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Abstract

Few attempts have been made to inves-

tigate the utility of temporal reasoning

within machine learning frameworks for

temporal relation classification between

events in news articles. This paper presents

three settings where temporal reasoning

aids machine learned classifiers of tempo-

ral relations: (1) expansion of the dataset

used for learning; (2) detection of inconsis-

tencies among the automatically identified

relations; and (3) selection among multiple

temporal relations. Feature engineering is

another effort in our work to improve clas-

sification accuracy.

1 Introduction

In recent years, there has been a growing inter-

est in temporal information extraction, as more

and more operational natural language processing

(NLP) systems demand dealing with time-related

issues in natural language texts. Machine learning-

based temporal relation identification has been ex-

plored by only a few researchers, including Bogu-

raev and Ando (2005), Mani et al. (2006), Cham-

bers et al. (2007), and the TempEval 2007 partici-

pants (Verhagen et al., 2007).

For a given ordered pair of elements (x1, x2),
where x1 and x2 are events or times, temporal re-

lation resolution is the task of automatic identifi-

cation of the relation ri ∈ TempRel that tem-

porally links x1 and x2. For example, given

the statement Mr. Antar was chargede137 last

montht237 in a civil suite138 filede140 in federal

c© Lymba Corporation 2008. Licensed under the Cre-
ative Commons Attribution-Noncommercial-Share Alike 3.0
Unported license (http://creativecommons.org/licenses/by-
nc-sa/3.0/). Some rights reserved.

court in Newark by the Securities and Exchange

Commission (wsj 07781) and the pairs (e137, t137),

(e137, e138), and (e138, e140), the task is to automat-

ically label the given pairs with the is included,

is included, and simultaneous relations, respec-

tively. We note that the granularity of the temporal

relations (TempRel) varies from TimeML’s 14 re-

lations to TempEval’s three coarse-grain relations.

While machine learning approaches attempt to

improve classification accuracy through feature

engineering, Mani et al. (2006) introduced a tem-

poral reasoning component to greatly expand the

training data. By computing the temporal closure

of the training data relations, they increased the

training set by a factor of 10. They reported en-

couraging accuracy of classification on event-event

and event-time relations. According to their ex-

periments, the event-event relation accuracy goes

from 62.5% to 94.95% and the event-time rela-

tion accuracy ranges from 73.68% to 90.16%. Re-

cently, extensions of Mani et al. (2006)’s research

is briefly described in (Mani et al., 2007). This

technical report addresses two problems found

in (Mani et al., 2006): (1) feature vector dupli-

cation caused by the data normalization process

(once fixed, the accuracy drops to 76.56% and

83.23%) and (2) a somewhat unrealistic evaluation

scheme (we describe Mani et al. (2007)’s results in

Section 4.1).

TempEval 2007 is the first standard evaluation

arena that consists of three temporal relation clas-

sification tasks (Verhagen et al., 2007). The par-

ticipants reported F-measure scores ranging from

42% to 55% for event-event relations, and 73% to

80% for event-time relations.

Because of their different experimental settings,

1All examples shown here are taken from TimeBank 1.2.
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the results reported in (Mani et al., 2007) cannot

be directly compared with those of TempEval 2007

participants. Among others, the three major differ-

ences are:

1. significantly different training and testing

data. Although the datasets used Time-

Bank 1.2 (Pustejovsky et al., 2003), Mani

et al. (2007) added the AQUAINT Corpus

(www.timeml.org) to their experimental data;

2. different sets of temporal relations. Mani et

al. (2006; 2007) target six normalized rela-

tions (before, immediately before (ibefore),

includes, ends, begins and simultaneous). In

TempEval 2007, a set of three coarse-grain

temporal relations was used (before, after,

and overlap).

3. different relation scope. In (Mani et al., 2006;

Mani et al., 2007), event-event temporal re-

lations are discourse-wide, i.e. any pair of

events can be temporally linked. For Tem-

pEval 2007, the event-event relations are re-

stricted to events within two consecutive sen-

tences.

These two modeling frameworks for solving the

problem of temporal relation classification pro-

duce highly dissimilar results. With this in mind,

we are interested in two issues in this paper: (1)

How might temporal reasoning assist in tempo-

ral relation identification? (2)What other features

might be used to improve the performance of clas-

sification? As a byproduct of our exploration to

these two questions, we hope to find some insights

on why the same problem explored under different

environment produces highly divergent results.

In this paper, we investigate several interactions

between temporal reasoning and a machine learn-

ing approach for temporal ordering of events in

natural language texts. We continue by describing

the data used for our experiments. In Section 3, we

briefly describe the set of features we currently use

to build Support Vector Machine (SVM) (Chang

and Lin, 2001) and Maximum Entropy (ME) mod-

els for temporal relation resolution. The three in-

teractions we envision between temporal reasoning

and the learned models are presented in Section 4.

In conclusion, we present a discussion of our ex-

perimental results and future research directions.

2 Data Preparation and Analysis

2.1 TimeBank 1.2

In this paper, we use the TimeBank 1.2 data (Puste-

jovsky et al., 2003). This is the first attempt to

create a corpus with human annotated temporal re-

lations. It contains 183 news documents collected

from several news agencies.

2.2 Data normalization

Similar to (Mani et al., 2006; Mani et al., 2007),

we use a normalized version of the 14 tempo-

ral relations annotated in TimeBank where the

inverse relations are removed and simultaneous

and identity are collapsed as well as during and

is included. The distribution of the normalized

event-event temporal relations annotated in the

data we used for training our temporal resolution

models is shown in Table 2.

2.3 Experimental data

For the experiments described in this paper, we

used a random 80-20 percent split of the TimeBank

data to train and test the learned classifiers (36 ran-

domly selected documents for testing and the re-

maining 147 for training the models) and 5-fold-

cross-validation of the training data for parame-

ter tuning. We note that our experimental setup

is closer to the one used in (Mani et al., 2006;

Mani et al., 2007). Noting that we do not use the

AQUAINT Corpus in our experiments, our results

can be compared with theirs, but not with the Tem-

pEval system performances.

3 Feature Engineering

As reported by participants in TempEval

2007 (Verhagen et al., 2007), (Boguraev and

Ando, 2005), (Chambers et al., 2007), and (Mani

et al., 2007), most of the features used for learning

are syntactic attributes extracted for single event

terms. In our work, we have experimented with

semantic features and attributes which take the

event’s linguistic context into consideration (Min

et al., 2007). Our experiments show that only

few features are critical and impact the classifier’s

accuracy (Table 1). These include the basic

features available in TimeBank, e.g. event-class,

tense, aspect, polarity, modality, stem, and part of

speech of event terms (Baseline row in Table 1).

Additional features that we explored include:
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Feature set Accuracy (%)

Baseline 46.3

Baseline with sameActor +0.4

Baseline with eventCoref +0.2

Baseline with oneSent +4.0

Baseline with relToDocDate +0.2

Baseline with tensebigram +0.8

Baseline with tensetrigram +0.6

Baseline with all 57.4

Table 1: New features impact

1. sameActor. This binary feature indicates

whether the two events share the same se-

mantic role AGENT. The motivation behind

this feature is that two event terms, especially,

verbs, which have the same agent, have a

closer semantic relationship and, accordingly,

are temporally related.

2. eventCoref. This binary attribute captures the

event co-reference information. If two events

co-refer, even though they have different sur-

face forms, they must take place simultane-

ously. For instance, the offer and deal events,

mentioned in the following sentences, refer to

the same transaction and, therefore, must be

linked by a simultaneous relation.

a) Sony Corp. completed its tender offer for Columbia
Pictures Entertainment Inc., with Columbia sharehold-
ers tendering 99.3% of all common shares outstanding
by the Tuesday deadline.

b) Sony Columbia Acquisition Corp., formed for the
Columbia deal, will formally take ownership of the
movie studio later this month, a spokesman said.

3. oneSent. This binary feature is true if the two

events are part of the same sentence. Cham-

bers et al.(2007) introduced this feature in

their experiments, and our analysis shows that

this attribute has a relatively larger contribu-

tion to the overall performance. The intu-

ition behind this feature is that the closer two

events get, the closer their temporal relation-

ship is.

4. relToDocDate. This feature encodes the tem-

poral relation between each event and the

Document Date. This was one of the sub-

tasks of TempEval 2007 and we used this re-

lationship as a feature. Our motivation is that

we might be able to infer the relationship be-

tween two events e1 and e2 from the tem-

poral relations they have with the Document

Date. For example, if before(e1, DocDate)

and after(e2, DocDate) are true, then

before(e1, e2). There may be two reasons for

the low impact of this feature: (1) an accu-

rate computation of the temporal relation be-

tween an event and the Document Date is not

easy, as demonstrated in TempEval 2007 and

(2) if two events have the same relation with

the Document Date, there is no way to deter-

mine the event-event relation.

5. tenseBigram and tenseTrigram. Going be-

yond using the tense attribute for single event

terms, we extract bigrams and trigrams with

the tense values of the current event and im-

mediately preceding and following events.

This feature is intended to reflect the tense

shifts of sequential events as part of a larger

context of the current event.

All these features have a positive impact on the

performance of the learned classifiers (Table 1).

Further improvement is desired and we use tem-

poral reasoning in three different settings in an at-

tempt to obtain more accurate temporal relations.

4 Temporal Reasoning

Following our feature set improvements for ma-

chine learned models of temporal relations, we

turned to temporal reasoning and explored differ-

ent ways in which it can aid the resolution of tem-

poral relations. We experimented with three dif-

ferent interactions between our temporal reasoning

and temporal relation resolution modules.

Our natural language reasoning engine (Tatu

and Moldovan, 2005; Tatu and Moldovan, 2007)

makes use of (1) a first-order logical representation

of the input document which captures the concepts

mentioned in the text, their attributes including

named entity class values, event class or normal-

ized values (for times) and the syntactic as well as

the semantic dependencies between concepts2; (2)

a rich set of axioms which encode the knowledge

needed to derive meaningful information from a

document; (3) a logic prover which operates in a

proof by contradiction manner (a hypothesis H is

entailed by a text T assumed to be true, denoted

by T ⊢ H , if and only if (T ∧ ¬H) ⊢ ⊥, where ⊥
is false). Given the logical transformation of a text

T , the prover uses the knowledge encoded in the

2These dependencies include the temporal relations iden-
tified either by human annotators or by the models presented
in Section 3.
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axioms (Bk) to derive new information (T ⋆) about

T 3 and scores the best mapping of the hypothesis

H to T ⋆.

For the temporal relation resolution experiments

presented in this paper, we are interested in de-

riving additional temporal information from an in-

put document without checking the entailment be-

tween this document and a hypothesis. There-

fore, for the following tasks, the text T is a

TimeBank 1.2 document and the set of axioms

Bk used by the prover contains 94 temporal

axioms which link each temporal relation with

its inverse (R−1(x, y) ↔ R(y, x), for example

before(x, y) → after(y, x)) and define the tem-

poral relation resulting from the combination of

two relations (R1(x, y) ∧ R2(y, z) → R3(x, z),
for example, before(x, y) ∧ before(y, z) →
before(x, z)). These axioms were derived from

Allen’s interval algebra (Allen, 1983).

We note that the prover computes and uses tem-

poral relations between any two temporal expres-

sions mentioned in an input TimeBank document4

(e.g. now [19891101] and last year [1988] are

linked by a before temporal relation in wsj 0324).

Within this reasoning setup, the information de-

rived by the prover (T ⋆) will include the temporal

closure of the input text’s relations. We note that

the temporal closure includes event-event, event-

time and time-time temporal relations. We also

note that the temporal axioms are considered 100%

accurate (if the temporal relations given as input

are correct, then the temporal relations derived us-

ing the axioms are also correct).

4.1 Training data expansion

Our first effort to create more accurate temporal re-

lation resolution classifiers given our temporal rea-

soning engine is to augment the gold training data

with new relations from the temporal closure of the

relations identified by human annotators. There-

fore, given the 3,527 temporal relations annotated

in the TimeBank data used to train our initial tem-

poral resolution models, we derived 12,270 new

relations (an increase of 3.47 times). We show in

Table 2 statistics of the normalized event-event re-

lations for both the original and the closed train-

ing data. We note that the temporal inconsisten-

cies identified in the original training data (by the

3T ⋆ contains all the information the prover can derive
from T given the axioms Bk.

4We restricted the time-time relations to only before, si-
multaneous, and after.

Relation Original data Closed (⋆) data
Freq. % Freq. %

ibefore 51 2.06 137 1.59

begins 52 2.10 119 1.38

ends 61 2.47 125 1.45

includes 434 17.59 1,161 13.47

before 885 35.88 3,165 36.73

simultaneous 983 39.86 3,909 45.36

Total 2,466 100.00 8,616 100.00

Table 2: Normalized training data (event-event re-

lations)

procedure described in Section 4.2) were resolved

manually by one of the authors of this paper.

We built SVM and ME models from the total

of 8,616 normalized temporal relations using the

set of 15 features described in Section 3. Table 3

shows the performance of the learned models on

the test data (original data as well as closed test

data). Unlike (Mani et al., 2006), the accuracy of

Accuracy for event-event relations
Training data Original test Closed test Train

(845) (4,189)

ME models

Original (2,466) 50.4 46.1 83.3

Closed (8,616) 47.0 41.0 76.1

SVM models

Original (2,466) 56.9 45.8 74.2

Closed (8,616) 52.4 52.0 77.5

Table 3: Event-event temporal resolution

the learned classifiers drops when they are trained

on the closed training dataset. By analyzing the re-

sults from Table 3, one cannot help but notice the

high accuracy on the data used for training and the

significant difference between the performance on

the training and testing datasets. This may suggest

that (1) the machine learners overfit the models on

the training data and they are not able to gener-

alize and resolve the relations in the test data5 or

(2) the two datasets are very different (in terms

of feature values) and the data split happened to

create a training data which is not (fully) charac-

teristic to the problem we are trying to solve (the

two datasets have different distributions). There-

fore, we measured the accuracy of ME models for

event-event relation resolution using 5-fold-cross-

validation of the entire TimeBank data (Table 4).

For these experiments, each TimeBank document

(with all its temporal relations) was used as part

5The accuracy of the SVM models is lower on the training
data when compared with the ME models while their perfor-
mance on the test dataset is better.
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Test data Train data
1/5 of the data remaining 4/5s

5-fold-cross split at the document level

Original (3,311) 57.4 89.5

Closed (11,530) 58.2 85.5

5-fold-cross split at the relation level

Original (3,311) 58.3 90.0

Closed (11,530) 73.4 85.3

Table 4: Average ME accuracy for event-event re-

lations using 5-fold-cross-validation on the entire

TimeBank data

of either the training or the testing dataset. Our re-

sults for the random 5-fold-cross split of the data at

the document level are similar to the ones obtained

for the models learned on the pre-established train-

ing data (top two rows in Table 4). Thus, our ini-

tial split of the data was not an ’unfortunate’ divi-

sion. The same significant difference between the

performance on the unseen data and the training

set can be seen. This suggests that some overfit-

ting occurs. Features, such as the event term stem,

with a large number of possible values mislead the

machine learning algorithms and the models they

create are not able to correctly classify event pairs

with unseen values for these high-valued features.

For instance, showdown is part of a single Time-

Bank document (AP900816-0139) and the mod-

els learned using other documents will misclassify

showdown’s temporal relations. We note that, by

expanding the training data using its temporal clo-

sure, no new events are added to the training set,

only new temporal relations between the same set

of events are added. Long-term solutions include

(1) the expansion of the annotated data or (2) the

reduction in the number of values for certain fea-

tures (for example, by generalizing the event term

stem to its WordNet hypernym). In an attempt to

homogenize the feature values for the training and

the testing datasets, we split the set of normalized

event-event temporal relations annotated in Time-

Bank into training and testing without considering

the document boundaries. The performance of the

learned classifiers increases by 1% when trained

on unclosed data and by more than 15% when the

closed data is used (Table 4).

In their most recent technical paper, Mani et

al. (2007) revise their evaluation method and report

performance values for classifiers learned by par-

titioning the data at the document level (accuracy

drops from 59.68% to 51.14% when closed train-

ing data is used). These results are consistent with

our findings. In the near future, we shall experi-

ment with the second solution we propose above.

4.2 Testing data validation

Given that almost half of the temporal relations

automatically identified for the testing data are

incorrect when compared to the gold annotation,

we decided, as our second experiment, to use

temporal reasoning to find temporal inconsisten-

cies and replace some of the relations contribut-

ing to the inconsistency by the immediate lower

confidence relation returned by the learned classi-

fiers. For this purpose, we use an additional set

of 77 temporal axioms which encode the irreflex-

ivity of temporal relations (¬R(x, x), for exam-

ple, ¬before(x, x)) and their empty intersections

(R1(x, y) → ¬R2(x, y) when R1 6= R2, for ex-

ample before(x, y) → ¬simultaneous(x, y)).
Our process of testing data validation is itera-

tive. Once a temporal inconsistency is identified

in the test data, it is resolved and the procedure

which computes the temporal closure is re-started.

A temporal inconsistency in a TimeBank docu-

ment (T ) is detected every time ⊥ ∈ T ⋆. The

automatically identified temporal relations (part of

the text T ) which contributed to the derivation of

⊥ become candidates for the resolution of the in-

consistency6. These candidates are sorted based

on the confidence assigned by the machine learn-

ing algorithm7 and the lowest confidence relation

is replaced either by the temporal relation found

by the prover which directly contradicted the auto-

matically identified relation8 (Figure 1(a)) or, for

the cases where such a relation does not exist, by

the immediate lower confidence relation identified

by the learned models (Figure 1(b)).

If, for example, for the statement The US is

bolstering its military presence in the gulf, as

President Clinton discussede1 the Iraq crisis with

the one ally who has backede2 his threate3 of

force, British prime minister Tony Blair, the ME

classifier built in Section 3 identifies the tempo-

ral relations before(e2, e1) (confidence: 0.53),

before(e3, e2) (0.47) and includes(e3, e1) (0.42),

the prover identifies the temporal inconsistency

6The temporal closure axioms are accurate and do not ‘in-
troduce’ incorrect temporal relations.

7For all experiments which exploit the confidence as-
signed by the machine learning algorithm, we use the learned
ME models (SVM models do not provide a confidence for
their decision).

8The confidence of a relation derived by the prover is the
average of the its ‘parent’s confidence values.
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best relation identified for
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Figure 1: Temporal inconsistency resolution

generated by these three relations and replaces the

lowest confidence relation (includes(e3, e1)) with

the relation it derives from the closure of the other

two relations (before(e3, e1), confidence: 0.50).

We note that, during the inconsistency checking

process, all types of temporal relations are used

(event-event, event-time and time-time). For this

inconsistency resolution process, we make the as-

sumption that only one of the temporal relations

which generated the inconsistency is incorrect and

should be replaced.

For the testing dataset described in Section 2.3,

the validation algorithm found inconsistencies in

only 25% of the test documents. This is not very

encouraging, given that the accuracy of the tem-

poral relations identified in the other 75% of the

documents is 50.4%. The documents marked as

inconsistent include, on average, 3.66 temporal in-

consistencies (with a maximum of 8 in a single

document). For each pair of events, we consid-

ered only the top three temporal relations (in terms

of confidence) identified by the learned classifiers.

When the third relation identified for a given pair

of events had to be removed by the inconsistency

resolution algorithm, no other temporal relation

was added to replace it. Table 5 shows the impact

of the validation step on the unclosed test data.

Precision Recall F-measure

Baseline 50.4 50.4 50.4

With test validation 50.1 49.7 49.9

Table 5: Performance change after the testing data

validation step. The baseline is the ME model

learned on the original (unclosed) training data.

Our error analysis shows that, for each discov-

ered temporal inconsistency, more than one incor-

rect relation lead to an inconsistent temporal clo-

sure. Frequently enough, replacing the lowest con-

fidence relation does not resolve the inconsistency

and the temporal relations used to replace it are,

in turn, replaced in the next iterations (the confi-

dence of the replacing relation is lower than the

confidence of the replaced relation). The ME clas-

sifier’s numerous errors and the low applicability

of this process make its contribution to the overall

temporal relation resolution process negative. Our

future work will focus on (1) experimenting with

less erroneous data for which our one-incorrect-

relation-per-inconsistency assumption holds ((per-

haps) the models learned from closed training data

using a data split at the relation level) and (2) test-

ing the existence of a consistent temporal closure

in the absence of the lowest confidence relation. If

none of the six temporal relations that we use to la-

bel an event-event relation can replace the lowest

confidence relation and lead to a consistent tempo-

ral closure, then our candidate incorrect relation is

among the other higher confidence relations. We

also note that we rely heavily on the confidences

automatically assigned by the ME classifiers.

Mani et al. (2007) briefly describe a Greedy

method for ensuring global consistency of auto-

matically labeled testing data. No evaluation re-

sults are reported. As far as we can tell, Mani at

el. (2007) use this algorithm to decide whether or

not to assign the top 1 relation automatically iden-

tified by ME classifiers to a given pair of events.

No attempts are made to replace this relation. Our

validation algorithm uses lower confidence rela-

tions found by the learned models for the same pair

of events to replace the lowest confidence relation

that leads to a temporal inconsistency.

4.3 Temporal relation alignment

In the previous section, we used temporal reason-

ing to replace certain relations automatically iden-

tified by the learned temporal relation resolution

models with the next best relation (in terms of

the confidence) found for the same pair of events.

For our third experiment, we use the top n re-

lations automatically identified for a single pair

of events. Across a document, these relation-

ships can be grouped to form different tempo-

ral orderings of the events mentioned in the doc-

ument. For instance, for four pairs of events,

81 different temporal settings can be created us-

ing the top 3 temporal relations. Figure 2 shows

two of these 81 facets ({R12, R
′
23, R

′
34, R41} and

{R”12, R23, R”34, R”41}) for events e1, . . . , e4.

For these event temporal orderings, we pro-
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Figure 2: Two possible relation alignments

pose to use our temporal reasoning module to de-

rive, score, and rank their temporal closures. We

make the assumption that the correct document-

level event ordering, the document’s temporal co-

hesion can be identified by measuring the closure

of the document’s temporal relations and that or-

derings that use incorrect relations do not gener-

ate good closures. Thus, the relations that generate

the best temporal closure will be considered final

and will be used to label the test document’s event-

event and event-time pairs.

For the example shown in Figure 2, 81 different

temporal closures are generated depending on the

set of relations used to derive them from. In order

to find the final four temporal relations between

events e1, . . . , e4, we score and order the derived

temporal closures. The best closure decides, for

each pair of events, which relation among the top

3 should be selected as final.

Our first step is to identify the best value for

n. Table 6 shows the maximum gain in perfor-

mance when multiple relations are considered for

the same pair of events (an instance is considered

correct if the gold annotation is among the top n
relations returned by the system).

Top n relations Accuracy (%)

1 57.40

2 80.66

3 94.49

4 97.38

5 99.12

6 100.00

Table 6: Top n oracle performance using 5-fold-

cross-validation on the TimeBank data

Because there is substantial improvement in the

top 3 relation set, we use for our experiments the

first three relations identified by the ME classi-

fiers. But, if we consider the top 3 relations for

each pair of events in a document, we end up with

3N possible alignments, where N is the number of

event-event and event-time pairs9 and the scoring

9For each time-time pair, there is a single temporal relation
with confidence equal to 1.

Accuracy

Baseline - top 1 50.4

Oracle (upper bound) - top 3 92.4

With test alignment 47.5

Table 7: Test dataset performance change after the

testing data alignment step. The top 1 and top

3 baselines were generated using the ME model

learned on the original (unclosed) training data.

and ranking of all 3N temporal closures becomes

hardly possible. Therefore, we use a more Greedy

approach. Iteratively, we score and rank temporal

closures derived from a small set of top 3 relations

between N ′ event-event pairs (N ′ < N ) and any

final temporal relations. The best closure is used

to decide on N ′ temporal relations which will be

added to the best partial alignment and will be used

to compute all the following temporal closures.

Secondly, we must identify the temporal clo-

sure scoring function. For our experiments, this

function takes into account the size of the tempo-

ral closure (|T ⋆|) as well as the confidence val-

ues of the relations identified by the ME classi-

fiers in the test set (not derived by the tempo-

ral closure algorithm) (only {c12, c
′
23, c

′
34, c41} and

{c”12, c23, c”34, c”41} for the example shown in

Figure 2). The correlation between these param-

eters and the scoring function is not straightfor-

ward. A preference for the confidence values fa-

vors closures which use only the top relations (in

terms of confidence). However, weighing the size

of the temporal closure leads to a result dominated

by relations that close very well10, such as simulta-

neous or before (which are also very frequent in the

dataset). In the settings which produced the results

shown in Table 7, we used the score1 function: for

T = {(R1, c1), . . . , (Rk, ck)},

score1(T ⋆) = lg(|T ⋆|)×
k∑

i=1

ci.

The temporal relation accuracy drops by 3% after

the relation selection among the top 3 best tem-

poral relations for the testing documents. Posibile

explanation: score1 does not promote the close-

to-gold temporal closures. The difinition of a good

scoring function is not an easy process. Machine

learning approaches might give us better coefi-

cients for the parameters we consider. Alternativ-

elly, our main assumption might prove incorrect:

10When present, these relations will quickly generate many
others in the temporal closure.
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temporal closure is not a good indicator of a docu-

ment’s event ordering. The information conveyed

by a document need not disclose a rich total order-

ing of its events.

5 Conclusion

In this paper, we briefly described our feature en-

gineering efforts for temporal relation resolution

and we analyzed three methods that exploit tem-

poral reasoning and, more specifically, the closure

of temporal relations, for the purpose of improving

the performance of machine learned classifiers of

temporal relations between events in text.

Based on our experiments, we find that feature

engineering helps improve the classification prob-

lem, when compared with several baseline perfor-

mances. However, given our current NLP capabil-

ities, it is clear that we are faced with the perfor-

mance bottleneck problem (accuracy below 60%).

Any attempt to derive more advanced features de-

mands more sophisticated methodologies of mod-

eling temporal expressions, events and their re-

lationships as well as advanced discourse under-

standing capabilities. For instance, the temporal

duration or the start/end time points of events are

highly useful for learning temporal relations. But,

this introduces an even more challenging problem.

In terms of the utility of temporal reasoning

in classifying temporal relation, the idea of using

temporal reasoning to boost training data is cer-

tainly sound. But in order for the boosted train-

ing data to really take effect, more advanced fea-

tures need to be investigated. Certainly, the pro-

cess of dividing the data into training and testing

has its impact on the system’s performance and we

are faced with the data sparseness problem. Tem-

poral inconsistencies in our automatically labeled

test dataset occurred in just a few test documents

and the resolution process did not impact the sys-

tem’s performance. Improvements are needed in

the process of selection of the to-be-replaced re-

lations. Temporal data alignment largely depends

on the function used to score the temporal closures

and we plan to analyze the temporal closure of

the training data and to explore other scoring func-

tions.
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