
tence from the PTB corpus includes an ambiguous
annotation for the POS tag of “pending”:

That/DT suit/NN is/VBZ pending/VBG|JJ ./. ,

where words are paired with their part-of-speech
tag by a forward slash (“/”).2 Uncertainty concern-
ing the proper POS tag of “pending” is represented
by the disjunctive POS tag (“VBG and JJ”) as in-
dicated by a vertical bar.

The existence of the ambiguous annotations is
due to the task definition itself, the procedure man-

1The boundary policies of some words are different even
among linguists. In addition, the boundary agreement is even
lower in Chinese (Luo, 2003).

2These POS tags used here are DT:determiner,
NN:common noun, VBZ:present tense 3rd person singular
verb, VBG:gerund or present participle verb, JJ:adjective,
NNS:plural noun, RBR:comparative adverb, IN:preposition
or subordinating conjunction, and RB:adverb.
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frequency word POS tags
15 data NN|NNS
10 more JJR|RBR

7 pending JJ|VBG
4 than IN|RB

Table 1: Words in the PTB with ambiguous POSs.

ual for the annotators, or the inadequate knowl-
edge of the annotators. Ideally, the annotations
should be disambiguated by a skilled annotator for
the training data. However, even the PTB cor-
pus, whose annotation procedure is relatively well-
defined, includes more than 100 sentences contain-
ing POS ambiguities such as those listed in Ta-
ble 1. Although the number of ambiguous an-
notations is not considerably large in PTB cor-
pus, corpora could include more ambiguous anno-
tations when we try to build wider coverage cor-
pora. Also, ambiguous annotations are more com-
mon in the tasks that deal with semantics, such as
information extraction tasks so that learning algo-
rithms must deal with ambiguous annotations.

3 Problem Definition

In this section, we give a formal definition of the
supervised structured output problem that uses par-
tial annotations or ambiguous annotations in the
training phase. Note that we assume the input and
output structures are sequences for the purpose of
explanation, though the following discussion is ap-
plicable to other structures, such as trees.

Let x=(x1, x2, · · · , xT ) be a sequence of ob-
served variables xt ∈ X and y=(y1, y2, · · · , yT )
be a sequence of label variables yt ∈ Y . Then the
supervised structured output problem can be de-
fined as learning a map X → Y . In the Japanese
word segmentation task, x can represent a given
sequence of character boundaries and y is a se-
quence of the corresponding labels, which spec-
ify whether the current position is a word bound-
ary.3 In the POS tagging task, x represents a word
sequence and y is a corresponding POS tag se-
quence. An incomplete annotation, then, is defined
as a sequence of subset of the label set instead of a
sequence of labels. Let L=(L1, L2, · · · , LT ) be a
sequence of label subsets for an observed sequence

3Peng et al. (2004) defined the word segmentation prob-
lem as labeling each character as whether or not the previous
character boundary of the current character is a word bound-
ary. However, we employ our problem formulation since it
is redundant to assign the first character of a sentence as the
word boundary in their formulation.

x, where Lt ∈ 2Y − {∅}. The partial annotation
at position s is where Ls is a singleton and the rest
Lt�=s is Y . For example, if a sentence with 6 char-
acter boundaries (7 characters) is partially anno-
tated using the KWIC UI described in Section 2.1,
a word annotation where its boundary begins with
t = 2 and ends with t = 5 will be represented as:

L = ({©,×}, {©}, {×}, {×}, {©}︸ ︷︷ ︸
partial annotation

, {©,×}),

where © and × denote the word boundary la-
bel and the non-word boundary label, respectively.
The ambiguous annotation is represented as a set
which contains candidate labels. The example sen-
tence including the ambiguous POS tag in Sec-
tion 2.2 can be represented as:

L = ({DT}, {NN}, {VBZ}, {VBG, JJ}︸ ︷︷ ︸
ambiguous annotation

, {.}).

Note that, if all the elements of a given sequence
are annotated, it is the special case such that the
size of all elements is one, i.e. |Lt| = 1 for all
t = 1, · · · , T . The goal in this paper is training
a statistical model from partially or ambiguously
annotated data, D = {(x(n), L(n))}N

n=1.

4 Marginalized Likelihood for CRFs

In this section, we propose a parameter estimation
procedure for the CRFs (Lafferty et al., 2001) in-
corporating partial or ambiguous annotations. Let
Φ(x, y) : X ×Y → �d denote a map from a pair
of an observed sequence x and a label sequence y
to an arbitrary feature vector of d dimensions, and
θ ∈ �d denotes the vector of the model parame-
ters. CRFs model the conditional probability of a
label sequence y given an observed sequence x as:

P„(y|x) =
e„·Φ(x,y)

Z„,x,Y
(1)

where · denotes the inner product of the vectors,
and the denominator is the normalization term that
guarantees the model to be a probability:

Z„,x,S =
∑
y∈S

e„·Φ(x,y).

Then once θ has been estimated, the la-
bel sequence can be predicted by ŷ =
argmaxy∈Y P„(y|x). Since the original CRF
learning algorithm requires a completely labeled
sequence y, the incompletely annotated data
(x, L) is not directly applicable to it.
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Let YL denote all of the possible label sequence
consistent with L. We propose to use the condi-
tional probability of the subset YL given x:

P„(YL|x) =
∑

y∈YL

P„(y|x), (2)

which marginalizes the unknown ys out. Then
the maximum likelihood estimator for this model
can be obtained by maximizing the log likelihood
function:

LL(θ) =
N∑

n=1

lnP„(YL(n) |x(n)) (3)

=
N∑

n=1

(
lnZ„,x(n),Y

L(n)
− lnZ„,x(n),Y

)
.

This modeling naturally embraces label ambigui-
ties in the incomplete annotation.4

Unfortunately, equation (3) is not a concave
function5 so that there are local maxima in the
objective function. Although this non-concavity
prevents efficient global maximization of equation
(3), it still allows us to incorporate incomplete an-
notations using gradient ascent iterations (Sha and
Pereira, 2003). Gradient ascent methods require
the partial derivative of equation (3):

∂ LL(θ)
∂θ

=
N∑

n=1

⎛⎝ ∑
y∈Y

L(n)

P„(y|YL(n) , x(n))Φ(x(n), y)

−
∑
y∈Y

P„(y|x(n))Φ(x(n), y)

⎞⎠ , (4)

where

P„(y|YL, x) =
e„·Φ(x,y)

Z„,x,YL

(5)

is a conditional probability that is normalized over
YL.

Equations (3) and (4) include the summations
of all of the label sequences in Y or YL. It is not
practical to enumerate and evaluate all of the label
configurations explicitly, since the number of all of
the possible label sequences is exponential on the
number of positions t with |Lt| > 1. However, un-
der the Markov assumption, a modification of the

4It is common to introduce a prior distribution over the pa-
rameters to avoid over-fitting in CRF learning. In the experi-
ments in Section 5, we used a Gaussian prior with the mean 0

and the variance σ2 so that − ||„||2
2σ2 is added to equation (3).

5Since its second order derivative can be positive.

domain #sentences #words
(A) conversation 11,700 145,925
(B) conversation 1,300 16,348
(C) medical manual 1,000 29,216

Table 2: Data statistics.

Types Template
Characters c−1, c+1,

Character types c−2c−1, c−1c+1, c+1c+2,

Term in dic. c−2c−1c+1, c−1c+1c+2

Term in dic. starts at
c−1, c+1

Term in dic. ends at

Table 3: Feature templates: Each subscript stands
for the relative distance from a character boundary.

Forward-Backward algorithm guarantees polyno-
mial time computation for the equations (3) and
(4). We explain this algorithm in Appendix A.

5 Experiments

We conducted two types of experiments, assessing
the proposed method in 1) a Japanese word seg-
mentation task using partial annotations and 2) a
POS tagging task using ambiguous annotations.

5.1 Japanese Word Segmentation Task

In this section, we show the results of domain
adaptation experiments for the JWS task to assess
the proposed method. We assume that only par-
tial annotations are available for the target domain.
In this experiment, the corpus for the source do-
main is composed of example sentences in a dic-
tionary of daily conversation (Keene et al., 1992).
The text data for the target domain is composed
of sentences in a medical reference manual (Beers,
2004) . The sentences of all of the source domain
corpora (A), (B) and a part of the target domain
text (C) were manually segmented into words (see
Table 2).

The performance measure in the experiments is
the standard F measure score, F = 2RP/(R + P )
where

R =
# of correct words

# of words in test data
× 100

P =
# of correct words

# of words in system output
× 100.

In this experiment, the performance was evaluated
using 2-fold cross-validation that averages the re-
sults over two partitions of the data (C) into the
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Figure 3: Average performances varying the num-
ber of word annotations over 2 trials.

data for annotation and training (C1) versus the
data for testing (C2).

We implemented first order Markov CRFs. As
the features for the observed variables, we use the
characters and character type n-gram (n=1, 2, 3)
around the current character boundary. The
character types are categorized into Hiragana,
Katakana, Kanji, English alphabet, Arabic numer-
als, and symbols. We also used lexical features
consulting a dictionary: one is to check if any
of the above defined character n-grams appear in
a dictionary (Peng et al., 2004), and the other is
to check if there are any words in the dictionary
that start or end at the current character boundary.
We used the unidic6 (281K distinct words) as the
general purpose dictionary, and the Japanese Stan-
dard Disease Code Master (JSDCM)7 (23K dis-
tinct words) as the medical domain dictionary. The
templates for the features we used are summarized
in Table 3. To reduce the number of parameters,
we selected only frequent features in the source do-
main data (A) or in about 50K of the unsegmented
sentences of the target domain.8 The total number
of distinct features was about 300K.

A CRF that was trained using only the source
domain corpus (A), CRFS, achieved F=96.84 in
the source domain validation data (B). However,
it showed the need for the domain adaptation that
this CRFS suffered severe performance degrada-
tion (F=92.3) on the target domain data. This
experiment was designed for the case in which a
user selects the occurrences of words in the word
list using the KWIC interface described in Sec-
tion 2.1. We employed JSDCM as a word list
in which 224 distinct terms appeared on average
over 2 test sets (C1). The number of word an-

6Ver. 1.3.5; http://www.tokuteicorpus.jp/dist/
7Ver. 2.63; http://www2.medis.or.jp/stdcd/byomei/
8The data (B) and (C), which were used for validation and

test, were excluded from this feature selection process.

notations varied from 100 to 1000 in this exper-
iment. We prioritized the occurrences of each
word in the list using a selective sampling tech-
nique. We used label entropy (Anderson et al.,
2006), H(ys

t ) =
∑

ys
t∈Y s

t
P„̃(ys

t |x) lnP„̃(ys
t |x)

, as importance metric of each word occurrence,
where θ̃ is the model parameter of CRFS, and ys

t =
(yt, yt+1, · · · , ys) ∈ Y s

t is a subsequence starting
at t and ending at s in y. Intuitively, this metric
represents the prediction confidence of CRFS.9 As
training data, we mixed the complete annotations
(A) and these partial annotations on data (C1) be-
cause that performance was better than using only
the partial annotations.

We used conjugate gradient method to find the
local maximum value with the initial value being
set to be the parameter vector of CRFS . Since the
amount of annotated data for the target domain was
limited, the hyper-parameter σ was selected using
the corpus (B).

For the comparison with the proposed method,
the CRFs were trained using the most probable
label sequences consistent with L (denoted as
argmax). The most probable label sequences were
predicted by the CRFS. Also, we used a point-wise
classifier, which independently learns/classifies
each character boundary and just ignores the unan-
notated positions in the learning phase. As the
point-wise classifier, we implemented a maximum
entropy classifier which uses the same features and
optimizer as CRFs.

Figure 3 shows the performance comparisons
varying the number of word annotations. The
combination of both the proposed method and the
selective sampling method showed that a small
number of word annotations effectively improved
the word segmentation performance. In addi-
tion, the proposed method significantly outper-
formed argmax and point-wise classifier based on
the Wilcoxon signed rank test at the significance
level of 5%. This result suggests that the pro-
posed method maintains CRFs’ advantage over the
point-wise classifier and properly incorporates par-
tial annotations.

5.2 Part-of-speech Tagging Task

In this section, we show the results of the POS tag-
ging experiments to assess the proposed method
using ambiguous annotations.

9We selected word occurrences in a batch mode since each
training of the CRFs takes too much time for interactive use.
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Ex.1 Ex.2
ambiguous sentences (training) 118
unique sentences (training) 1,480 2,960
unique sentences (test) 11,840

Table 4: Training and test data for POS tagging.

As mentioned in Section 2.2, there are words
which have two or more candidate POS tags in the
PTB corpus (Marcus et al., 1993). In this experi-
ment, we used 118 sentences in which some words
(82 distinct words) are annotated with ambiguous
POS tags, and these sentences are called the POS
ambiguous sentences. On the other hand, we call
sentences in which the POS tags of these terms are
uniquely annotated as the POS unique sentences.

The goal of this experiment is to effectively im-
prove the tagging performance using both these
POS ambiguous sentences and the POS unique
sentences as the training data. We assume that the
amount of training data is not sufficient to ignore
the POS ambiguous sentences, or that the POS am-
biguous sentences make up a substantial portion of
the total training data. Therefore we used a small
part (1/10 or 1/5) of the POS unique sentences for
training the CRFs and evaluated their performance
using other (4/5) POS unique sentences. We con-
ducted two experiments in which different num-
bers of unique sentences were used in the training
phases, and these settings are summarized in Ta-
ble 4.

The feature sets for each word are the case-
insensitive spelling, the orthographic features of
the current word, and the sentence’s last word. The
orthographic features are whether a spelling begins
with a number or an upper case letter; whether
it begins with an upper case letter and contains a
period (“.”); whether it is all upper case letters or
all lower case letters; whether it contains a punc-
tuation mark or a hyphen; and the last one, two,
and three letters of the word. Also, the sentence’s
last word corresponds to a punctuation mark (e.g.
“.”, “?”, “!”). We employed only features that ap-
peared more than once. The total number of re-
sulting distinct features was about 14K. Although
some symbols are treated as distinct tags in the
PTB tag definitions, we aggregated these symbols
into a symbol tag (SYM) since it is easy to restore
original symbol tags from the SYM tag. Then, the
number of the resulting tags was 36.

For the comparison with the proposed method
(mrg), we used three heuristic rules that disam-
biguated the annotated candidate POS tags in the

POS ambiguous sentences. These rules selected a
POS tag 1) at random, 2) as the first one in the
description order10, 3) as the most frequent tag
in the corpus. In addition, we evaluated the case
when the POS ambiguous sentences are 4) dis-
carded from the training data.

For evaluation, we employed the Precision
(P) and Average Precision for Ambiguous words
(APA):

P=
# of correctly tagged word
# of all word occurrences

×100

APA=
1
|A|

∑
w∈A

# of the correctly tagged w

# of all occurrences of w
×100

where A is a word set and is composed of the word
for which at least one of its occurrences is ambigu-
ously annotated. Here, we employed APA to eval-
uate each ambiguous words equally, and |A| was
82 in this experiment. Again, we used the conju-
gate gradient method to find the local maximum
value with the initial value being set to be the pa-
rameters obtained in the CRF learning for the dis-
carded setting.

Table 5 shows the average performance of POS
tagging over 5 different POS unique data. Since
the POS ambiguous sentences are only a fraction
of all of the training data, the overall performance
(P) was slightly improved by the proposed method.
However, according to the performance for am-
biguously annotated words (APA), the proposed
method outperformed other heuristics for POS dis-
ambiguation. The P and APA scores between
the proposed method and the comparable methods
are significantly different based on the Wilcoxon
signed rank test at the 5% significance level. Al-
though the performance improvement in this POS
tagging task was moderate, we believe the pro-
posed method will be more effective to the NLP
tasks whose corpus has a considerable number of
ambiguous annotations.

6 Related Work

Pereira and Schabes (1992) proposed a grammar
acquisition method for partially bracketed corpus.
Their work can be considered a generative model
for the tree structure output problem using partial
annotations. Our discriminative model can be ex-
tended to such parsing tasks.

10Although the order in which the candidate tags appear
has not been standardized in the PTB corpus, we assume that
annotators might order the candidate tags with their confi-
dence.
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mrg random first frequent discarded

Ex.1 P 94.39 94.27 94.26 94.27 94.19
APA 73.10 71.58 72.65 71.68 71.91

Ex.2 P 95.08 94.98 94.97 94.97 94.98
APA 76.70 74.27 75.28 74.32 75.16

Table 5: The average POS tagging performance over 5 trials.

Our model is interpreted as one of the CRFs
with hidden variables (Quattoni et al., 2004).
There are previous work which handles hidden
variables in discriminative parsers (Clark and Cur-
ran, 2006; Petrov and Klein, 2008). In their meth-
ods, the objective functions are also formulated as
same as equation (3).

For interactive annotation, Culotta et al. (2006)
proposed corrective feedback that effectively re-
duces user operations utilizing partial annotations.
Although they assume that the users correct en-
tire label structures so that the CRFs are trained as
usual, our proposed method extends their system
when the users cannot annotate all of the labels in
a sentence.

7 Conclusions and Future Work

We are proposing a parameter estimation method
for CRFs incorporating partial or ambiguous an-
notations of structured data. The empirical results
suggest that the proposed method reduces the do-
main adaptation costs, and improves the prediction
performance for the linguistic phenomena that are
sometimes difficult for people to label.

The proposed method is applicable to other
structured output tasks in NLP, such as syntactic
parsing, information extraction, and so on. How-
ever, there are some NLP tasks, such as the word
alignment task (Taskar et al., 2005), in which it is
not possible to efficiently calculate the sum score
of all of the possible label configurations. Re-
cently, Verbeek and Triggs (2008) independently
proposed a parameter estimation method for CRFs
using partially labeled images. Although the ob-
jective function in their formulation is equivalent
to equation (3), they used Loopy Belief Propaga-
tion to approximate the sum score for their ap-
plication (scene segmentation). Their results im-
ply these approximation methods can be used for
such applications that cannot use dynamic pro-
gramming techniques.
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Appendix A Computation of Objective
and Derivative functions

Here we explain the effective computation proce-
dure for equation (3) and (4) using dynamic pro-
gramming techniques.

Under the first-order Markov assumption11, two
types of features are usually used: one is pairs of
an observed variable and a label variable (denoted
as f(xt, yt) : X × Y ), the other is pairs of two
label variables (denoted as g(yt−1, yt) : Y × Y )
at time t. Then the feature vector can be de-
composed as Φ(x, y) =

∑T+1
t=1 φ(xt, yt−1, yt)

where φ(xt, yt−1, yt) = f(xt, yt) + g(yt−1, yt).
In addition, let S and E be special label vari-
ables to encode the beginning and ending of a se-
quence, respectively. We define φ(xt, yt−1, yt) to
be φ(xt, S, yt) at the head t = 1 and g(yt−1, E) at
the tail where t = T + 1. The technique of the ef-
fective calculation of the normalization value is the

11Note that, although the rest of the explanation based on
the first-order Markov models for purposes of illustration, the
following arguments are easily extended to the higher order
Markov CRFs and semi-Markov CRFs.

precomputation of the α„,x,L[t, j], andβ„,x,L[t, j]
matrices with given θ,x, and L. The matrices α
and β are defined as follows, and should be cal-
culated in the order of t = 1, · · · , T , and t =
T + 1, · · · , 1, respectively

α„,x,L[t, j]

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if j /∈ Lt

θ · φ(xt, S, j) else if t = 1
ln

∑
i∈Lt−1

eα[t−1,i]+„·ffi(xt,i,j) else

β„,x,L[t, j]

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if j /∈ Lt

θ · g(j, E) else if t = T + 1
ln

∑
k∈Lt+1

e„·ffi(xt,j,k)+β[t+1,k] else

Note that L = (Y, · · · , Y ) is used to calculate all
the entries in Y . In the rest of this section, we omit
the subscripts θ, x, and L of α, β, Z unless mis-
understandings could occur. The time complexity
of the α[t, j] or β[t, j] computation is O(T |Y |2).

Finally, equations (3) and (4) are efficiently cal-
culated using α, β. The logarithm of Z in equation
(3) is calculated as:

lnZ„,YL
= ln

∑
j∈LT

eα„,L[T,j]+„·g(j,E).

Similarly, the first and second terms of equation
(4) can be computed as:∑
y∈YL

P„,L(y|x)Φ(x, y) =
∑
i∈LT

εL(T, i, E)g(i, E)

+
T∑

t=1

∑
j∈Lt

⎛⎝γL(t, j)f(xt, j) +
∑

i∈Lt−1

εL(t, i, j)g(i, j)

⎞⎠
where θ, x are omitted in this equation, and γ„,x,L

and ε„,x,L are the marginal probabilities:

γ„,x,L(t, j) = P„,L(yt = j|x)

= eα[t,j]+β[t,j]−ln ZYL , and

ε„,x,L(t, i, j) = P„,L(yt−1 = i, yt = j|x)

= eα[t−1,i]+„·ffi(xt,i,j)+β[t,j]−ln ZYL .

Note that YL is replaced with Y and L =
(Y, · · · , Y ) to compute the second term.
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